JM编码器的介绍
- 格式:doc
- 大小:705.50 KB
- 文档页数:20
编码器图解(值得收藏)编码器图解1、认识编码器(编码器在机器人控制中的应用)2、编码器的测量对象3、编码器测量直线位移的方式(1)编码器装在丝杠末端通过测量滚珠丝杠的角位移q,间接获得工作台的直线位移x,构成位置半闭环伺服系统。
(2)丝杠螺距设:螺距t=4mm,丝杠在4s时间里转动了10圈,求:丝杠的平均转速n(r/min)及螺母移动了多少毫米?螺母移动的平均速度v又为多少?(3)编码器和伺服电动机同轴安装(4)编码器和伺服电动机同轴安装(5)编码器和伺服电动机同轴安装(6)编码器两种安装方式比较编码器装在丝杠末端与前端(和伺服电动机同轴)在位置控制精度上有什么区别?4、绝对式测量(ABS)(1)信号性质输出n位二进制编码,每一个编码对应唯一的角度。
(2)接触式绝对码盘(3)绝对式光电码盘5 增量式测量(INC)(1)信号性质(2)增量式光电编码器的结构(3)辨向光敏元件所产生的信号A、B彼此相差90°相位,用于辨向。
当码盘正转时,A信号超前B信号0°;当码盘反转时,B信号超前A信号90°。
(4)辨向信号(5)倍频(细分)在现有编码器的条件下,通过细分技术能提高编码器的分辨力。
细分前,编码器的分辨力只有一个分辨角的大小。
采用4细分技术后,计数脉冲的频率提高了4倍,相当于将原编码器的分辨力提高了3倍,测量分辨角是原来的1/4,提高了测量精度。
(6)零标志(一转脉冲)在码盘里圈,还有一条狭缝C,每转能产生一个脉冲,该脉冲信号又称“一转信号”或零标志脉冲,作为测量的起始基准。
(7)零标志在回参考点中的作用(8)回参考点减速开关(9)回参考点示意图6、编码器在数字测速中的应用(1)模拟测速和数字测速的比较(2)M法测速(适合于高转速场合)有一增量式光电编码器,其参数为1024p/r,在5s时间内测得65536个脉冲,则转速(r/min)为:n = 60 × 65536 /(1024 × 5)=768 r/min编码器每转产生N 个脉冲,在T 时间段内有m1 个脉冲产生,则转速(r/min)为:n = 60m1 /(NT)(3)T法测速(适合于低转速场合)有一增量式光电编码器,其参数为1024p/r,测得两个相邻脉冲之间的脉冲数为3000,时钟频率fc为1MHz ,则转速(r/min)为:n = 60fc /(Nm2 )=60×106/(1024×3000)=19.53 r/min 编码器每转产生N 个脉冲,用已知频率fc作为时钟,填充到编码器输出的两个相邻脉冲之间的脉冲数为m2,则转速(r/min)为:n = 60fc / (Nm2)7、编码器在主轴控制中的应用(1)主轴编码器(2)主轴编码器用于C 轴控制(3)主轴编码器用于螺纹车削车削螺纹时,为保证每次切削的起刀点不变,防止“乱牙”,主轴编码器通过对起刀点到退刀点之间的脉冲进行计数来达到车削螺纹的目的。
编码器工作原理编码器是一种常见的电子设备,用于将物理量转换成数字信号或者编码形式,以便于处理和传输。
它在许多领域中都有广泛的应用,例如工业自动化、通信系统、机器人技术等。
本文将详细介绍编码器的工作原理。
一、编码器的基本原理编码器的基本原理是通过测量和转换输入物理量来生成相应的输出编码。
常见的编码器有旋转编码器和线性编码器两种。
1. 旋转编码器旋转编码器主要用于测量旋转角度或者位置。
它通常由一个旋转轴和一个带有刻度的圆盘组成。
当旋转轴转动时,圆盘上的刻度会与一个传感器进行接触或者挨近,从而生成相应的输出信号。
旋转编码器可以分为增量式编码器和绝对式编码器两种类型。
- 增量式编码器:增量式编码器通过测量旋转轴的角度变化来生成脉冲信号。
它通常由一个光电传感器和一个光栅刻度组成。
当旋转轴旋转时,光栅刻度会使光线在光电传感器上产生脉冲变化,从而生成输出信号。
增量式编码器可以提供角度变化的方向和速度信息。
- 绝对式编码器:绝对式编码器可以直接测量旋转轴的绝对位置。
它通常由一个光电传感器和一个二进制码盘组成。
二进制码盘上的光栅刻度会使光线在光电传感器上产生特定的脉冲组合,从而生成输出信号。
绝对式编码器可以提供旋转轴的精确位置信息。
2. 线性编码器线性编码器主要用于测量直线位移或者位置。
它通常由一个测量尺和一个传感器组成。
当测量尺挪移时,传感器会测量到相应的位移并生成输出信号。
线性编码器可以分为增量式编码器和绝对式编码器两种类型。
- 增量式编码器:增量式线性编码器通过测量测量尺的位移变化来生成脉冲信号。
它通常由一个光电传感器和一个光栅尺组成。
当测量尺挪移时,光栅尺上的光栅刻度会使光线在光电传感器上产生脉冲变化,从而生成输出信号。
增量式线性编码器可以提供位移变化的方向和速度信息。
- 绝对式编码器:绝对式线性编码器可以直接测量测量尺的绝对位置。
它通常由一个光电传感器和一个二进制码尺组成。
二进制码尺上的光栅刻度会使光线在光电传感器上产生特定的脉冲组合,从而生成输出信号。
什么是编码器?编码器分类、应用等基础知识介绍编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。
编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。
按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和绝对式两类。
增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。
绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
一、编码器的分类根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90度,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。
显然,吗道必须N条吗道。
目前国内已有16位的绝对编码器产品。
1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。
二、光电编码器的应用增量型编码器与绝对型编码器区别1、角度测量汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。
绝对值编码器用途-概述说明以及解释1.引言1.1 概述绝对值编码器是一种常见的数字编码技术,用于将任意实数转化为非负整数。
其主要特点是转换后的编码值与原始数据的距离保持一致,具有良好的可逆性,在许多应用领域具有广泛的用途。
绝对值编码器的原理很简单,就是将所有的实数映射到非负整数集合上。
具体而言,对于任意一个实数x,绝对值编码器会对其进行处理,得到对应的非负整数值y。
这个处理过程是确定性的,每一个实数都能够对应唯一的非负整数值。
绝对值编码器最常见的应用是在数据传输和压缩领域。
在数据传输中,由于传输的数据通常是模拟信号,而数字系统只能处理离散的数字信号,因此需要将模拟信号转换为数字信号。
绝对值编码器能够将模拟信号转化为对应的非负整数值,方便数字系统进行处理和传输。
在数据压缩中,绝对值编码器可以将大范围的实数值映射到较小的非负整数集合上,从而减少数据的存储空间和传输带宽。
这是因为非负整数的表示范围有限,相比于实数,所需的二进制位数更少。
通过使用绝对值编码器,可以实现数据压缩的效果,提高存储和传输的效率。
此外,绝对值编码器还可以应用于信号处理、图像处理、音频处理等领域。
在信号处理中,绝对值编码器可以对信号的幅值进行编码,实现信号的快速传输和处理。
在图像处理中,绝对值编码器可以对图像的亮度进行编码,实现图像的压缩和增强。
在音频处理中,绝对值编码器可以将音频信号的振幅进行编码,实现音频的压缩和降噪。
总而言之,绝对值编码器是一种常见且重要的数字编码技术,具有广泛的应用领域。
它可以将任意实数转化为非负整数,具有良好的可逆性和压缩效果。
通过应用绝对值编码器,可以实现数据的高效存储、传输和处理,提高系统的性能和效率。
1.2文章结构文章结构部分的内容可以包括对本文的结构进行简单的介绍和解释。
下面是一种可能的写作方式:在本文中,我们将探讨绝对值编码器的用途。
为了更好地组织内容,本文将按照以下结构进行阐述。
首先,在引言部分我们将提供对绝对值编码器的简要概述,以便读者能够了解什么是绝对值编码器以及它的一些基本原理。
绝对值编码器概述
绝对值编码器是一种常用的位置传感器,它的作用是检测相对于它的基准位置的位置变化。
绝对值编码器是一种高精度、非接触式、提供定位信息的位置传感器,具有基准保持功能,可提供高精度的非接触测量和定位。
绝对值编码器分为多种类型,其中比较常用的有光电绝对值编码器、增量编码器和电子式绝对值编码器等。
1.光电绝对值编码器
光电绝对值编码器是绝对式位置传感器中最常见的一种,它具有大便捷性、高精度、高性能以及耐环境性好等优点。
光电绝对值编码器采用LED和光电二极管组成光学系统,具有高精度、较宽的工作温度范围、外形小巧,可连接大多数控制系统。
此外,此类编码器也有一定的磁抗性,它的工作原理是在一个编码轮上刻有128个编码片,其中每一片由一个逐渐改变的编码码分别控制LED和光电二极管的电流。
从而,可以扫描出128个编码片,根据不同的编码片来判断它所处的位置。
2.增量编码器
增量编码器是一种常用的基于原点的位置传感器,它通过检测编码轮上的编码片来判断旋转角度,从而确定它所处的位置。
编码器介绍编码器是一种将模拟量信号转换为数字信号的设备或电路。
它将连续的模拟信号离散化,将其表示为数字形式,以便于数字系统的处理和传输。
编码器在许多领域都有广泛的应用,如通信、控制系统、图像处理等。
编码器的基本原理是利用采样和量化的方法将连续的模拟信号转换为离散的数字信号。
它将模拟信号分为若干个离散的时间间隔,并在每个时间间隔内对信号进行采样并量化。
采样是指在固定的时间间隔内对信号进行测量,而量化是将采样得到的信号值映射到一组离散的数值。
光电编码器是一种常见的直接型编码器,它利用光电传感器和标尺来实现信号的转换。
标尺上刻有一系列编码条纹,光电传感器通过测量这些条纹的变化来获取信号值。
光电编码器具有高精度、高分辨率和快速响应的特点,常用于机械设备的位置检测和运动控制。
磁编码器也是一种常见的直接型编码器,它利用磁场传感器和磁标尺来实现信号的转换。
磁标尺上采用磁性材料制成的条纹,磁场传感器通过检测磁场的变化来获取信号值。
磁编码器具有高抗干扰性和耐磨性的特点,适用于恶劣环境下的使用。
增量编码器是一种常见的间接型编码器,它将输入信号转换为脉冲信号来表示变化。
增量编码器通常包含两个通道,一个是计数通道,用于计算脉冲的数量;另一个是方向通道,用于确定脉冲的方向。
增量编码器可以实时监测信号的变化,并精确计算出位移和速度等信息。
绝对编码器是一种直接读取信号精确值的编码器,在每个位置上都有唯一的编码值。
绝对编码器通常包含多个轨道,每个轨道都对应一个编码值。
绝对编码器具有高精度和高可靠性的特点,适用于对位置要求较高的应用。
编码器在通信系统中起到了重要的作用,它可以将模拟信号转换为数字信号进行传输。
在音频和视频编码中,编码器将模拟音频和视频信号转换为数字信号,以便于存储和传输。
编码器可以采用不同的压缩算法来实现信号的压缩,并保证重要信息的传输。
总之,编码器是一种将模拟信号转换为数字信号的设备或电路,它在现代电子技术中有着广泛的应用。
JM18.2编码函数执行流程解释——lencod.c 1. int main(int argc, char **argv)argc为参数的个数,*argv为命令行参数。
2.init_time();3.alloc_encoder(&p_Enc);p_Enc为全局变量,里面有4个变量:*p_Enc->p_Inp,*p_Enc->p_Vid,*p_Enc->p_trace,*p_Enc->bufferSize.该函数就是为p_Enc这个全局变量中的p_Inp,p_Vid,p_trace,bufferSize分配相应的内存空间。
4.Configure (p_Enc->p_Vid, p_Enc->p_Inp, argc, argv);解析命令行参数,读取配置文件。
根据配置文件初始化*p_Enc->p_Inp中的部分参数。
p_Vid: pointer to the VideoParameters structure;p_Inp: pointer to the InputParameters structure.1> memset (&cfgparams, 0, sizeof (InputParameters));为已开辟内存空间的cfgparams的前sizeof(InputParameters)个字节的值设为0。
2> InitParams(Map);设置编码参数的初始值。
3>content = GetConfigFileContent (filename);分配内存buf,读取文件filename(第一路视频,主配置文件),将文件中的内容读到buf中,返回buf。
4>ParseContent (p_Inp, Map, content, (int) strlen(content));解析符号序列buf,将全局输入变量写入buf里,全局输入变量在configfile.h 里定义。
什么是编码器什么叫编码器编码器什么意思什么是编码器什么叫编码器编码器什么意思第一种含义:编码器是把角位移或直线位移转换成电信号的一种装置。
前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。
按照工作原理编码器可分为增量式和绝对式两类。
增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。
绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
编码器的另一种含义:在二值逻辑 .编码的种类:字符编码就是以二进制的数字来对应字符集的字符,目前用得最普遍的字符集是ANSI,对应ANSI字符集的二进制编码就称为ANSI码,DOS和Windows系统都使用了ANSI码,但在系统中使用的字符编码要经过二进制转换,称为系统内码。
汉字内码:ANSI码是单一字节(8位二进制数)的编码集,最多只能表示256个字符,不能表示众多的汉字字符,各个国家和地区在ANSI码的基础上又设计了各种不同的汉字编码集,以能够处理大数量的汉字字符。
这些编码使用单字节来表示ANSI的英文字符(即兼容ANSI码),使用双字节来表示汉字字符。
由于一个系统中只能有一种汉字内码,不能识别其它汉字内码的字符,造成了交流的不便。
GB码:GB码是1980年国家公布的简体汉字编码方案,在大陆、新加坡得到广泛的使用,也称国标码。
国标码对6763个汉字集进行了编码,涵盖了大多数正在使用的汉字。
GBK码:GBK码是GB码的扩展字符编码,对多达2万多的简繁汉字进行了编码,简体版的Win95和Win98都是使用GBK作系统内码。
BIG5码:BIG5码是针对繁体汉字的汉字编码,目前在台湾、香港的电脑系统中得到普遍应用。
编码器详解什么是编码器?编码器是把角位移或直线位移转换成电信号的一种装置。
前者称为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。
按照工作原理编码器可分为增量式和绝对式两类。
增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。
绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
测量精度的定义?大家知道,所有的测量都是对"真实"值的大致估计,也就是说测量的数值总是和"真实"值有一定的误差,那么这样一个误差的大小就是通常所说的测量精度,它反映了测量仪器系统所能真实还原测量信号值的能力。
增量编码器的精度?增量式光电编码器的精度与分辨率完全无关,这是两个不同的概念。
精度是一种度量在所选定的分辨率范围内,确定任一脉冲相对另一脉冲位置的能力。
精度通常用角度、角分或角秒来表示。
编码器的精度与码盘透光缝隙的加工质量、码盘的机械旋转情况的制造精度因素有关,也与安装技术有关。
增量编码器的分辨率?光电编码器的分辨率是以编码器轴转动一周所产生的输出信号基本周期数来表示的,即脉冲数/转(PPR)。
码盘上的透光缝隙的数目就等于编码器的分辨率,码盘上刻的缝隙越多,编码器的分辨率就越高。
在工业电气传动中,根据不同的应用对象,可选择分辨率通常在500-6000PPR的增量式光电编码器,最高可以达到几万PPR。
交流伺服电机控制系统中通常选用分辨率为2500PPR的编码器。
此外对光电转换信号进行逻辑处理,可以得到2倍频或4倍频的脉冲信号,从而进一步提高分辨率。
绝对值编码器精度跟分辨率有何关系?单圈绝对值编码器的位数代表码盘的码道数,因为是用二进制的码盘(格雷码相同),所以他的精度就成了2的几次方,比如12位,就是2的12次方也就是4096。