当前位置:文档之家› 第十二章 应力状态和强度理论习题

第十二章 应力状态和强度理论习题

第十二章 应力状态和强度理论习题
第十二章 应力状态和强度理论习题

1、层合板构件中微元受力如图所示,各层板之间用胶粘接,接缝方向如图中所示。若已知胶层剪应力不得超过1MPa 。试分析是否满足这一要求。

解:

2(1)

sin(2(60))0.5cos(2(60)) 1.552

θτ---=

?-?+??-?=-MPa || 1.55MPa 1θτ=>MPa ,不满足。

2 从构件中取出的微元受力如图所示,其中AC 为无外力作用的自由表面。试求:σx 和τxy 。

解:应用应力解析公式,有

)602cos(2)

100(02100100???--+-=-x x σσ

7.57)602sin(2

]1003.33[0=??---=yx τMPa

据此,解得

3.33-=x σMPa

7.57-=-=yx xy ττMpa

3、已知一点的应力状态如图。试求其主应力及其方向角,并确定最大切应力值。

解:2

max 2

min 2

2

x y

x y

xy

s s s s s t s 骣+-÷?÷=?

?÷?÷

桫102.62

MPa 52.62

=- 1102.62MPa s =,20s =,352.62MPa s =-

021140arctan arctan 7.4722150xy x y

t a s s °骣-轾-÷?÷?犏===-÷?÷犏÷-?臌桫 13

max 77.62MPa 2

s s t -=

=

ο

302MPa 0.5MPa

ο

-60x'σ'

x y x 50MPa

20MPa

100MPa

4、图示单元体,试求 (1)指定斜截面上的应力;

(2

试题答案:

解:(1)cos 2sin 22

2

x y

x y

x a s s s s s a t a +-=

+

-

201076.6MPa =-++=

sin 2cos 22

x y

x a s s t a t a -=

+

20sin 60100cos 605032.68MPa o o =-==-

(2

)max min 2

x y s s s

s +=?

81.98

20101.98

MPa 121.98

=-?-

181.98MPa s =,20s =,3121.98MPa s =-

0211200arctan arctan 39.352240xy x y

o t a s s 骣-÷?÷?===÷?÷-?桫

5、一点处两相交平面上的应力如图所示。求s 值。

解:150MPa x s =,120MPa xy t =,120

a =? 由 sin 2cos 22

x y

xy a s s t a t a -=

+

150sin 240120cos 240802

y

o o s -=

+=-

得 103.8MPa y s =

MPa

ο

cos 2sin 22

2

x y

x y

xy a s s s s s s a t a +-==

+

-

150103.8150103.8

cos 240120sin 24022

o o +-=

+- 219.3MPa =

5、一点处两相交平面上应力的大小和方向如图示。试用应力圆确定该点主应力的大小和方向。

试题答案:

解:15p s =,2p s =,30s =

1s 所在平面与1D 点所对应平面成60o 。

6、二向应力状态如图示,应力单位为MPa。

(1)试作应力圆;

(2)求主应力并画出主方向上的微元体(主单元体)。试题答案:

解:

180MPa

s=

240MPa

s=

30

s=

MPa

7、图示薄壁圆筒受扭矩和轴向力作用。已知圆筒外径52mm D =,壁厚2mm t =,外扭矩e 600N m M =?,拉力20kN F =。 (1)试用单元体表示出点D 的应力状态; (2)求与母线成30o

角的斜截面上的应力;

(3)求出该点的主应力与主平面位置(并在单元体上画出)。

试题答案:

解:(1)3

22201063.7MPa π(0.0520.048)

4

s ′=

=- 3600

79.4MPa π(0.052)(10.726)

16

t =

=?

(2) cos 2sin 222

x y

x y

x a s s s s s a t a +-=

+-52.8MPa =-

sin 2cos 22

x y

x a s s t a t a -=+12.1MPa =

(3) max min 2

x y

s s s s +=?

117.4

MPa 53.7

=- 1117.4MPa s =,20s =,353.7MPa s =-

8、求图示木梁截面11-上点B 与轴线成45o

角方向的线应变45e o 。已知10kN F =,

4m l =,2200mm h b ==,材料的弹性模量10GPa E =,泊松比0.25m =。

σ3

x

x 30

ο

试题答案:

解:在点B ,正应力为零,只有切应力,为纯剪切应力状态。

3

3510320.375MPa 20.10.20.04

F t ′创===创

450.375MPa o s =-,450.375MPa o s -=

54545451

() 4.6910E

o o o e s m s --=

-=-?

9、设地层由石灰岩组成,其密度3

3

2.510kg/m r =?,泊松比0.2m =。计算离地面200m 深处的地压应力。

试题答案:

解: 32.5109.8200

4.9MPa y s =-创?-

x z s s =,0x z e e == 1

[0.2( 4.9)]0x x z E

e s s =

-?+= 得到 1.22MPa x z s s ==-

200m

σx

σz

σy

10、图示圆筒外径350mm D =,内径250mm d =,受轴向拉力450kN F =和扭力偶

e 30kN m M =?的联合作用。试求其上K 点的最大主应力和最大切应力。

试题答案:

解:32450101049.55MPa 3.14 6.25s 创?=

=′, 3301016

4.82MPa 3.14 4.280.74

t 创==创

1

311.564.775MPa 2.02

2s s s =??

-

20s =

13

max 6.79MPa 2

s s t -=

=

11、图示简支梁,已知弹性模量是E 和泊松比m 。试求 (1)点B 单元体的形状畸变能密度d v ; (2)体积改变能密度V v ; (3)总的应变能密度u 。

试题答案:

解:(1)2

12

34ql bh s s ==,230s s ==,0t =

222

d 1231223311()3v E m s s s s s s s s s +=++---24243(1)16q l E b h m +=? (2)2

V 12312()6v E

m s s s -=

++24243(12)32q l E b h m -=? (3)222

1231223311[2()]2E u s s s m s s s s s s =++-++2424932q l Eb h

= 12、受内压的薄壁圆筒,已知内压为p ,平均直径为D ,壁厚为d ,弹性常数为E 、m

试确定圆筒薄壁上任一点的主应力、主应变及第三、第四强度理论的相当应力。

解:12pD s d =

,24pD

s d

=,30s =

11211()(2)244pD pD pD

E E E e s m s m m d d d 骣÷?÷=-=-=-?÷?÷桫 22111()(12)424pD pD pD E E E e s m s m m d d d 骣÷?÷=-=-=-?÷÷?桫 3121133[0()]044pD pD E E E

m e m s s m d d 骣-÷?÷=-+=-=?÷?÷桫 r3132pD

s s s d

=-=

222r41223311

[()()()]2s s s s s s s =

-+-+-34pD

d

=

13、 构件中危险点的应力状态如图所示。试选择合适的准则对以下两种情形作强度校核:1.构件为钢制

x σ= 45MPa ,y σ= 135MPa ,z σ= 0,xy τ= 0,

许用应力][σ= 160MPa 。

2.构件材料为铸铁

x σ= 20MPa ,y σ= -25MPa ,z σ= 30MPa ,xy τ= 0,][σ= 30MPa 。

解:

1.][MPa 135313r σσσσ<=-=强度满足。

2.][MPa 3011r σσσ===强度满足。

D

δp

习题9-8图

14、炮筒横截面如图示。在危险点处550MPa q s =,r 350MPa s =-,第二个主应力

2420MPa s =,且垂直于图面。材料的[]950MPa s =,试用第三强度和第四强度理论

进行强度校核。

试题答案:

解:1550MPa s =,2420MPa s =,3350MPa s =-

r313900MPa s s s =-=[]950MPa s <=

r4s =

842.56MPa =[]950MPa s <=

均安全。

应力状态及强度理论

图8-1 第 8章 应力状态及强度理论 例8-1 已知应力状态如图7-1所示,试计算截 面m-m 上的正应力m σ与切应力m τ 。 解:由图可知,x 与y 截面的应力分别为 MPa x 100-=σ MPa x 60-=τ MPa y 50=σ 而截面m-m 的方位角则为 α= -30o 将上述数据分别代入式(7-1)与(7-2), 于是得 ()()()()MPa m 5.11460sin 6060cos 250100250100-=?-?+?---++-=σ()()()MPa m 0.3560cos 6060sin 2 50100=?-?-?---=τ 例8-2 试用图解法解例8-1(图8-2a )。 (a) (b) 图8-2 解:首先,在τσ-平面内,按选定的比例尺,由坐标(-100,-60)与(50,60)分别确定A 和B 点图7-2b )。然后,以AB 为直径画圆,即得相应的应力圆。 为了确定截面m-m 上的应力,将半径CA 沿顺时针方向旋转α2=60o至CD 处,所得D 点即为截面m-m 的对应点。 按选定的比例尺,量得OE =115MPa (压应力),ED =35MPa ,由此得截面 m-m 的正应力与切应力分别为

MPa m 115-=σ MPa m 35=τ 例 8-3 从构件中切取一微体,各截面的应力如图8-3a 所示,试用解析法与图解法确定主应力的大小及方位。 (a) (b) 图8-3 解:1.解析法 x 和y 截面的应力分别为 MPa x 70-=σ,MPa x 50=τ,0=y σ 将其代入式 (7-3)与 (7-5),得 }{MPa MPa 2696502070207022max min -=+?? ? ??--±+-=σσ ?-=??? ??--=?? ? ??-- =5.6202650arctan arctan max y x o σστα 由此可见, MPa 261=σ,02=σ,MPa 963-=σ 而正应力1σ 的方位角 o α则为-62.5o(图8-3a )。 2.图解法 按选定的在τσ-平面内,按选定的比例尺,由坐标(-70,50)与(0,-50)分别确定D 和E 点(图8-3b )。然后,以DE 为直径画圆即得相应的应力圆。 应力圆与坐标轴σ相交于A 和B 点,按选定的比例尺,量得OA =26MPa ,

第7章-应力状态和强度理论03.

西南交it 大学应用力*与工程系材#^力学教研i 图示拉伸甄压缩的单向应力状态,材料的破 坏有两种形式: 塑性屈服;极限应力为0■力=<5;或bpO2 腌性斷裂;极限应力为O ■必= CJ\ 此时,4 O>2和偽可由实验测得.由此可建 互如下S 度余件: ^mai 其中n 为安全系数? 2)纯剪应力状态: 图示纯剪应力狀态,材料的破 坏有两 种形式: 塑性屈服:极限应力为 腌性斯裂:极限应力为5 = 5 %和昭可由实验测得.由此可建立如下 =(^■1 it §7.7强度理论及其相当应力 1、概述 1)单向应力状态: a. <亠[6 n 其中, ?度条件:

前述a 度条件对材料破坏的原因并不深究.例如 图示低碳钢拉(压)时的强度条件为: r V J - b, b|nw W — — — // n 然而,其屈服是由于 YnurJl 起的,对?示单向 应力状态,有: 「niu 依照切应力强度条件,有:

4)材料破坏的形式 常温、静栽时材料的破坏形式大致可分为: ?腌性斷裂型: 例如:铸铁:拉伸、扭转等; "钢:三向拉应力状态. -塑性屈月艮型: 例如:低碳钢:拉伸、扭转寻; 铸铁:三向压缩应力状态. 可见:材料破坏的形式不仅与材料有关,还与应力状态有关. , 5)强度理论 根据一些实验资料,针对上述两种破坏形式,分别针对它们发生破坏的原因提出假说,并认为不论材料处于何种应力状态,某种类型的破坏都是由同一因素引起,此即为强度理论. 常用的破坏判据有: 旎性断裂:5,磁可皿 ?性斷裂:V; 下面将讨论常用的-基于上述四种破坏判据的?虞理论.

一点应力状态概念及其表示方法

一点应力状态概念及其表示方法 凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。因为受力构件内同一截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力; 图8-2通过轴向拉伸杆件同一点的不同(方向)截面上具有不同的应力。

2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。如图8-3是通过轴向拉伸杆件内点不同(方向)截面上 的应力情况(集合) 3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。如图8-4(a,b)为轴向拉伸杆件内围绕点截取的两种微元体。 特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。

§8-2平面应力状态的工程实例1.薄壁圆筒压力容器

为平均直径,为壁厚 由平衡条件 得轴向应力:(8-1a) 图8-5c(Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为的横截面,H-H为水平径向面) 由平衡条件或, 得环向应力:(8-1b) 2.球形贮气罐(图8-6) 由球对称知径向应力与纬向应力相同,设为 对半球写平衡条件:

得(8-2) 3.弯曲与扭转组合作用下的圆轴 4.受横向载荷作用的深梁         §8-3平面一般应力状态分析——解析法 空间一般应力状态

如图8-9a所示,共有9个应力分量:面上的,,;面上的,,;面上的,,。 1)应力分量的下标记法:第一个下标指作用面(以其外法线方向表示),第二个下标指作用方向。由剪应力互等定理,有: , , 。2)平面一般应力状态如图8-9b所示,即空间应力状态中,方向的应力分量全部为零();或只存在作用于x-y平面内的应力分量,,,,其中,分别为,的简写,而= 。 3)正负号规定:正应力以拉应力为正,压为负;剪应力以对微元体内任意一点取矩为顺时针者为正,反之为负。 2.平面一般应力状态斜截面上应力 如图8-10所示,斜截面平行于轴且与面成倾角,由力的平衡条件: 和 可求得斜截面上应力,:

弹塑性力学基本理论及应用 刘土光 华中科技大学研究生院教材基金资助 第二章应力状态

第二章 应力状态理论 2.1 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作用的物体用一平面A 分成A 和B 两部分(图2.1)。如将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上的内力矢量为F ?,则内力的平均集度为F ?/S ?,如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σo ,即 σ=??→?S F S 0lim 这个极限矢量σ就是物体在过c 面上点P 处 的应力。由于S ?为标量,故,σ的方向与F ?的 极限方向一致。内力矢量F ?可分解为所在平面 的外法线方向和切线方向两个分量n F ?和s F ?。 同样,应力σ可分解为所在平面的外法线方向 和切线方向两个分量。沿应力所在平面 的外法线方向n 的应力分量称为正应力,记为n σ,沿切线方向的应力分量称为切应力,记为 n τ。此处脚注n 标明其所在面的外法线方向,由此, S ?面上的正应力和切应力分别为 在上面的讨论中,过点P 的平面C 是任选的。显然,过点P 可以做无穷多个这样的平面C ,也就是说,过点P 有无穷多个连续变化的n 方向。不同面上的应力是不同的。这样,就产生了如何描绘一点处的应力状态的问题。为了研究点P 处的应力状态,在点P 处沿坐标轴x ,y ,z 方向取一个微小的平行六面体(图2.2),其六个面的外法线方向分别与三个坐标轴的正负方向重合,其边长分别为x ?,Δy ,Δz 。假定应力在各面上均匀分布,于是各面上的应力便可用作用在各面中心点的一个应力矢量来表示,每个面上的应力矢量又可分解关一个正应力和两个切应力分量,如图2.2所示。以后,对正应力只用一个字母的下标标记,对切应力则用两个字母标记*其中第一个字母表示应力所在面的外法线方向;第二个字母表示应力分量的指向。正应力的正负号规定为:拉应力为正,压应力为负。切应力的正负早规定分为两种情况:当其所在面的外法线与坐标轴的正方向一致时,则以沿坐标轴正方向的切应力为正.反之为负;当所在面的外法线与坐标袖的负方向一致时,则以沿坐标轴负方向的切应力为正,反之为负。图2.2中的各应力分量均为正。应力及其分量的单位为Pa 。 图2.1 应力矢量

材料力学B试题7应力状态_强度理论.docx

40 MPa .word 可编辑 . 应力状态强度理论 1. 图示单元体,试求60100 MPa (1)指定斜截面上的应力; (2)主应力大小及主平面位置,并将主平面标在单元体上。 解: (1) x y x y cos 2x sin 276.6 MPa 22 x y sin 2x cos232.7 MPa 2 3 1 (2)max xy( x y) 2xy281.98MPa39.35 min22121.98 181.98MPa,2 ,3121.98MPa 12 xy1200 0arctan()arctan39.35 2x y240 200 6060 2. 某点应力状态如图示。试求该点的主应力。129.9129.9解:取合适坐标轴令x25 MPa,x 由 120xy sin 2xy cos20 得 y 2 所以m ax x y ( xy ) 2xy 2 m in 22 129.9 MPa 2525 (MPa) 125MPa 50752( 129.9)250 150100 MPa 200 1 100 MPa,20 ,3200MPa 3. 一点处两个互成45 平面上的应力如图所示,其中未知,求该点主应力。 解:y150 MPa,x120 MPa

.word 可编辑 . 由得45x y sin 2xy cos 2x 15080 22 x10 MPa 所以max xy(x y) 22 22xy min y x 45 45 45 214.22 MPa 74.22 1214.22 MPa,20 , 45 374.22 MPa 4.图示封闭薄壁圆筒,内径 d 100 mm,壁厚 t 2 mm,承受内压 p 4 MPa,外力偶矩 M e 0.192 kN·m。求靠圆筒内壁任一点处的主应力。 0.19210 3 解: xπ(0.104 40.14)0.05 5.75MPa t 32 x y pd MPa 50 4t pd MPa 100 2t M e p M e max x y(x y ) 2 xy2 min22100.7 MPa 49.35 1100.7 MPa,249.35 MPa,3 4 MPa 5.受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使 x 100 MPa,x 20MPa40 MPa100 MPa xy x y 12020 MPa 22cos2x sin 2

第7章应力状态和强度理论(答案)

7.1已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x ασσσσ σατα+-= + -=sin 2cos 293.32 x y x MPa ασστατα-=+= (2)max 261.82 x y MPa σσσ+= = min 38.22x y MPa σσσ+== MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 7.2扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成ο 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 2 στ τ

7.3用电阻应变仪测得空心钢轴表面某点与母线成ο45方向上的正应 变4 100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传 递的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()11311E E υ εσυστ+= -= 又()21E G υ=+Q V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成ο 60 方向上的正应变4 60101.4-?=ο ε,E=200GPa ,0.3υ=, 试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P=36.2KN ο

应力状态分析与强度理论

第五章应力状态分析与强度理论 1、内容提要 1.应力状态的概念 1.1一点的应力状态 通过受力构件的一点的各个截面上的应力情况的集合,称为该点的应力状态。 1.2一点的应力状态的表示方法——单元体 研究受力构件内一点处的应力状态,可以围绕该点取一个无限小的正六面体,即单元体。若单元体各个面上的应力已知或已计算出,则通过该点的其他任意方位截面上的应力就可用解析法或图解法确定。 1.3主平面、主应力 单元体上切应力为零的平面称为主平面,主平面上的正应力称为主应力。 过受力构件内任一点总有三对相互垂直的主平面。相应的主应力用、、来表示,它们按代数值的大小顺序排列,即。是最大主应力,是最小主应力,它们分别是过一点的所有截面上正应力中的最大值和最小值。 1.4应力状态的分类 (1)单向应力状态,只有一个主应力不为零,另两个主应力均为零;(2)二向或平面应力状态,两个主应力不为零,另一个为零; (3)三向或空间应力状态,三个主应力都不为零。 单向应力状态又称简单应力状态,二向、三向应力状态称为复杂应力状态。 2.平面应力状态分析的解析法 在平面应力状态的单元体中,有一对平面上的应力等于零,即为主平面,其上主应力为零。可将单元体用平面图形表示,如图5-1所示。 2.1任意斜截面上的应力 当已知、、时,应用截面法,可得 (5-1) 式中,正应力以拉应力为正,压应力为负;切应力以对单元体内任意点的矩为顺时针转向为正,反之为负;为斜截面外法线与x平面外法线即x 轴间的夹角,角从x轴量起,反时针转向为正,反之为负。 2.2主应力 (5-2) 式中,和分别表示单元体上垂直于零应力面的所有截面上正应力的最大值和最小值。它们是三个主应力中的两个,而另一个主应力为零。三个

知识点应力状态理论和强度理论

知识点9:应力状态理论和强度理论 一、应力状态理论 (一)应力状态的概念 1.一般情况下,受力构件内各点的应力是不同的,且同一点的不同方位截面上应力也不相同。过构件内某一点不同方位上总的应力情况,称为该点的应力状态。 2.研究一点的应力状态,通常是围绕该点截取一个微小的正六面体(即单元体)来考虑。单元体各面上的应力假设是均匀分布的,并且每对互相平行截面上的应力,其大小和性质完全相同,三对平面上的应力代表通过该点互相垂直的三个截面上的应力。当单元体三个互相垂直截面上的应力已知时,可通过截面法确定该点任一截面上的应力。截取单元体时,应尽可能使其三个互相垂直截面的应力为已知。 3.单元体上切应力等于零的截面称为主平面,主平面上的正应力称为主应力。过受力构件内任一点,一定可以找到一个由三个相互垂直主平面组成的单元 体,称为主单元体。它的三个主应力通常用σ 1,σ 2 和σ 3 来表示,它们按代数值 大小顺序排列,即σ 1>σ 2 >σ 3 。 4.一点的应力状态常用该点的三个主应力来表示,根据三个主应力的情况可分为三类:只有一个主应力不等于零时,称为单向应力状态;有两个主应力不等于零时,称为二向应力状态(或平面应力状态);三个主应力都不等于零时,称为三向应力状态。其中二向和三向应力状态称为复杂应力状态,单向应力状态称为简单应力状态。 5.研究一点的应力状态是对构件进行强度计算的基础。 (二)平面应力状态的分析 1.分析一点的平面应力状态有解析法和图解法两种方法,应用两种方法时都必须已知过该点任意一对相互垂直截面上的应力值,从而求得任一斜截面上的应力。

2.应力圆和单元体相互对应,应力圆上的一个点对应于单元体的一个面,应力圆上点的走向和单元体上截面转向一致。应力圆一点的坐标为单元体相应截面上的应力值;单元体两截面夹角为α,应力圆上两对应点中心角为2α;应力圆与σ轴两个交点的坐标为单元体的两个主应力值;应力圆的半径为单元体的最大切应力值。 3.在平面应力状态中,过一点的所有截面中,必有一对主平面,也必有一对与主平面夹角为45?的最大(最小)切应力截面。 4.在平面应力状态中,任意两个相互垂直截面上的正应力之和等于常数。 图9-1(a )所示单元体为平面应力状态的一般情况。单元体上,与x 轴垂直的平面称为x 平面,其上有正应力σx 和切应力τxy ;与y 轴垂直的平面称为y 平面,其上有正应力σy 和切应力τyx ;与z 轴垂直的z 平面上应力等于零,该平面是主平面,其上主应力为零。平面应力状态也可用图9-1(b )所示单元体的平面图来表示。设正应力以拉应力为正,切应力以截面外法线顺时针转90?所得的方向为正,反之为负。 (a ) (b ) (c ) 图9-1 图9-1(c )所示斜截面的外法线与x 轴之间的夹角为α。规定α角从x 轴逆时针向转到截面外法线n 方向时为正。α斜截面上的正应力和切应力为: ??? ??? ? +-=--++=ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy y x xy y x y x 最大正应力和最小正应力 2 2 min max 22xy y x y x τσσσσσσ+??? ? ? ?-±+=

材料力学习题第六章应力状态分析答案详解

第6章 应力状态分析 一、选择题 1、对于图示各点应力状态,属于单向应力状态的是(A )。 20 (MPa ) 20 d (A )a 点;(B )b 点;(C )c 点;(D )d 点 。 2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。 (A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。 3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。 (A )AC AC /2,0 ττσ==; (B )AC AC /2,/2ττ σ==; (C )AC AC /2,/2 ττσ==;(D )AC AC /2,/2ττσ=-=。 4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。关于它们的正确性,现有四种答案,正确答案是( D )。

(b) (a) (A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的; (C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。 5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。 τ (a) (b) (c) (A)三种应力状态均相同;(B)三种应力状态均不同; (C)(b)和(c)相同;(D)(a )和(c)相同; 6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。 (A) (B) (D) (C) 解答: max τ发生在 1 σ成45的斜截面上 7、广义胡克定律适用围,有下列四种答案,正确答案是( C )。 (A)脆性材料;(B)塑性材料; (C)材料为各向同性,且处于线弹性围;(D)任何材料; 8、三个弹性常数之间的关系:/[2(1)] G E v =+适用于( C )。 (A)任何材料在任何变形阶级;(B)各向同性材料在任何变形阶级; (C)各向同性材料应力在比例极限围;(D)任何材料在弹性变形围。

工程力学-应力状态与应力状态分析报告

8 应力状态与应变状态分析 1、应力状态的概念, 2、平面应力状态下的应力分析, 3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。 (1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为: 321σσσ≥≥ 最大切应力为 13 2 max σστ-= (2)任斜截面上的应力 α τασσσσσα2sin 2cos 2 2 xy y x y x --+ += α τασστα2cos 2sin 2 xy y x +-= (3) 主应力的大小 2 2min max )2 ( 2 xy y x y x τσσσσσ+-±+= 主平面的方位 y x xy tg σστα--= 220 4、主应变 12 2122x y x y xy xy x y ()()tg εεεεεεγγ?εε? = +±-+? = - 5、广义胡克定律 )]([1 z y x x E σσμσε+-=

)] ( [ 1 x z y y E σ σ μ σ ε+ - = )] ( [ 1 y x z z E σ σ μ σ ε+ - = G zx zx τ γ= G yz yz τ γ= ,G xy xy τ γ= 6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。” 8.1试画出下图8.1(a)所示简支梁A点处的原始单元体。 图8.1 [解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A点偏上和偏下的一对与xz平行的平面。截取出的单元体如图8.1(d)所示。 (2)分析单元体各面上的应力: A点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A点的坐标x、y代入正应力和切应力公式得A点单元体左右侧面的应力为: z M y I σ= b I QS z z * = τ 由切应力互等定律知,单元体的上下面有切应力τ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A点单元体如图8.1(d)。 8.2图8.2(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解题范例

应力状态和强度理论习题及答案

应力状态和强度理论 一、判断题 1.若单元体某一截面上的剪应力为零,则该截面称为主平面。() 2.主平面上的剪应力称为主应力。() 3.当单元体上只有一个主应力不为零时,称作二向应力状态。() 5.图2所示单元体最大剪应力为25Mpa。() 6.图3所示单元体为单向应力状态。() 图2图3图4 7. 向应力状态如图4所示,其最大主应力σ1=3σ()。 8. 任一单元体,在最大正应力作用面上,剪应力为零。() 9. 主应力是指剪力为零的截面上的正应力。() 10.力圆上任一点的横坐标值对应单元体某一截面上的正应力。() 二、选择题 1.图1所示应力圆对应的单元体为图()。

图5 三、选择题 1.若一点的应力状态为平面应力状态,那么该点的主应力不可能为:()。 A 、σ1> 0 σ2=σ3=0 B、σ1> 0 σ2 =0 σ3 < 0 C、σ1>σ2>0 σ3=0 D、σ1>σ2>σ3>0 2.已知单元体各面上的应力如图,则其主平面方位为()。 A、B、 C、D、 四、填空题 1.图示为一平面应力状态的单元体及其应力圆,试在应力圆上表示0-1,0-2,0-3平面的位置。 图6

2.试验表明,材料受力后的破坏主要有两种形式,一种是,是由于或所引起;另一种是,是由于所引起的。 3.一单元体如图所示,则单元体的主应力为__________ ,为 __________ ,为__________ ,最大主应力与x 轴的夹角为__________ 。 五、简单计算 1.单元体上的应力如图7所示,试求其它应力和最大剪应力。 2.图8所示单元体,试求图示斜截面上的正应力和剪应力。 图7图8 3.试求图示单元体o斜截面应力。已知:。 图9

第七章应力状态和强度理论习题

第七章 应力状态和强度理论习题 一、单项选择题 1、第三强度理论和第四强度理论适合于何种材料? A 、塑性材料, B 、脆性材料 C 、金属材料, D 、非金属材料 2、第一强度理论和第二强度理论适合于何种材料? A 、塑性材料, B 、脆性材料, C 、金属材料, D 、非金属材料。 二、 填空题 1、 对于单元体,切应力等于零的平面叫做 ,该平面上的正应力叫做 。 2、第一、二强度理论适合于 材料;第三、四强度理论适合于 材料。 3、第三强度理论的相当应力为 。 4、单元体上只有一对主应力数值不等于零的应力状态称为 应力状态。 5、单元体上只有二对主应力数值不等于零的应力状态称为 应力状态。 6、单元体上三对主应力数值都不等于零的应力状态称为 应力状态。 三、填空题 1、求图示单元体的三个主应力和最大切应力 (图中应力单位:Mpa )。 答:单元体的三个主应力和最大切应力分别为: σ1= Mpa, σ2= Mpa, σ3= Mpa, τmax = Mpa 。 2、求图示单元体的三个主应力和最大切应力 (图中应力单位:Mpa )。 答:单元体的三个主应力和最大切应力分别为: σ1= Mpa, σ2= Mpa, 图 7.3.1 图 7.3.2

σ3= Mpa, τmax = Mpa 。 3、已知应力状态如图所示,应力单位为MPa 试求:(1)主应力大小;(2)最大切应力。 4、已知应力状态如图所示,应力单位为MPa 。 试求:(1)主应力大小;(2)最大切应力。 1、A 2、B 二、填空题 1、主平面 主应力 2、 脆性 塑性 3 、r313s s s =- 4、单向 5、二向 6、三向 二、填空题 1、 2、 3、解: (1)应力分量 50020x y x MPa MPa σστ===- max min 57.0507.022x y MPa MPa σσσσ+??===??-?? MPa MPa 0.70 0.57321-===∴σσσ (2)最大剪应力 MPa 0.3220 .70.572 3 1max =+= -= σστ

第10章应力状态与强度理论及其工程应用

第10章 应力状态与强度理论 及其工程应用 10.1 概述 10.1.1 应力状态的基本概念 轴向拉伸或压缩杆: 横截面 1 P F A σ= 1A 横截面面积 斜截面 2 cos sin 22 x x θθσσθστθ? =??= ?? 即用不同方位的截面截取,任意点A 的应力是不同的。 受扭圆轴:

横截面 x P M I τρ= 斜截面 s i n2 α στα =-c o s2 α ττα = 即, A点的应力大小和方向随截面的方位不同而不同。 应力状态:构件受力后,通过一个点的所有截面上的应力情况的总体,称为该点的应力状态。 对于受力构件有必要研究其一点的应力状态。 研究应力状态的目的:找出一点处沿不同方向应力的变化规律,确定出最大应力,从而全面考虑构件破坏的原因,建立适当的强度条件。 10.1.2 应力状态分析的基本方法 研究一点的应力状态时,往往围绕所考察的点取一微小正六面体------

单元体。 单元体:微小的立方体, dx dy dz 、、为无限小,其侧面上的应力可 看作是均匀分布的,立方体的两相对侧面的应力可看成是大小相等,方向相反。 在单元体各面上标上应力——应力单元体。 根据一点的应力状态中各应力在空间的不同位置,可以将 ?? ? 空间应力状态 应力状态平面应力状态 空间应力状态:所有面上均有应力作用的应力状态。 平面应力状态:所有应力作用线都处于同一平面内的应力状态(有一对面上总是没有应力)。

?? ? 单向应力状态 平面应力状态纯剪切应力状态 单向应力状态:只受一个方向的正应力作用的应力状态。 纯剪切应力状态:只受剪应力作用的应力状态。 对于平面应力状态,由于单元体有一对面上没有应力作用,所以三维单元体可以用一平面微元表示。

第九章应力状态与强度理论.

第九章应力状态与强度理论 教学目标:了解一点的应力状态;掌握一点应力状态主应力及主平面的计算。 重点、难点:一点应力状态主应力及主平面的计算。 学时分配:4学时。 (一) 一点的应力状态 通过受力构件内一点的所有截面上的应力情况称为一点的应力状态。 (二) 一点的应力状态的表示法一一单元体 围绕所研究的点,截取一个边长为无穷小的正六面体, 用各面上的应力分量表示周围材料对 其作用。称为应力单元体。 特点: 1单元体的尺寸无限小,每个面上的应力为均匀分布。 2?单元体表示一点处的应力,故相互平行截面上的应力相同。 (三) 主平面、主应力、主单元体 主平面单元体中剪应力等于零的平面。 主应力 主平面上的正应力。 可以证明:受力构件内任一点,均存在三个互相垂直的主平面。三个主应力用 厂、(T 2 和(T 3表示,且按代数值排列即 (T l > (T 2> b 3。 主单元体 用三对互相垂直的主平面取出的单元体。 (四)应力状态的分类 根据主单元体上三个主应力中有几个是非零的数值,可将应力状态分为三类: 只有一个主应力不等于零。 有两个主应力不等于零。 三个主应力都不等于零。 1 .单向应力状态 2 .二向应力状态 3 .三向应力状态

单向应力状态又称为简单应力状态,二向和三向应力状态统称为复杂应力状态。单向及二向应力状态又称为平面应力状态。

(三)平面应力状态分析法 平面应力状态通常用单元体中主应力为零的那个主平面的正投影表示如图所示。 (四)任意斜截面成 a 的应力 (T x 、(T y 、(T xy ,则与I 轴成。角的斜截面上的应力分量为 ~ 2 _ T Ky sin2vt + r xv cos2a 式中 正应力T 以拉应力为正;剪应力 T 以对单元体产生顺时针力矩者为正, 时针转向为正。 (五)主平面 主应力 主平面的方位角 a 0 主应力 考虑到单元体零应力面上的主应力为零,因此若已知一平面应力状态 a 角以逆

第七章应力状态和强度理论习题答案

第七章 应力状态和强度理论习题答案 一、单项选择题 1、A 2、B 二、填空题 1、主平面 主应力 2、 脆性 塑性 3、主平面 主应力 4 、eq313 s s s =- 5、主平面 主应力 6、单向 7、二向 8、三向 二、填空题 1、解: (1)应力分量 MPa MPa xy y x 200 50-===τσσ max min 57.0507.022x y MPa MPa σσσσ+??==±=??-?? MPa MPa 0.70 0.57321-===∴σσσ (2)最大剪应力 MPa 0.3220 .70.572 3 1max =+= -= σστ 2、解: (1)应力分量 MPa MPa MPa xy y x 253060-===τσσ max min 74.2603015.822x y MPa MPa σσσσ+??+=±= ±=???? 08 .152.74321===∴σσσMPa (2)最大剪应力 MPa 1.3720 2.742 3 1max =-= -=σστ

三、计算题 1、 解 简化力系 () ()() [] 200m m d 32 109.11025.1W T M m 25KN .12 1 5.22D F -2F M 9.5KN 522.52F F F F 3 2 62 6Z 2 Max 2Max r3P ≈≤?+?= +=?=?===++=++=解出总σπσd 2、解 由题 () ()() [] σπσ≤≈?+?= +=-=??=??=?=≤≤?-==??=??=?=∑MPa d W T M M T m m N L X X F Z r AB 12932 104.1105.1105.1150101L F M 0M 0M mm N 104.1140101L F M 3 2 52 52 2353AB Max 1A 53BC 所以符合强度 3、解: (1)外力分析,将作用在胶带轮上的胶带拉力F1、F2向轴线简化,结果如图 传动轴受竖向主动力: kN 1436521=++=++=F F G F , 此力使轴在竖向平面内弯曲。 附加力偶为: ()()m kN 8.16.03621?=?-=-=R F F M e , 此外力偶使轴发生变形。 故此轴属于弯扭组合变形。 (2)内力分析 分别画出轴的扭矩图和弯矩图如图。 危险截面上的弯矩m kN 2.4?=M ,扭矩m kN 8.1?=T (3)强度校核

应力状态理论

第8章 应力状态理论 §8-1 一点应力状态概念 1.凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。因为受力构件内同一 截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力; 图8-2通过轴向拉伸杆件同一点m的不同(方向)截面上具有不同的应力。 2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。如图8-3是通过轴向拉伸杆m 件内点不同(方向)截面上的应力情况(集合) 3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。如图8-4(a,b)为轴向拉伸杆件内围绕m点截取的两种微元体。 特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。

*平面应力状态的工程实例 1.薄壁圆筒压力容器 0D 为平均直径,δ为壁厚 由平衡条件04200=??=∑D p D X L π δπσ 得轴向应力: δ σ40pD L = (8-1a ) 图8-5c (Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为B 的横截面,H-H 为水平径向面)

2.球形贮气罐(图8-6) 由平衡条件∫=?=∑π δσαα0002sin 2 B d D pB Y H 或δσB pBD H 20= 得环向应力: δ σ20pD H = (8-1b ) 由球对称知径向应力与纬向应力相同,设为 a σ 对半球写平衡条件:p D D a ?= ?2004πδπσ

应力状态的概念

荆楚理工学院教案 第八章 应力状态和强度理论 本章与前几章在研究对象上的不同之处。 回顾:内力图:N F 、n M 、Q F 、M --一根(杆、轴、梁) 强度计算??? ??一面(危险截面)一段—、—、max max max max M F M F Q n N 本章:应力状态— 一点。 第一节 应力状态的概念 一、为什么要研究一点的应力状态? 简单回顾: 拉压: 强度条件:[]?????=≤=n n A F b s N σσσσ 扭转:

强度条件:[]?????=≤=n n W M b s n n ττττmax 弯曲: 强度条 件 : [][]? ???? ????? ??????=≤?=?????=≤=*n n b I S F n n W M b s z z x ma Q x ma b s z x ma ττττσσσσmax 但,到目前为止尚不能对如第4点的应力情况进行校核,因此: 1、为了对某些复杂受力构件中既存在σ又存在τ的点建立强度条件提供依据。 2、为实验应力分析奠定基础 通过实验来研究和了解结构或构件中应力情况的方法,称为实验应力分析。 应力状态、应变状态在实验应力分析等方面的广泛应用: 实验方案的制订:验证理论计算结果:复杂受力结构、构件的应力测试等等。 二、什么叫一点的应力状态? 通过某一点的所有截面上的应力情况,或者说构件内任一点沿不同方向的斜面上应力的变化规律,称为一点的应力状态。 三、怎样研究一点的应力状态? 在构件内取得单元体代替所研究的点:通过截面法研究单元体各个斜截面上的应力情况来研究一点的应力状态。 1、单元体的概念: ⑴正六面微体:边长为无穷小量,dx 、dy 、dz ,故: ⑵任意一对平行平面上的应力均相等; ⑶各个面上的应力都均匀分布; ⑷任意、相互平行方向的应变均相同。 2、怎样取单元体 ⑴取单元体的原则:

相关主题
文本预览
相关文档 最新文档