当前位置:文档之家› 页岩气渗透率孔隙度测量方法

页岩气渗透率孔隙度测量方法

页岩气渗透率孔隙度测量方法
页岩气渗透率孔隙度测量方法

CSUG/SPE 138148

A New Method To Simultaneously Measure In-Situ Permeability and Porosity Under Reservoir Conditions: Implications for Characterization of Unconventional Gas Reservoirs

X. Cui, SPE, CBM Solutions; R.M. Bustin, The University of British Columbia; R. Brezovski, B. Nassichuk, K. Glover, V. Pathi, CBM Solutions

Copyright 2010, Society of Petroleum Engineers

This paper was prepared for presentation at the Canadian Unconventional Resources & International Petroleum Conference held in Calgary, Alberta, Canada, 19–21 October 2010.

This paper was selected for presentation by a CSUG/SPE program committee following review of information contained in an abstract submitted by the author(s). Contents of the paper have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material does not necessarily reflect any position of the Society of Petroleum Engineers, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper without the written consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of SPE copyright.

Abstract

Accurate estimation of gas-in-place is crucial for successful evaluation and exploitation of unconventional gas reservoirs, such as shale gas, coalbed methane, and tight gas. However, gas effective porosity, one of the most important parameter in estimating gas in-place, is commonly measured on crushed samples of cores or cuttings at ambient pressure although many studies have shown that the porosity and permeability of reservoirs rocks decrease with increasing effective stress, and thus the pore volume/porosity measured on crushed samples at ambient (zero stress) conditions will be larger than porosity measured under in-situ reservoir stress conditions. Normally the stress-dependence of porosity is simply accounted for by a correction factor based on the linear poro-elastic deformation, which is likely an over-simplification.

In present study, we developed a new protocol for simultaneously measuring stress-dependent In-Situ Permeability and Porosity (ISPP) that provides a method for routine characterization of effective porosity and permeability under simulated reservoir conditions. Our new method can significantly reduce the uncertainties of porosity introduced by testing crushed samples under ambient conditions, testing time, and the need for good quality core samples that are usually unavailable.

Preliminary test results indicate that the stress dependence of porosity (or pore compressibility) of fine grained reservoir rocks follows a unique trend of each tested sample, which cannot be simply adjusted from ambient porosity by a universal factor. Physical and numerical sample tests suggest that our ISPP method can obtain permeability similar to the normal pressure Pulse-Decay Permeability (PDP) technique if samples are homogeneous or transversely layered along their axes. Otherwise, our ISPP method likely tests the geometrical average permeability of longitudinally layered samples instead of the weighted arithmetical average permeability tested by the PDP method.

Overall, our approach of simultaneously measuring effective porosity and permeability under reservoir conditions offers intrinsically consistent porosity-permeability data to characterize unconventional reservoirs. Our study also reveals that utilization of different methods to test samples in different orientations and different sizes is necessary to rigorously characterize the hierarchical permeability and porosity of heterogeneous and microporous unconventional reservoir rocks.

Introduction

Tremendous natural gas resource exists in unconventional reservoirs including tight sands, coal seams, and gas shales. These unconventional reservoirs usually have low to extremely low permeability and their economical exploitation often requires drilling of long-leg horizontal wells and to stimulate the wells by multiple transverse hydraulic fractures. The high cost of drilling horizontal wells and multiple hydraulic fracturing makes it critical to optimally select zones for completion and drilling of laterals.

2 CSUG/SPE

138148 Fast and accurate as well as routine determination of porosity and permeability are crucial components for reservoir assessment.

Porosity can be measured with different methods, including drying, mercury intrusion, and gas pyconometer based on Boyle's law.

However porosity measurements are normally conducted under ambient conditions with crushed samples, which will result in

overestimation of the initial gas in place of unconventional reservoirs due to their highly heterogeneous and microporous texture /

structure. Permeability measurement of unconventional reservoirs is well established by using the pressure pulse-decay techniques

(PDP) (e.g., Brace et al, 1968; Dicker & Smits, 1988; Jones, 1997) with cores or core plugs, which is reliable and efficient.

Simultaneously permeability determination with data recorded during pyconometer porosity measurements with crushed samples

under ambient pressures was discussed in a previous study (Cui et al., 2009). Haskett et al. (1988) presented a method to measure

porosity and permeability simultaneous using pulse-decay technique (PDP) with curve matching.

In present study we develop a method that makes it possible to routinely measure effective gas porosity and permeability of core

plugs under estimated in-situ stress conditions that a reservoir likely experiences during its whole production life. With core or

core plug tested under in-situ reservoir conditions, uncertainties or errors introduced by sample crush and zero confining stress can

be significantly reduced. Simultaneous measurement of porosity and permeability on the same sample is also beneficial to the

industry because it reduces testing time and requirements for good quality core samples that are usually un-available and it

provides intrinsically consistent correlation of porosity and permeability.

Methodology

Instrument design of our ISPP method is based on Boyle's law and its conceptual schematic is shown in Fig. 1. A Hoek Triaxial

Cell with an internal urethane rubber sleeve incorporating U-shaped seals to form a pressurization chamber is used to hold the

cylindrical core plugs. Radial or confining stress (S r) is applied through the hydraulic pressurization chamber inside the Hoek Cell

by a pump and axial stress (S a) is imposed on both ends of sample through pistons with a load frame. Either biaxial (S r≠S a) or

hydrostatic stress (S r= S a) can be applied to samples being tested.

Only one piston has a port connected with a tube for gas to flow from the external gas cylinder to the sample. The internal open

space of the tubes between Valve 1 and the sample end consists of the Sample Cell Void Volume (V s), and the Reference Cell

Void Volume (V r) is defined among Valves 1, 2, and 3. A high precision pressure transducer is connected to the system for

measuring gas pressure and ambient temperature. The small Cell Volumes (~ 5 cm3 in total) allows us to capture accurately small

pressure changes due to gas flow into or out of the samples.

Test procedures of a typical porosity and permeability run consist of following steps: 1) Orientated core plug is cut from coherent

representative cores, its end surfaces are precisely ground in a milling machine, and its dimension and weight are measured; 2)

Sample is mounted into the Hoek Cell and desired confining stress (S r) and axial stress (S a) are applied; 3) The system is flushed

with experimental gas (Helium is used in this study); 4) An initial equilibrium pressure in Sample Cell (P s) is set and Valve 1 is

closed; 5) A higher or lower Reference Cell pressure (P r) relative to P s is set; 6) Opening Valve 1 for gas mixing between Sample

and Reference Cells, pressure variation with time of the mixed system is monitored for final equilibrium Pressure (P m). Proprietary

software was developed to collect and monitor the pressure and temperature data, which allows us to interactively calculate the

porosity and permeability by choosing the appropriate data. A typical data set of a test is shown in Fig. 2.

Figure 1 - Schematic of ISPP instrument. Figure 2 - Typical pressure and temperature data of ISPP test.

CSUG/SPE 138148 3

Porosity Determination

Sample pore volume (V p) under the specified S r and S a is calculated straightforwardly as:

V p = [(V s+V r)ρm - (V sρs+V rρr)]/(ρs-ρm),

where ρ is real gas density and its subscripts s, r, and m represent respectively initial Sample and Reference Cells gas densities, and the final equilibrium density at pressures P s, P r, and P m and corresponding temperatures. Then the porosity is determined as

φ = V p/V b,

where V b is the sample bulk volume under the applied stress condition.

Permeability Determination

Effective gas permeability k (md) under the applied stress is given as:

k =0.10327·S·φ·c·μ/b2,

where c and μ are gas compressibility (1/MPa) and viscosity (MPa·s), b is the first root of the transcendental equation:

b·cot(b·l) = - h,

where l is the length of the sample (cm), and

h = A·φ/(V r+V s) ,

and A is the sample cross area. S (1/second) is the slope of the straight-line part of the semi-log plot of the dimensionless density (ρD) versus time t after gas mixing as shown in Figs 2 & 3 (left), and ρD is calculated as:

ρD = [(ρ-ρs)(1+h·l)-(ρe-ρs)]/[(1+h·l)·(ρe-ρs)],

where

ρe = (ρs V s+ρr V r)/(V s+V r).

Figure 3 - Typical curves for permeability determination.

48

/SPE

4 CSUG1381

Figure 4 - Effective gas porosity of Samples S1-4. Figure 5 - Effective gas porosity of Samples SPP1-4.

Experiment Results and Discussions

Two sets of samples (S1-4, SPP1-4) from the Western Canadian Sedimentary Basin were tested as examples using our method

with hydrostatic stress (i.e., S r = S a).

Effective gas porosity of these samples under different effective confining stress is shown in Figs. 4 and 5 respectively. It’s evident

that each sample follows its own unique path of pore volume/porosity reduction with increasing effective stress although samples

from the same set are of the same formation and spatially only few meters away from each other. At relatively high stress, porosity

decreases linearly with effective stress. But porosity measured at ambient condition (S1- S4 only, zero effective stress) is much

larger and does not follow the linear trend defined by the effective porosity at high confining pressures. Under similar stress

condition, data points are relatively scattered with relative errors mostly less than 2%, validating the reliability of our method.

Effective gas permeability under different stress of samples SPP1-4 were determined with our ISPP method using the dynamic

Figure 6 - Apparent gas permeability of SPP1-4. Figure 7 - True gas permeability of SPP1-4.

CSUG/SPE 138148 5

Figure 8 - Klinkenberg effects of gas permeability of SPP4. Figure 9 - Comparison of ISPP and PDP permeability.

pressure-time data recorded during in-situ porosity experiments as described in proceeding section (Figs. 2-3). The stress-dependent permeability for each individual sample can be fitted by an exponential function of effective stress (Fig. 6). The gas permeability of samples SPP1-4 were also determined using normal pulse-decay technique and their results are shown in Fig. 7. Variations of permeability under similar effective stress (Fig. 6) are most likely due to different low gas pressures (up to 100 psig) used for testing these samples. Thus the determined apparent permeability likely includes a significant component of gas diffusion or Klinkenberg slippage.

Indeed, under similar effective stress, apparent gas permeability increases with the decreasing gas pressure although the net effective stress increases slightly (refer the data of sample SPP4, Fig. 8, as an example). True effective gas permeability of Sample SPP-4 excluding the Klinkenberg effect is accordingly estimated as the y-interception of fitted lines and compared with those determined with Pulse-decay techniques (Fig. 9). Unexpectedly, under similar effective stress, permeability determined with ISPP method is nearly two orders of magnitude lower than that of the Pulse-Decay technique. Samples (SPP1-3) have similar features but the disparity between ISPP and PDP permeability is much smaller.

Numerical experiments that model the lab tests of samples with ISPP and PDP techniques were conducted to investigate the possible factors that cause the differences between the ISPP and PDP permeability. Hypothetical samples with homogeneous, transversely (Fig. 10) and longitudinally (Fig. 11) layered permeability were tested respectively. The results suggest that both ISPP and PDP produce similar permeability for either homogeneous or transversely layered samples (Fig. 10) as listed in Table 1. Permeability from ISPP method deviates to some extent from the harmonic-average permeability, which is likely due to numerical errors and the very small changes in Reference or Sample Cell pressure at very late time when gas slowly penetrates into the far end of the tested samples upon approaching equilibrium (e.g., Fig. 2).

Table 1. Results of numerical tests of transversely layered samples

Case ID

Transversely Layered Permeability (md) Harmonic

Average

Exp. Modeling (md)

Z1 Z2 Z3 Z4 Z5 Z6 ISPP PDP

1 1e-4

1e-4 1e-4 1e-4 1e-4 1e-4 1.0e-4 1.0e-4 1.0e-4 2 1e-5

1e-5 1e-5 1e-5 1e-3 1e-3 1.5e-5 1.8e-5 1.4e-5 3 1e-3

1e-3 1e-5 1e-3 1e-5 1e-3 2.9e-5 2.4e-5 2.9e-5 4 1e-5

1e-5 1e+0 1e-5 1e+0 1e-5 1.5e-5 1.8e-5 1.5e-5 5 1e-5

1e-3 1e-5 1e-3 1e-5 1e-3 2.0e-5 2.3e-5 2.0e-5

6 /SPE

138148

CSUG

Figure 10 - Transversely layered sample. Figure 11 - Longitudinally layered sample.

For longitudinally layered samples (Fig. 11), ISPP and PDP methods yield completely different permeability. However, this does

not imply the wrongness of either method. Instead, the results suggest that PDP methods measure the arithmetically weighted

average of the layered permeability, whereas ISPP probes approximately the geometrical average of the layered permeability

(Table 2).

Table 2. Results numerical tests of longitudinally layered samples

Case ID Layered Perm (md) Theoretical Permeability (md)Exp. Modeling Perm (md)

Z1 Z2

Kx Ky Average ISPP PDP

1 1e-4 0.01

8.3e-4

1.1e-4 3.0e-4 5.5e-4 8.3e-4

2 1e-4 0.1

7.5e-3

1.1e-4 9.0e-4 8.0e-4 7.5e-3

3 1e-5 1

7.4e-2

1.e-5

8.9e-4 8.4e-5 7.5e-2

Figure 12 - 2D Pressure evolution within a longitudinally layered sample during ISPP test. Figure 13 - Permeability analysis of the numerical data of ISPP test (Figure 12).

CSUG/SPE 138148 7

Figure 14 - 2D Pressure evolution within a longitudinally layered sample during PDP test. Figure 15 - Permeability analysis of the numerical data of PDP test (Figure 14).

ISPP method based on 1-D flow cannot rigorously capture the dynamic 2-D gas flow within longitudinally-layered samples during the test (Fig. 12). However, ISPP does measure the global gas take-up rate by the samples and consequently approximate the average permeability better (Fig. 13)

PDP method is based on the differential pressure between the up-stream and down-stream ends of testing samples that can quickly approach to zero due to fast gas flow along the high permeability zone (Fig. 14). Thus PDP method only tests the arithmetically averaged permeability in the longitudinal/axial direction of samples (Fig. 15).

Heterogeneity and Anisotropy of Permeability

Highly heterogeneous and microporous unconventional rocks likely develop hierarchical and anisotropic permeability structures, which can only be tested by combination of different methods, unless different oriented core plugs can be obtained from the sample mass, which is usually very difficult to achieve. As illustrated in Fig. 16, PDP method will measure the highest permeability attributed to the largest fracture, whereas much lower permeability of the matrix with numerous small fracture can be approximately tested by ISPP method. The further lower permeability measured on crushed samples may represent the actual permeability of intact grain-frame of the bulk rock. One previous study also showed strong scale-dependence of permeability of shale tested on samples crushed to different sizes (Fig. 17).

Figure 16 - Hierarchical permeability of heterogeneous and microporous rocks. Figure 17 - Scale-dependence of permeability of crushed samples (After Cui et al., 2009).

8 CSUG/SPE

138148 Conclusions

New methodology and instrument were developed to simultaneously measure in-situ porosity and permeability of unconventional

reservoir rocks under reservoir conditions, which can reduces testing time and samples required and provide an intrinsically

consistent porosity-permeability data set. Reliable results of two group test samples indicate that in-situ porosity of unconventional

rocks is significantly less than the corresponding ambient porosity tested on crushed samples. In-situ porosity of individual

samples changes uniquely with effectively stress even for samples just a few meters apart. Numerical tests suggest that our new

method (ISPP) can obtain permeability similar to that from normal pulse-decay method (PDP) if sample is homogeneous or

transversely layered. Otherwise, ISPP tackles the geometrically averaged permeability, whereas PDP tests the arithmetic weighted

permeability along sample’s axis.

Acknowledgement

The authors thank the management of CBM Solutions, a Division of Trican Services, allows this work to be presented.

References

Brace, W.F., Walsh, J.B., Frangos, W.T., 1968, Permeability of granite under high pressure, Journal of Geophysical Research, v. 73, 2225–2236.

Cui, X., A.M.M. Bustin, R.M. Bustin, 2009, Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and

their applications, Geofluids, v. 9, p. 208-223, DOI: 10.1111/j.1468-8123.2009.00244.x

Dicker, A.I. and R.M. Smits, 1988, A practical approach for determining permeability from laboratory pressure-pulse decay measurements, SPE

Paper 17578, 1988.

Haskett, S.E., G.M. Narahara, S.A. Holditch, 1988, A method for simultaneous determination of permeability and porosity in low-permeability

cores, SPE Formation Evaluation, p.651-658.

Jones, S.C., 1997, A technique for faster pulse-decay permeability measurements in tight rocks, SPE Formation Evaluation, p19-25.

膜孔隙率的几种测试方法

膜孔隙率的几种常用测试方法 在薄膜、中空纤维膜等膜材料的应用与研究中,孔隙率是一项常用的重要指标。孔隙率一般被定义为多孔膜中,孔隙的体积占膜的表观体积的百分数,即:ε=V 孔/V 膜外观。 孔隙是流体的输送通道,这里的“孔隙”准确的说应该指“通孔孔隙”。通常研究人员希望采用此参数来评价膜的过滤性能、渗透性能和分离能力。但由于定义以及测试方法限制等原因,造成目前大家经常看到的和并被普遍应用的“孔隙率”这个参数中的“孔隙”,并非指的是“通孔孔隙”,所以,这种定义的孔隙率,与膜的过滤性能、渗透性能、分离能力并不构成正相关性。也就是说,孔隙率大的,过滤性能并不一定好;渗透率为零,孔隙率不一定为零。 对于泡压法原理的贝士德仪器膜孔径分析仪,如果膜上的孔非理想的圆柱形孔,其实是不能用来分析孔隙率的,因为该原理的仪器测试出来的孔径分布是通孔孔喉的尺寸信息。用通孔孔喉尺寸计算得到孔面积,从而依据ε=V 孔/V 膜外观=S 孔/S 膜外观来计算出的孔隙率,这个值在实际中会远小于目前常用方法所 得到的孔隙率。只有当该膜的孔为理想的圆柱孔时,即孔喉和孔口的尺寸相同且无其它凸凹、缝隙结构时,由通孔孔喉尺寸得到的孔隙率才与目前常用方法得到的孔隙率接近(这种情况在实际中几乎不存在)。 下面列举膜孔隙率的几个常用测试方法: 方法一:称重法(湿法、浸液法) 原理:根据膜浸湿某种合适液体(如水等)的前后重量变化,来确定该膜的孔隙体积V 孔;该膜的骨架 体积V 膜骨架可以通过膜原材料密度和干膜重量获得;则该膜的孔隙率: ε=V 孔/V 膜外观=V 孔/(V 孔+V 膜骨架) 方法二:密度法(干法、体积法) 原理:见如下公式推导,所以,只需要膜原材料的密度ρ膜材料和膜的表观密度ρ膜表观,就可计算得到孔 隙率ε。其中表观密度ρ膜表观可由外观体积和质量获得。 ε=V 孔/V 膜外观=(V 膜外观-V 膜骨架)/V 膜外观=(ρ膜表观-ρ膜材料)/ρ膜表观 方法三:气体吸附法 原理:根据低温氮吸附获得孔体积,从而得到孔隙率。该方法只能获得200nm 以下尺寸孔结构的孔体积,无法表征200nm 以上孔的信息,对于大量滤膜不适用。 方法四:压汞法 原理:根据压汞法原理,利用压力将汞压入膜的各种结构的“孔隙”中,根据注入汞的压力、体积来获得膜的孔隙体积及尺寸数据;该方法的缺点是将汞压入微孔需要的压力较大,该方法更适合于分析刚性材料,对于大多数膜材料为弹性材料,在注入汞的过程中容易发生变形或“塌陷”,从而产生较大误差。 3H-2000PB 贝士德仪器泡压法滤膜孔径分析仪,其基本原理为气液排驱技术(泡压法):给膜两侧施加压力差,克服膜孔道内的浸润液的表面张力,驱动浸润液通过孔道,依此获得膜类材料的通孔孔喉的孔径数据,同时该方法也是ASTM 薄膜测定的标准方法。 以上四种膜孔隙率的常用测试方法,所获得孔隙率数据中的“孔隙”都不是“通孔孔隙”,更不是“通孔孔喉孔隙”;若不是“通孔孔隙”,那么,这个“孔隙率”就无法达到研究人员所希望的评价过滤性能、渗透性能和分离能力的目的。举例说明:A 膜通孔为零,表面“凸凹、闭孔、盲孔”等结构形成的孔隙率为40%;B 膜孔隙率为20%且有通孔;那么,我们并不能依据该孔隙率数据对该两种膜的过滤性能做出比较。这点在研究和应用中是需要注意。

渗透率及其测定

渗透率及其测定 渗透率: 英文:intrinsic permeability 释文:压力梯度为1时,动力黏滞系数为l的液体在介质中的渗透速度。量纲为[[L2]。是表征土或岩石本身传导液体能力的参数。其大小与孔隙度、液体渗透方向上空隙的几何形状、颗粒大小以及排列方向等因素有关,而与在介质中运动的液体性质无关。渗透率(k)用来表示渗透性的大小。 在一定压差下,岩石允许流体通过的性质称为渗透性;在一定压差下,岩石允许流体通过的能力叫渗透率。 分类: 油藏空气渗透率/(m D) 气藏空气渗透率/(m D) 特高≥1 000 ≥500 高≥500~<1 000 ≥100~<500 中≥50~<500 ≥10~<100 低≥5~<50 ≥1.0~<10 特低<5 <1.0 绝对渗透率 用空气测定的介质渗透率叫绝对渗透率,也叫空气渗透率。它反映介质的物理性质。有效渗透率(相渗透率) 英文:Effective permeability 释文:在非饱和水流运动条件下的多孔介质的渗透率。 多相流体在多孔介质中渗流时,其中某一项流体的渗透率叫该项流体的有效渗透率,又叫相渗透率。 相对渗透率 多相流体在多孔介质中渗流时,其中某一项流体的相渗透率与该介质的绝对渗透率的比值叫相对渗透率,用百分数表示。 孔隙渗透率是单根孔隙的渗透率,地层渗透率是孔隙渗透率折算到整个地层截面积之上的渗透率。孔隙渗透率通常很大,但地层渗透率却不大。地层渗透率是岩石孔隙特性的综合反映。孔隙半径、孔隙密度和孔喉比对地层渗透率均产生影响。孔喉比对渗透率的影响很大,喉道大小是制约渗透率的重要因素。

压汞仪是测定岩心孔径分布及计算渗透率等参数最便捷有效的工具。从压汞仪软件上可以直接得到以下数据: ?累积孔体积-压力或孔直径曲线 ?累积比表面积-压力或孔直径曲线 ?微分的孔体积-压力或孔直径曲线 ?孔分数-压力或孔直径:孔径分布图 ?颗粒大小分布(MS和SS理论) ?孔曲率 ?渗透率 ?孔喉比 ?分形维数(表面粗糙度的指标) 还可以计算得出以下孔隙结构特征参数: 为了对不同类型的岩心的孔隙结构进行定量分析,根据恒速压汞实验结果,结合国内外近十年来恒速压汞的应用成果,我们对相关孔隙结构特征参数的定义如下。2.2.1平均喉道(throat)半径: 设喉道半径为r i 的每一喉道的分布频率为f i ,则每一喉道半径归一化的分布频率 密度αi, (2-1) 平均喉道半径为: (2-2) 2.2.2平均孔隙(pore)半径 定义为孔隙半径加权平均值。设孔隙半径为r i 的每一孔隙的分布频率为f i ,则每 一孔隙半径归一化的分布频率密度βi, (2-3) 平均孔隙半径为: (2-4) 2.2.3孔喉半径比平均值 定义为孔隙/喉道半径比的加权平均值。设孔隙/喉道半径比为η i 的分布频率为

土粒密度(比重瓶法) 土壤容重 孔隙度测定

土粒密度的测定(比重瓶法) 严格而言,土粒密度应称为土壤固相密度或土粒平均密度,用符号ρs 表示。其含义是: s s s V m = ρ 绝大多数矿质土壤的ρs 在 2.6g·cm -3~2.7 g·cm -3之间,常规工作中多取平均值 2.65 g·cm -3。这一数值很接近砂质土壤中存在量丰富的石英的密度,各种铝硅酸盐粘粒矿物的密度也与此相近。土壤中氧化铁和各种重矿物含量多时则ρs 增高,有机质含量高时则ρs 降低。 文献中传统常用比重一词表示ρs ,其准确含义是指土粒的密度与标准大气压下4℃时水的密度之比又叫相对密度((d s =ρs ·ρw -1)。一般情况下,水的密度取1.0 g·cm -3,故比重在数值上与土粒密度ρs 相等,但量纲不同,现比重一词已废止。 测定原理 将已知质量的土样放入水中(或其他液体),排尽空气,求出由土壤置换出的液体的体积。以烘干土质量(105℃)除以求得的土壤固相体积,即得土粒密度。 仪器和设备 天平(感量0.001g );比重瓶(容积50mL );电热板;真空干燥器;真空泵;烘箱。 操作步骤 1、称取通过2mm 筛孔的风干土样约10g (精确至0.001g ),倾入50mL 的比重瓶内。另称10.0g 土样测定吸湿水含量,由此可求出倾入比重瓶内的烘干土样重m s 。 2、向装有土样的比重瓶中加入蒸馏水,至瓶内容积约一半处,然后徐徐摇动比重瓶,驱逐土壤中的空气,使土样充分湿润,与水均匀混合。 3、将比重瓶放于砂盘,在电热板上加热,保持沸腾1h 。煮沸过程中经常要摇动比重瓶,驱逐土壤中的空气,使土样和水充分接触混合。注意,煮沸时温度不可过高,否则易造成土液溅出。 4、从砂盘上取下比重瓶,稍冷却,再把预先煮沸排除空气的蒸馏水加入比重瓶,至比重瓶水面略低于瓶颈为止。待比重瓶内悬液澄清且温度稳定后,加满已经煮沸排除空气并冷却的蒸馏水。然后塞好瓶塞,使多余的水自瓶塞毛细管中溢出,用滤纸擦干后称重(精确到0.001g ),同时用温度计测定瓶内的水温t 1(准确到0.1℃),求得m bws1。 5、将比重瓶中的土液倾出,洗净比重瓶,注满冷却的无气水,测量瓶内水温t 2。加水至瓶口,塞上毛细管塞,擦干瓶外壁,称取t 2时的瓶、水合重(m bw2)。若每个比重瓶事先都经过校正,在测定时可省去此步骤,直接由t 1在比重瓶的校正曲线上求得t 1时这个比重瓶的瓶、水合重m bw1,否则要根据m bw2计算m bw1。 6、含可溶性盐及活性胶体较多的土样,须用惰性液体(如煤油、石油)代替蒸馏水,用真空抽气法排除土样中的空气。抽气时间不得少于0.5h ,并经常援动比重瓶,直至无气泡逸出为止。停止抽气后仍需在干燥器中静置15min 以上。 7、真空抽气也可代替煮沸法排除土壤中的空气,并且可以避免在煮沸过程中由于土液

SPE 133456 页岩气开发30年的经验

SPE 133456 (2010-9) 页岩气压裂30年的经验 前言 本次研究的基本认识: (1) 每一块页岩都是独一无二的,没有两块页岩是相似的。在平面和纵向上页岩存在一种变化的趋势,甚至在同一井筒内都存在差异。 (2) 认识和预测页岩井产能需要收集和识别页岩关键参数,从而优化完井和措施设计。 (3) 世上没有一种普适和最优的页岩井措施设计。 页岩气完井文献更新很快,前期页岩气研究有助于我们理解全球范围内页岩开发中的许多现象,部分页岩气开发经验仍掌握少数公司手中,并以之作为一种竞争优势。然而,许多实际进展都在文献中进行了报导。本次研究参阅了350篇文献资料,从中选出250篇进行研究,如SPE、AAPG、咨询公司报告、政府报告等,60%以上都是近3年的研究,认识更新很快。希望通过这项工作使技术进一步发展和优化。在此所有地质、地球化学和地震学的研究都是为压裂研究打基础。 本次研究并不是针对单个页岩,它是要找出那些与完井、增产和开采技术相关的页岩特性,即本项研究的目标是综述、汇总尽可能多的完井、压裂和开采方面的资料信息。 页岩气开采始于1820年代,现在已发展为一种专项技术。但只是最近几年页岩气开发才成为实际可行。页岩气开发技术使早期2%采收率提升到目前的50%以上(EOG公司在巴内特5口同步压裂井的认识)。多数现代页岩气井的最终采收率在15%-35%之间,这主要取决于页岩储层、完井技术和开发商的不同。随着水平井和压裂技术针对特定页岩不断改良,采收率还在不断提高。 一个问题是页岩气井的开采寿命,尽管许多开发商把开采期定为50年,但多数开发商的收益只是在前几年。对于致密气开发同样如此。一个最大的难题是能否保持这些老井生产以及后期低产井脱水问题。 页岩气井的产量递减曲线呈现陡降趋势,这是因为最易开采的游离气和液体很快被采出。根据长期生产报告,早期递减呈现双曲线,随后过渡到相对稳产期,这一时期呈现指数曲线,许多公司和统计者将n值设到2以上。通过小孔隙和无支撑天然裂缝的流动通道是致密砂岩气的主要产出机理,但近期页岩气研究认为,干酪根和有机碳的孔隙间的沟通可能是游离气和流体在基质内运移的主要机

气体渗透率的测定

中国石油大学 油层物理 实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 同组者: 岩石气体渗透率的测定 一.实验目的 1.巩固渗透率的概念,掌握气测渗透率原理 2.掌握气体渗透率仪的流程和实验步骤 二.实验原理 渗透率的大小表示岩石允许流体通过能力的大小。根据达西公式,气体渗透率的计算公式为: 三.实验流程 有关的常数; 与压力 孔板压差计高度, ; 孔板流量计常数, 大气压力下的流量 气体的粘度, 大气压力,岩心入口及出口压力, , ; 岩样长度, 岩样截面积, ; 气体渗透率, 式中 则 ; 令 1 3 3 0 0 2 1 2 2 3 or 0 2 2 2 1 0 2 3 2 2 2 1 0 0 P C ; mm h / cm ; / cm ; mpa ; Mpa 1 . 0 ; Mpa 1 .0 P P cm ; c A 10 : 200 , 200 Q Q ) ( P 2000 C ) 10 ( 1000 ) ( 2 K - - - - ? - - - - - - = = - = ? - = - - w or w or w s Q s Q s P L m m K A L h CQ K h P P m P P A L Q P μ μ μ μ μ

四.实验步骤 3.测量岩样的长度和直径,将岩样装入岩心夹持器,把换向阀指向环亚,关闭环压放空阀,缓慢打开气源阀,使环压表指针达1Mpa以上。 4.关闭汞柱阀及中间水柱阀,打开孔板放空阀,控制供气压力为0.2-0.3Mpa。 5.选取数值最大的孔板,插入岩心出口端,关闭孔板放空阀 6.缓慢调节供气阀,建立适当的C值(15-6之间最好),使孔板水柱在 100-200mm之间,如果水柱高度不够,则需要调换孔板。 7.待孔板压差计液面稳定后,记录孔板水柱高度,C值,孔板流量计读数。 8.调节供压阀,测量3组不同压差下的渗透率值 9.调节供压阀,将C表压力将至0.,打开孔板放空阀,取下孔板,关闭气源阀,打开环压放空阀,取出岩心。 五.实验数据处理 岩样的面积:

平行度检测仪的设计方法

第28卷第4期长春理工大学学报 Vo l 128No 142005年12月 J ou rnal of Changchun Un i versit y of Science and T echnology Dec .2005 收稿日期:2005-08-12 基金项目:振兴东北老工业基地项目(04-02GG156) 作者简介:张立颖,女(1976-),硕士研究生,主要从事光学仪器装调方面的研究。 平行度检测仪的设计方法 张立颖 刘德尚 王文革 (中国科学院长春光学精密机械与物理研究所,长春 130031) 摘 要:国内现有的平行度检测方法和检测设备都是用于检测可见光的平行度。对于激光和红外平行度的精密检测,还没有一个好的检测方法。本文介绍了一种既可以检测可见光又可以检测激光、红外平行度的检测仪,并且论述了设计原理、装调方法以及精度的验证,其检测精度可以达到?2d 。关键词:平行度;激光;红外 中图分类号:TH74512 文献标识码:A 文章编号:1672-9870(2005)04-0033-03 Design of t he L ight Parallelis m Detector Z HANG L i y ing LIU D es hang WANG W enge (Changchun Instit u te o f Op tics ,F i n eM echanics and Phy sics ,Chinese Acade my of Siences ,Changchun 130031)Abst ract :In our nation ,w e have l o ts o f m ethods and equ i p m ents to detect the parallelis m of v isible li g h.t But w e don t 'kno w how to detect the paralle lis m of laser and i n frared ,This paper descri b es briefly the desi g n idea,asse m b l y techn i q ue and ho w to test and verify its accuracy .A t las,t we get the conclu -si o n that the accuracy of the ne w detecto r is less than ?2d ,and the dectctor can be used i n v isi b l e ligh.t K ey w ords :Pa ra lle lis m;Laser ;Infrared 随着激光与红外技术的发展,红外跟踪器和激光测距机已被广泛应用在现代化的光电经纬仪上。 然而令人遗憾是,对于激光、红外系统的平行度的标校却一直没有一个令人满意的方法,无奈人们只能在几十公里外制造一个红外目标,并把这个目标假设为无穷远光源来标校激光、红外系统的平行度,这个方法测量误差大,实现也困难。本文设计的平行度检测仪(以下简称检测仪)从根本上解决了这个难题,它的结构简单、成本低,既可以在实验室使用,又可以直接安装在红外跟踪车上,在外场随时标校激光、红外的平行度,同时它又可兼做红外目标模拟器,因此具有良好的市场前景。 1 检测仪的结构及检测原理 111 检测仪的结构 用于检测激光、红外平行度的检测仪的组成包括,光学部分:(1)衰减片;(2)平面镜组;(3)分光镜;(4)平行光管;(5)红外光源;(6)特 制耙面。机械部分:(1)导轨;(2)可移动支架。用于可见光测量时,只需把红外光源更换为普通光源,将特制耙面更换为普通星点板即可。112 检测仪的检测原理11211 检测仪的光学系统 检测仪的光学系统如图1所示。检测仪由A 、B 两个光路组成。激光经过(光路A )衰减片衰减后,从平面镜2的周围入射到分光镜上,经过平行光管汇聚到特制耙面上,使耙面发热形成红外光源,发射出的光经过平行光管后变成平行光,经过分光镜把光分成两束,一束(光路A )原路返回,一束(光路B)进入红外接收系统。11212 检测仪的工作过程 ①红外光源发射出的光经过特制耙面(此时耙面可以视为一个星点)通过平行光管变成平行光,再经过分光镜进入光路B ,并呈像在红外成像器的光轴中心。 ②激光测距机发出的激光通过光路A 最终汇

高温覆压下孔隙度和渗透率变化

目录 前言 (1) 第1章孔隙度和渗透率的测量原理 (2) 1.1孔隙度的概念 (2) 1.2孔隙度的基本类型及关系 (3) 1.3渗透率的基本概念 (4) 1.4达西直线渗流定律 (7) 第2章岩心的预处理及处理规则 (9) 2.1岩心的预处理流程 (9) 2.2岩心的处理规则 (9) 第3章孔隙度和渗透率的实验室测量 (12) 3.1实验仪器简介 (12) 3.2实验软件操作步骤说明 (15) 第4章孔渗数据表及其高温覆压下的变化曲线 (24)

前言 目前,油田勘探开发技术围绕着提高油田综合采收率这个目标不断发展。提高采收率所面临的最重要的挑战之一就是提高油藏描述水平, 建立精细地质模型,精确认识油气在地层的分布特征,而岩石的孔隙度和渗透率是岩石最重要的物性参数,它们的测量和解释是油藏描述的关键。 孔隙度和渗透率是描述储集层特征最常用也是最重要的两个参数,它们和储层所含流体数量及流体流动能力有关。地球物理人员的主要任务,就是利用各种测井方法发现油气资源,并且帮助采油工程师最大限度地把油气开采出来。当前油气勘探开发不断向低孔、低渗、薄互层和深、浅层方向发展,勘探工作的难度越来越大,对我们地球物理工作者的要求也越来越高,岩石物理参数的测量研究,是各种测井方法和解释方法的基础,它是改进现有的勘探方法,发展新的测井方法,构思新的测井仪器和提出完善、合理的解释模型,综合利用测井资料、地质资料的重要依据。 一般岩石孔隙度和渗透率测量是在常温常压下完成的,但这并不能代表油藏储层物性的真实特征。温度和压力的环境因素对岩石孔、渗的测定有着重要的影响。测井所获得是在地层条件下的物性参数,为了在地面上测得的参数能够真实反映原始地层的情况,这就要求我们在实验室内模拟一定压力和温度,形成类似井下真实的环境,才能比较真实的反映地层情况。另外在测量前,岩石的制备工作,如取心尺寸的选择、烘干、饱和、加温、加压等每一道工序,都要特别谨慎,不能破坏岩心原始状态的结构本项目就是利用实验室的相应仪器模拟地下温度压力条件,完成在高温覆压情况下测量岩心孔隙度和渗透率,并分析岩心孔渗参数随温度、压力的变化规律,为油田储集层解释提供参考的依据,提高解释复合率。

国外页岩气勘探开发综述

第13卷第2期重庆科技学院学报(自然科学版)2011年4月 收稿日期:2010-11-29 基金项目:国家重大专项(2008ZX05022-005) 作者简介:胡进科(1985-),男,四川合江人,西南石油大学在读硕士研究生,研究方向为页岩气储层保护理论与技术、欠平衡钻 完井。 页岩是一种渗透率极低的沉积岩,通常被认为是油气运移的天然遮挡。在含气油页岩中,天然气产自其中,页岩既是气源岩,又是储层。天然气可以储存在页岩岩石颗粒之间的孔隙空间或裂缝中,也可以吸附在页岩中有机物的表面上。我国页岩气勘探开发起步较晚,尚有待进一步发展完善。美国是世界上勘探开发页岩气最成功的国家。在此我们对国外页岩气勘探开发现状进行分析,以资借鉴。 1资源量概况 从全球范围来看,页岩气拥有巨大的资源量。 据统计,全世界的页岩气资源量约为456.24× 1012m 3,相当于致密砂岩气和煤层气资源量的总 和,具有很大的开发潜力,是一种非常重要的非常规资源[1]。页岩气资源量占3种非常规天然气(煤层气、致密砂岩气、页岩气)总资源量的50%左右,主要分布在北美、中亚和中国、中东和北非、拉丁美洲、前苏联等地区,与常规天然气相当。页岩气的资源潜力甚至还可能明显大于常规天然气。世界各地区非常规天然气分布和资源量情况如表1和图1所示,图1中1tcf=2.8317×1010m 3。 2 勘探开发情况 2.1 勘探 勘探方面主要采用地震勘探技术。高分辨率三 维地震技术有助于准确认识复杂构造、储层非均质 国外页岩气勘探开发综述 胡进科 李 皋1 陈文可2 姚 远3 蒋延娜4 (1.西南石油大学油气藏地质及开发工程国家重点实验室,成都610500; 2.中石化江苏油田钻井处泥浆公司,扬州225263; 3.中石化胜利油田钻井泥浆公司,东营257064; 4.中石化西南石油局地质录井公司,绵阳621605) 摘要:美国是世界上勘探开发页岩气最成功的国家,主要采用水平井+水力压裂进行开发。调研表明,页岩气资源 量约占全球非常规天然气资源量的一半。国外页岩气勘探主要采用三维地震和微地震技术优化设计,已形成一套资源评价系统。国外钻井选择直井和水平井两种方式。完井储层改造多采用裸眼、筛管等完井方式,配合大型水力压裂改善页岩的超低渗透率。 关键词:页岩气;钻井;完井;储层改造中图分类号:TE132 文献标识码:A 文章编号:1673-1980(2011)02-0072-04表1 世界各地区非常规天然气资源量分布情况 m 3 地区页岩气 煤层气致密砂岩气合计 北 美 108.7×10 12 85.4×10 12 38.8×1012 232.9×1012拉丁美洲59.9×1012 1.1×101236.6×101297.6×1012中欧+西欧15.5×10127.7×101212.2×101235.4×1012前苏联17.7×1012112.0×101225.5×1012155.2×1012中东+非洲79.9×1012 1.1×101245.5×1012126.5×1012中亚+中国99.8×101234.4×101210.0×1012144.2×1012太平洋地区65.5×101213.3×101220.0×101298.8×1012其他亚太地区8.9×1012 1.1×101221.0×101231.0×1012全世界456.0×1012256.1×1012 209.6×1012 921.7×10 12 图1 页岩气全球资源分布情况

低渗透岩心渗透率测试方法总结

低渗岩心渗透率的测试方法:1、稳态法2、脉冲衰减法3、周期振荡法 一、稳态法测量渗透率 1、测试原理 根据达西定律Q / S=-k△P/ηL 式中;Q 为流量(m3/s);S 为样品横截面积(m2);L为样品长度(m);η为流体黏滞系数(Pa·s);k 为渗透率(m2);ΔP 为样品上、下游的压力差(Pa)。在岩样的上、下游端施加稳定的压力差ΔP,通过测量流经样品的流量Q 得到渗透率,或者保持恒定的流量Q 而测量上、下游端的压力差ΔP 而得到渗透率。 2、适用条件 达西定律定压法测渗透率适用的条件之一是测试介质在岩石孔隙中的渗流需达到稳定状态,对于中高渗岩样来说$达到稳定状态所需时间较短,因而测试时间较短但是对于低渗岩样达西实验装置提供的较小压差达到平衡状态时间长伴随长时间平衡过程带来的是环境因素对测量结果的影响增大 3、实验装备 1)定压法 石油工业所熟知的达西实验原理即是采用的定压法 室内常用定压法测渗透率装置简图 2)定流量法 定流量法是通过提供稳定流量监测岩样两端压力变化因为高精度压力监测比流量计量更准确因而测量也更精确 定流量法测试渗透率装置简图 4、优缺点 此法对于渗透率大于10×10?3μm2中高渗透率的储层岩石,测试结果较为准确,但是若为了保证精度,对设备装置的要求就很高,并且在测量时需要很长的流速

稳定时间。 二、脉冲衰减法 1、测试原理及装置图解 与常规稳态法渗透率测试原理不同,脉冲衰减法是基于一维非稳态渗流理论,通过测试岩样一维非稳态渗流过程中孔隙压力随时间的衰减数据,并结合相应的数学模型,对渗流方程的精确解答和合适的误差控制简化,就可以获得测试岩样的脉冲渗透率计算模型和方法。 1)瞬态压力脉冲法: 瞬态压力脉冲法最早在测量花岗岩渗透系数时提出其原理并给出其近似解在测试样两端各有一个封闭的容器,测试时待上下容器和岩样内部压力平衡后,给上端容器一个压力脉冲。然后上部容器压力将慢慢降低,下部容器压力慢慢增加,监测两端压力随时间变化情况,直至容器内达到新的压力平衡状态。 瞬态压力脉冲法原理图 通过上下游压力衰减曲线可求得测试样渗透率。W F Brace给出了计算渗透率的近似解析解: Δp(t) P i =e?θt(1) θ=kA μw C w L (1 V u +1 V d )(2) 式中Δp(t)——岩样两端压差实测值;P i——初始脉冲压力;θ——衰减曲线斜率;V u、V d——上下游容积体积 瞬态压力脉冲法在非稳态下测量渗透率,较传统稳态法所需测试时间大大缩短,而且高精度的压力计量要比传统流体计量更准确,因而测试结果也更精确。目前此方法已广泛应用于致密低渗岩样的测量实验中。但是W F Brace 在测量花岗岩渗透率求解过程中是假定岩样孔隙度为零,这在计算致密孔岩样时有一定的合理性,但在计算页岩等孔隙度相对不能忽略的岩样时其误差较大,后继研究者在求解方法上做了很多研究,提出了精确的解析解和图解法。A I Dicker等详细讨论了上下端容器体积对测量过程的影响,S C Jones提出的渗透率测量装置下限达到0.01μd目前基于此原理制备的PDP-200已有商业制品出售,在测量如页岩气等超低渗储层岩心方面效果较好。

孔隙度测定

一.孔隙度定义: 岩石的总体积V b ,是由孔隙的体积V p 及固体颗粒体积(基质体积)V s 两部分组成。孔隙度(?)是指岩石中孔隙体积V p 与岩石总体积V b 的比值。表达式为 ?=V p V b ×100% 它是说明储集层储集能力的相对大小的基本参数。 二.孔隙度的分类 1.岩石的绝对孔隙度(?a ) 岩石的绝对孔隙度(?a )指掩饰的总孔隙体积(V a )与岩石外表体积(V b )之比,即 ?a =V a V b ×100% 2.岩石的有效孔隙度(?e ) 有效孔隙度是指岩石中有效孔隙的体积(V e )与岩石外表体积(V b )之比,即: ?e =V e V b ×100% 计算储量和评价油气层特性时一般之有效孔隙度。 3.岩石的流动孔隙度(?f ) 微毛细管孔隙虽然彼此连通,但未必都能让流体流过。例如对于喉道半径极小的孔隙来说,通常的开采压差难以使流体流过;亲水岩石孔壁表面附着的水膜使得孔隙通道大大缩小。所以流动孔隙度是指含油岩石中,可流动的孔隙体积(V f )与岩石外表体积(V b )之比,即: ?f =V f b ×100% 流动孔隙度与有效孔隙度不同,它既排除了死孔隙,又排除了微毛细管孔隙体积。流动孔隙度不是一个定值,它随地层中的压力梯度和液体的物理化学性质而变化。在油气田开发中,流动孔隙度具有一定的实用价值。 三者的关系为:绝对孔隙度>有效孔隙度>流动孔隙度 三.孔隙度分级标准 四.双重介质岩石空孔隙度 双重孔隙介质储层具有两种孔隙系统。第一类是岩石颗粒之间的孔隙空间构成的粒间孔隙构成的孔隙度,称为原生孔隙度;第二类是裂缝和空洞的空隙空间形成的系统构成的孔隙度,称为次生孔隙度。 总孔隙度?t 、裂缝孔隙度?f 和岩石原生孔隙度?p 之间有如下关系: ?p =?p +?f

美国页岩气勘探开发关键技术

目录 _Toc28155708 引言 (2) 1 美国页岩气藏特点分析 (2) 2 地层评价 (3) 3 岩石机械特性地质力学 (4) 4 钻完井技术 (5) 5 压裂技术 (8) 5.1 清水压裂技术 (8) 5.2 重复压裂技术 (9) 5.3 水平井分段压裂技术 (9) 5.4 同步压裂技术 (10) 6 结论和建议 (10)

美国页岩气勘探开发关键技术 引言 美国页岩气资源量达16. 9 万亿m3,可开采资源量7. 47 万亿m3。至20 世纪90 年代末,美国页岩气产量一直徘徊在( 30 ~50) 亿m3 /a。2000 年新技术的应用及推广,使得页岩气产量迅速增长。2005 年进入大规模勘探开发,成功开发了沃思堡等5 个盆地的页岩气田,产量以100 亿m3 /a 的速度增长。2008 年产量达到600 亿m3,占美国天然气总产量的8%,相当于中国石油当年天然气总产量,目前则已占到天然气总产量的13% ~15%。截至2008 年底,美国累计生产页岩气3 316 亿m3。预计2015 年美国页岩气产量将达到2 800 亿m3。自2009 年以来,北美的页岩气开发发生了革命性的变化,目前美国已取代俄罗斯成为世界最大的天然气生产国,实现了自给自足并能连续开采上百年。美国页岩气快速发展是技术进步、需求推动和政策支持等多种因素合力作用的结果。从技术进步角度来看,则主要得益于以下几方面的关键技术:前期的页岩气藏分析、地层评价、岩石力学分析、后期的钻完井技术以及压裂增产技术。 1 美国页岩气藏特点分析 美国页岩气藏具有典型的衰竭特点,初始产量高,前3 年急剧下降,随后在很长的时间里保持稳产并有所下降,生产寿命可达25 a 以上。美国页岩气资源丰富,致密页岩分布范围广,有效厚度大,有机质丰富,含气量大,裂缝系统发育,

用打表法测量阀体的平面度及平行度.doc

用打表法测量阀体的平面度和平行度的方法 一 实验目的 本实验所用测量方法是工厂里常用的方法,有助于学生对平面度公差、面对面的平行度公差概念的理解,训练学生的动手能力(仅一台三坐标测量机,做不到人人动手操作),训练学生数据处理能力,以及对平面度评定方法的理解。 二 实验仪器 测量平台,作为测量的基准使用,精度要求高。磁力表架和表座、千分表、V 型块、被测零件阀体。 三 操作过程 1 将磁力表架和V 型块放置于测量平台上,将被测零件阀体放置于V 型块上。 2 将千分表安装在磁力表架上,调整磁力表架,使千分表的测头与阀体的被测平面垂直接触,且具有一定的接触力,并保证测量过程中千分表不超量程。 3 固定磁力表座,推动V 型块,并保证其与测量平台稳定接触,使千分表测头与 测量平台 阀体 表架 表座 千分表 V 型块

被测平面上3X3分布的点接触,记录9个数据,如下所示。 四数据处理 1 误差评定准则(见教材) 将测得数据处理成上述三个准则中的任意一种,各点数据中的最大值减去最小值即为平面度误差。而平行度误差评定较简单,在测得原始数据中,用最大值减去最小值即是。 2 平面度数据处理方法(见学习指导) 测得数据不会是三个准则中的任意一种,需要进行处理才行,处理方法按照如下例题所示。 例用打表法测量一块350mmx350mm的平板,各测点的读数值如下图所示。试用最小包容区域法求平面度误差值。 解:此题旨在训练培养大家进行数据处理,求解几何误差的能力。观察检测数据,最大值为20,最小值为-12 ,次小值为-10,决定采用三角形准则求解平面度误差。保留中间的最大值,求出3个相等的最小值,三个最小值位置选定-12、-10、+7,将3个数值相加除3等于-5,即3个数的平均值。利用矩阵变换方法,将3个最小值变为-5,即将第1列的数都加+7,而将第三列的数都加-7,将结果列表后,再将第一行都加-5,而第三行都加+5,再将结果列表,即得下图所示。 经过两次坐标变换后,故平面度误差值为() f=+--= 205μm25μm

材料密度及气孔率的测量

材料密度、吸水率及气孔率的测定 一.目的 在无机非金属材料中,,有的材料内部是有气孔的,这些气孔对材料的性能和质量有重要的影响。 材料的体积密度是材料最基本的属性之一,它是鉴定矿物的重要依据,也是进行其它许多物性测试如颗粒粒径测试的基础数据。材料的吸水率、气孔率是材料结构特征的标志。在材料研究中,吸水率、气孔率的测定是对制品质量进行检定的最常用的方法之一。在这些材料的生产中,测定这三个指标对生产控制有重要意义。 本实验的目的: 1.了解体积密度、气孔率等概念的物理意义; 2.掌握体积密度、气孔率的测定原理和测定方法; 3.了解体积密度、气孔率测试中误差产生的原因及防止方法, 二.原理 密度的物理意义是指单位体积物质的质量。 颗粒密度和材料吸水率、气孔率的测定都是基于阿基米德原理。将粉末浸入可润湿粉体的液体中,抽真空排除气泡,计算颗粒排除液体的体积。便可计算出颗粒的密度。当颗粒的闭气孔全部被破坏时,所测密度即为颗粒的真密度,否则为颗粒的有效密度。与此类以,可以将块体材料视为大的“颗粒”,采用类似颗粒测试的方法测定材料的吸水率、气孔率。 粉体材料的密度,可以分为颗粒的真密度,有效密度,松装密度和振实密度。测定颗粒的真密度必须采用无孔材料,一般情况下,颗粒的密度指的是颗粒的有效密度。 无机非金属材料难免含有各种类型的气孔。块体材料如水泥、陶瓷等制品,含有部分大小不同,形状各异的气孔。浸渍时能被液体填充或与大气相通的气孔称为开口气孔;不能被液体填充或不与大气相通的气孔称为闭口气孔。块体材料中固体材料的体积、开口及闭口气孔的体积之和称为总体积。材料所有开口气孔的体积与其总体积之比称为开口气孔率或显气孔率;材料所有闭口气孔的体积与材料总体积之比称为闭口气孔率;材料所有气孔的体积(开

油水相对渗透率测定

油水相对渗透率测定 稳态法 【实验目的】 (1)加深对相对渗透率概念的理解,掌握测定油水相对渗透率曲线的方法及数据处理方法。 (2)使学生综合运用已掌握的油藏物理实验基本知识,基本原理和实验技能,设计实验具体方案,独立完成实验并能够对实验结果进行分析。 【实验原理】 油水以一定的流速同时注入岩心,在岩心两端产生压差,当油水流速恒定以后,岩心中的油水饱和度不再变化,根据达西定律,计算某一饱和度下油水相的渗透率,改变油水流速比,可计算不同饱和度下油水相的渗透率。 稳态法测定油水相对渗透率是将油水按一定流量比例同时恒速注入岩样,当进口、出口压力及油、水流量稳定时,岩样含水饱和度分布也已稳定,此时油、水在岩样孔隙内的分布是平衡的,岩样对油田水的有效渗透率值是常数。因此,可利用测定岩样进口、出口压力及油、水流量,由达西定律直接计算出岩样的油、水有效渗透率及相对渗透率值,用称重法或物质平衡法计算出岩样相应的平均饱和度值,改变油水注入流量比例,就可得到—系列不同含水饱和度时的油,水相对渗透率值,并可绘制岩样的油、水相对渗透率曲线 【实验装置】 油水相对渗透率测定仪 图5-1 稳定流油水相对渗透率实验流程示意图 1—过滤铭;2—储油罐;3—储水罐;4.—油泵;5—水泵;6—环压;7—岩心:8—压力传感器;9—计量分离器。

【实验步骤】 1、实验准备 (1)岩样的清洗 根据油藏的原始润湿性,选择清洗溶剂。如果油藏原始润湿性为水湿,则用苯加酒精清洗岩样;如果油藏原始润湿性为油湿,则用四氯化碳、高标号(120号)溶剂汽油清洗岩样。使用这些溶剂清洗后的岩样不用再恢复润湿性。 (2)实验用油水配制 实验用油采用精制油或用新鲜脱气原油加中性煤油配制的模拟油。对新鲜岩样采用精制油,对非新鲜岩样(恢复润湿性岩样)采用模拟油。 实验用的注入水或地层水(束缚水)均使用实际注入水、地层水或人工配制的注入水,地层水。 (3)岩心称干重,抽空饱和地层水,将饱和模拟地层水后的岩样称重,即可按下式求得有效孔隙体积和孔隙度。 w p m m V ρ0 1-= 100?=t p V V φ 式中:0m ——干岩样质量,g ;1m ——岩样饱和模拟地层水后的质量,g ; w ρ——在测定温度下饱和岩样的模拟地层水的密度,g /cm 3; p V ——岩样有效孔隙体积,cm 3; t V ——岩样总体积,cm 3; φ——岩样孔隙度,%。 岩样饱和程度的判定:判定方法是检查岩样抽空饱和是否严格符合要求,或按以下方法进行,即将岩样抽空饱和地层水后得到的有效孔隙度与气测孔隙度对比,二者数据应满足以下关系: %1≤-g φφ 式中:g φ——气测孔隙度,%。 (4)建立束缚水饱和度 油驱水造束缚水,驱替10倍孔隙体积,记录驱出水量,测量油相渗透率。

4.3 孔隙率检测

4.3孔隙率检测 孔隙率是指土中孔隙的体积与土的总体积之比,以百分数表示。孔隙率越大,表示土的密实度越小,孔隙率越小,表示土的密实度越大。因此,孔隙率可以作为路基压实质量的一个控制指标。特别是对于级配碎石等粗颗粒填料来说,最大干密度难于测得,难于测准,用压实系数不易控制施工质量,用孔隙率则能较好的控制施工质量。 表4.3-1 级配砂砾石基床表层压实标准 表4.3-2 级配碎石基床表层厚度及压实标准 表4.3-3 基床底层技术标准 表4.3-4 路堤填料及压实标准 我国铁路设计和施工规范,第一次采用孔隙率标准是在秦沈客运专线上,具体指标是按日本标准确定的。见表4.3-1、表4.3-2、表4.3-3、表4.3-4。 根据孔隙率的定义,孔隙率计算公式如下: n=(1-ρd/G S)×100 (4.3-1) 式中 n——孔隙率(%)

ρd——填料干密度(g/cm3) G S——颗粒视密度 但是,铁道建筑研究设计院在秦沈客运专线上对用上述公式测算的孔隙率(n)与压实系数(K)和地基系数(K30)进行了一系列的对比试验却表明,当压实系数(K)和地基系数(K30)达到设计规范标准时,孔隙率(n)却很难达到,三者不匹配。原因在于压实的过程只是使填料单个颗粒互相接近,减少颗粒与颗粒间的空隙,而不能使单个颗粒内部的孔隙和颗粒细微裂隙减少。因此,在测算填料的孔隙率时,不能采用填料颗粒视密度,而应采用填料颗粒毛体积密度。对比试验表明,采用颗粒毛体积密度计算孔隙率后,与压实系数、地基系数三者之间较为匹配。计算公式如下: n=(1-ρd/G m)×100 (4.3-2) 式中 n——孔隙率(%) ρd——填料干密度(g/cm3) G m——颗粒毛体积密度(g/cm3) 颗粒毛体积密度的试验计算方法见第二章第1节颗粒密度试验。 填料干密度的试验计算方法见本章第2节。

渗透率测试作业指导书

渗透率测试 渗透率是指在一定压差下,岩石允许流体通过的能力,是岩石固有的物理性质。测定渗透率可以掌握油层渗流能力大小,为评价储层以及油井产能提供依据。 一、渗透率测试依据及原理 渗透率测试依据SY/T5336-2006《岩心常规分析方法》。 目前渗透率所采用的主要方法为气测法,理论基础仍是达西定律,具体作法是用加压气体(用氮气瓶或压风机)方法在岩样两端建立压力差,测量进、出口压力及出口流量,依据达西气测渗透率公式进行计算的。 二、渗透率测试流程图 渗透率测试流程图如下:

三、操作步骤 (一)检测前准备工作 1、接收样品 根据检测任务通知单/样品流转单,接收岩样制备室送来的样品,要求渗透率样品规格为Φ25×25~80mm。 2、标号 根据样品流转单上的信息及样品摆放顺序,依次对样品进行标号,用碳素墨水在样品的圆柱面上方标井号,下方标样号,字迹要清晰可辨。 3、洗油 按照“样品接收与流转”规定,将标完“样号”的样品交付洗油岗进行岩心除油,并按上述规定接收已完成洗油的样品。 4、烘干 将洗油后的样品置于电热鼓风干燥箱中用100~105℃温度烘至恒

重为止,取出置于干燥器皿中冷却至室温待测。 (二)仪器检漏 关闭面板上的全部阀门(压力调节器出厂前已调好,可不再调节)。 1、上流检漏:用肥皂液涂于各接头处,如果有漏,可看见肥皂泡,检查各接头与阀门及管线。 2、岩心夹持器检漏:岩心夹持器系统的检漏可按下述方式进行: 2.1岩心夹持器中放一块孔隙与渗透率都很大的样品,夹持器橡皮筒中加环压0.8MPa。该样品的长度必须是夹持器所能测试最长的样品长度。 2.2 关掉环压阀,橡皮筒中压力下降时,环压表压力就会显示出来,这就表示有泄漏。 如果检查有关管线与接头不泄露,就判断是夹持器有泄漏处。可按下列方式检查泄漏的位置: ①关闭通向岩心夹持器的上流的阀门,如果夹持器出口有气流,说明岩心夹持器橡皮筒有小孔漏泄,必须重新更换一个橡皮筒。 ②如果不是岩心夹持器的橡皮筒漏气,就紧一下夹持器上下螺母,拧紧后还是漏,就用肥皂液找出泄漏处,进行合理的修理。 (三)测试步骤 1、确认工作环境符合:温度20±5℃,相对湿度85%以下。 2、打开仪器电源,预热30分钟,打开电脑,启动渗透率测试软

页岩气储层评价(斯伦贝谢公司)

页岩气储层评价
斯伦贝谢DCS 2010年5月

汇报提纲
页岩气藏特征 页岩气储层评价技术 实例
2 5/18/2010

页岩气藏普遍特点
有机质含量丰富 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂

页岩气藏普遍特点
有机含量丰富的页岩 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 和单井产量低 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂
采收率 (%) 全球常规气储量:6,300 tcf/178.4万亿方 全球页岩气储量:16,112tcf/456万亿方 中国页岩气储量:3528tcf/99.9万亿方 引:BP Statistical Review of World Energy, June 2008
A O/NA L B
A B L O/NA
Antrim (Michigan) Barnett (Texas) Lewis (New Mexico) Ohio/New Albany

页岩气藏普遍特点
有机含量丰富的页岩 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 和单井产量低 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂

相关主题
文本预览
相关文档 最新文档