当前位置:文档之家› 页岩气储层评价(斯伦贝谢公司)

页岩气储层评价(斯伦贝谢公司)

页岩气储层评价
斯伦贝谢DCS 2010年5月

汇报提纲
页岩气藏特征 页岩气储层评价技术 实例
2 5/18/2010

页岩气藏普遍特点
有机质含量丰富 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂

页岩气藏普遍特点
有机含量丰富的页岩 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 和单井产量低 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂
采收率 (%) 全球常规气储量:6,300 tcf/178.4万亿方 全球页岩气储量:16,112tcf/456万亿方 中国页岩气储量:3528tcf/99.9万亿方 引:BP Statistical Review of World Energy, June 2008
A O/NA L B
A B L O/NA
Antrim (Michigan) Barnett (Texas) Lewis (New Mexico) Ohio/New Albany

页岩气藏普遍特点
有机含量丰富的页岩 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 和单井产量低 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂

页岩气藏岩性的特点
狭义:页岩中的天然气 广义:致密细碎屑岩中所含有并可采出的 天然气
致密砂岩和常规油气藏
粘土质
质和 粉砂 含 砂质
Double_shale_interim_14_segment_001
骨架组成
增加 量的
硅质
页岩油气藏
钙质

干酪根特性
干酪根特征
? ? ? ? ? ? ?
吸附甲烷气能力强 不能溶解于水 不属于孔隙的一部分 低密度 (1.1 to 1.4 g/cm3) 通常较高的自然伽玛值 低的光电吸收指数(0.28) 较高的中子孔隙度 (30 to 60 pu)
气体特征
游离气—存储于孔隙中 吸附气—吸附于干酪根或微孔 隙表面
? ?

有机质含量
页岩气藏的有机碳含量最低 标准原则上应大于2.0 %。
Relationship between total organic carbon content and gas content in Barnett.
Schlumberger Oilfield Review, Autumn 2006

天然气地质储量
页岩理想的天然气原始地质储量: G total = G free + G ads + G so + G sw
G free = 孔隙中的游离气 G ads = 吸附气 G so = 烃相溶解气 G sw = 水相溶解气
当前工业标准在朗缪尔等温吸附分析中,将 G ads, G so 和 G sw 各部分视为一体。 因此在页岩中天然气原始地质储量简化为: G total = G free + G ads
(假设游离气处于孔隙体积中,吸附气吸附于有机质)

页岩气藏地层评价的内容
页岩气藏的识别
特征研究
页岩气藏储层参数的计算
粘土含量及粘土类型 干酪根和有机碳含量 吸附气体和游离气体的含量 孔隙度及渗透率
产能评价
基质渗透率 裂缝参数评价 系统渗透率的评价 储层压力系统的评价 产能预测
岩石力学参数
三维岩石力学模型

页岩地层测井曲线特征
高伽马 高电阻率 高中子 低密度 低光电吸收截面 常规曲线很难准确计算 页岩地层的粘土、矿物 含量等参数

页岩地层测井曲线特征
? ? ? ? ? ? 自然伽玛GR – 海相较高(>150 GAPI) ,
湖相较低,并不总是与TOC呈正相关。
岩性密度 – 通常低于2.57 g/cc是理想状
况,意味着较高的孔隙度和TOC含量。
中子孔隙度– 通常大于35pu时指示膨
胀粘土,非定量指示。
中子、密度交会– 在好的页岩气中有
显示。
电阻率 – 越高越好,亦是页岩成熟度
的指示 (>15 Ohmm)。
自然电位 – 对于渗透性、地层水电阻
率等没有意义。

岩性的确定 ---元素俘获能谱测井ECS的应用
ECS元素俘获能谱测井: 地层主要因素含量 :硅元素、钙元素、铁元素、硫元素、铝元 素等 准确确定粘土含量 直接确定地层碳酸盐岩、黄铁矿等含量 计算粘土类型

14 5/18/2010

ECS Tool
? ? ? ? ? ? ? ? ? Logging Speed: Vertical Resolution: Borehole Fluid: Tool Size: Length: Maximum Temp: Maximum Pressure: Min Hole Size: Limitations:
Acquisition Electronics Heat Sink Internal Dewar Flask Spectral Stripping Elemental Yields Dry Weight Elements
Si, Ca, Fe, S, Ti, Gd
AmBe Source
BGO Crystal and PMT Boron Sleeve
6.6 ft
1800 / 900 ft/hr 2.5 ft / 1.5 ft All 5.0 in O. D. 6.6 ft 350 oF 20,000 psi 6.00 in unaffected by gas, barite mud or hole rugosity
GammaGamma-Ray Spectra
Oxides Closure
SpectroLith
15 ECS Applications 10/03/00 - jph
Dry Weight Lithologies
Clay, Carbonate, Anhydrite, QFM

孔隙度评价 --高分辨率核磁共振测井
中子测井 密度测井 核磁测井

CMR在页岩气藏的实例

页岩气测井参数评价技术和流程
元素俘获 ECS 测井ECS 核磁共振 CMR CMR 电阻率等 PeX 常规PEX Shale Gas 评价模块 有效孔隙 度 页岩饱和 度方程
n 1 φ n Sw V S = + sh w Rt aRw (1 ? Vsh ) Rsh
干酪根
有机碳含 量
Langmuir 方程
吸附气
含水饱和 度
自由气
Shale_Prep模块:粘土含量和粘土类型; Shale_Prep模块:粘土含量和粘土类型; 模块 ShaleGas-ELAN模块:建立矿物模型, ShaleGas-ELAN模块:建立矿物模型,计算干酪根含量 模块 孔隙度、束缚水饱和度; 、孔隙度、束缚水饱和度; 模块:页岩储层吸附气、游离气、 Shale_Gas 模块:页岩储层吸附气、游离气、累积气 体积、 体积、渗透率等

页岩气测井评价
累计气体积 (BCF/section) 地层剖面 0 80 Adsorbed & Free Gas 有机碳 (wt%) 0 25 0 (SCF/ton) 200
累计总气体积 累计吸收气体积
干酪根
吸附气含量 自由气含量 总含气量

产能评价
渗透率是重要参数
– 常规测井曲线+岩心资料
裂缝参数评价--FMI 系统渗透率—压力传导测试 产能预测- ShaleGAS Simulator
Arab碳酸岩
高孔隙砂岩
松辽火山岩
页岩气藏
砖块
1000
100
10
1.0
0.1
md
0.01
非常规气藏 0.001
0.0001
水泥
0.00001
盐岩 1e-06
地层渗透率

沁水盆地煤系地层页岩气储层特征及评价_付娟娟

第23卷第2期2 016年3月地学前缘(中国地质大学(北京) ;北京大学)Earth Science Frontiers(China University of Geosciences(Beijing);Peking  University)Vol.23No.2 Mar.2016 http ://www.earthsciencefrontiers.net.cn 地学前缘,2016,23(2)收稿日期:2015-09-12;修回日期:2015-11- 01基金项目:中国地质调查局项目“沁水盆地及周缘页岩气资源调查评价”(2014- 258)作者简介:付娟娟(1981—),女,博士研究生,工程师,矿产普查与勘探专业。E-mail:juanj uanfu_2012@hotmail.com* 通讯作者简介:郭少斌(1 962—),男,教授,博士生导师,从事层序地层学、储层评价和油气资源评价方面的教学和科研工作。E-mail:g uosb58@126.comdoi:10.13745/j .esf.2016.02.017沁水盆地煤系地层页岩气储层特征及评价 付娟娟, 郭少斌*, 高全芳,  杨 杰中国地质大学(北京)能源学院,北京100083 FU Juanjuan, GUO Shaobin*, GAO Quanfang,  YANG JieSchool of Energy Resources,China University  of Geosciences(Beijing),Beijing100083,ChinaFU Juanjuan,GUO Shaobin,GAO Quanfang,et al.Reservoir characteristics and enrichment conditions of shale gas in theCarboniferous-Permian coal-bearing  formations of Qinshui Basin.Earth Science Frontiers,2016,23(2):167-175Abstract:Qinshui Basin,as one of the most important coal-bearing basins in China,not only has plenty of coaland coal-bed methane resources,but also has a lot of shale reservoirs.However,there is little research on thecharacteristics and potential evaluation of shale gas reservoirs in this basin.In this paper,we studied thecharacteristics of shale gas reservoirs in the Upper Paleozoic of Qinshui Basin,China.Comprehensiveexperimental methods,including X-ray diffraction,NMR,FIB-SEM,microscopic identification of thinsections and nitrogen adsorption etc.were applied to analyze the characteristics of organic geochemistry,rockand mineral composition and pores evolution of organic-rich shale gas reservoirs.On this basis,the explorationand development potential of shale reservoirs in the study area is evaluated.The results show that differenttypes of pores and micro fractures developed here,which provide enough spaces for the storage of shale gas.Mineral pores,mainly including intergranular pores and intercrystalline pores in shapes of plate,triangle orirregular are well developed,whereas only  a small amount of organic pores in shapes of dot or occasional ellipsedeveloped.Porosity has a large specific surface area,which has a range from 2.84m2/g to 6.44m2 /g with anaverage of 4.26m2 /g.The average value of p ore size distribution is between 3.64nm and 10.34nm,whichmeans mainly meso-pores developed.The appropriate ratio of mineral composition,which is composed of57.5%of clay minerals and 41.3%of brittle minerals,is pretty good for the development of mirco-pores,gasabsorption and fracturing.High value of TOC and Ro,caused by abnormal thermal gradient in Mesozoic,provided favorable conditions for shale gas formation and storage.On the whole,though the burial depth isshallow,there is great exploration and development potential for shale gas in the C-P period in the QinshuiBasin because the organic chemical conditions,mineral composition and reservoir characteristics are quitesuitable for the formation and storage of shale g as.Key  words:Qinshui Basin;C-P period;shale gas;reservoir characteristics摘 要:沁水盆地是我国重要的含煤盆地,不仅其煤炭及煤层气资源丰富,在上古生界石炭纪—二叠纪地层中还有大量页岩发育。而目前,针对该地区页岩地层的相关研究极少,该地区页岩气资源是否具有勘探开发潜力有待深入而细致的研究。本文以沁水盆地上古生界石炭系—二叠系海陆交互相页岩储层为研究对象,通过薄片鉴定、X线衍射分析、氩离子抛光-扫描电镜分析、核磁共振、氮气吸附等实验方法,研究了富有机质页岩储层有机质含量、类型、成熟度等有机地化特征以及储集空间类型、物性、矿物组成、孔隙结构等储层特征。在此基础上,对研究区页岩储层的勘探开发潜力进行了评价。结果表明:沁水盆地石炭系—二叠系富有机质页岩储层中发育形态各异的不同类型孔隙及微裂缝。其中,矿物基质孔十分发育,主要包括有呈片状、三角形及

储层精细地质研究进展

第28卷第2期地球科学与环境学报 Vol .28No .22006年6月 J ournal of Earth Scienc es an d Environ ment Jun .2006 [收稿日期] 2005-05-08 [基金项目] 中国科学院边缘地质重点实验室基金项目(MSGL 04-3) [作者简介] 吴诗勇(1971-),男,安徽太湖人,博士研究生,从事油田开发地质学研究。 精细地质研究现状及发展趋势 吴诗勇1,2,李自安1 (1.中国科学院广州地球化学研究所,广东广州510640;2.中国科学院研究生院,北京100039) [摘要] 水驱采油后期,油层的含水率越来越高,然而大量的可动剩余油却滞留于地下。要提高这部分油层的采收率,必须加强对储层微观非均质性的认识。精细地质研究作为一种方法,在这种背景下,便得到了快速的发展和应用。旨在对其做一个阶段性的小结,从储集层砂体几何形态、内部结构以及孔、渗空间变化特征出发,概述了精细地质研究的内容为细化开发单元、成因单元砂体的连续性和连通性描述、砂体内部建筑结构单元的划分、流动单元的研究、表外储层研究、地质建模等。并提出了今后研究发展的主要方向。为油田的可持续发展提供技术支持。 [关键词] 精细地质;成因单元;结构单元;流动单元;表外储层;综述 [中图分类号] TE 122. 2;P 618.130.2 [文献标识码] A [文章编号] 1672-6561(2006)02-0058-07Actuality and Dev elopment of Fine Ge ology WU Shi -yo ng 1,2 ,LI Z i -an 1 (1.Guangzho u Institute of G eochemistry ,Chinese Acade my of Scienc es ,Guangzhou 510640,Guangdo ng ,C hina ; 2.S ch o ol Graduate ,C hine se A cademy of Science s ,Beij ing 100039,C hina ) Ab s tra ct :At the later stage of w ater -driven ex ploitatio n ,so me proble ms appe ared ,o ne is the hig h w ater co ntent in the oil strata ,and the other is a gre at de al of surplus oil detained in the strata .To enhance rec overy ratio ,it is nec essary to have a better u nderstan d on the micro -hetero geneity of reserv oir .As a m easure to res olve these pro b -lem s ,the stu dy of fine geolo g y gets alo ng very well .B ased on the ge om etric fe atures of reserv oir ,structure an d the spatial variatio n of bore -se epage ,this paper carries o ut the followin g six aspects :①ac curate divisi on of ex -ploitation u nits ;②descripti on of continuity of genetic u nit ;③division of internal structure u nit of sand -b od y ;④investigatio n of flow unit of reservo ir ;⑤rese arch of outside -deli mited reserv oir ;⑥geolo gic m odelin g .At last ,thre e develo ping tren ds of fin ge olog y are put forward to afford so m e i de as for the future rese arches .S o it will of -fer so me effe ctive techn olo gies for the sustainable develop ment of oilfield . Ke y w ord s :f ine geolo gy ;genetic u nit ;structure unit ;flow unit ;o utside -delimited reserv oir ;review 0 引言 精细地质是储层表征的重要内容,其研究得力于石油生产的需要及相应的理论和技术的发展。 (1)20世纪80年代以来,世界一些主要产油国的油气田相继进入高成熟开发阶段,由于勘探成本 的大幅度上升,提高油气采收率便成为老油田获取 最大经济效益的一条有效途径,因而要求储层地质研究向更精细、定量化方向发展。 (2)新理论和技术的诞生,特别是计算机技术的快速发展,为储层精细描述提供了技术上的支持。 中国一些老油田自20世纪90年代以来,基本

天然气分布规律及页岩气藏特征

天然气分布规律 辽河盆地的天然气在纵向上和横向上分布都很广泛。在横向上,由于气体形成的途径多于油的形成途径,气体的分布区域远远大于油层的分布;在纵向上,自目前勘探的最深部位到浅层均有气体存在,含气层系多,自下而上发育了太古界、中生界和新生界。特别是第三系自沙四段到明化镇组各层段均有气藏存在,沉积环境和演化史的特征,造成天然气原始组分富烃,贫H:S,少CO:和N2。 辽河断陷广泛发育多期张性断裂,把二级构造带切割成复杂的断块油气田。受构造、断裂活动影响,造成多次油气聚集、重新分配而形成多套含油气层系。 通过天然气的地球化学研究,结合盆地地质背景,天然气有如下分布规律:1.自生自储的天然气垂向分布 以自生自储为主的天然气层,自下而上分布有侏罗系的煤型气、正常凝析油伴生气、正常原油伴生气、生物一热催化过渡带气和生物成因气等。其特征主要是613C,依次变轻。侏罗系煤型气主要分布在深大断裂边缘,仅处于侏罗系发育的地区,如东部凹陷三界泡地区。正常凝析油伴生气主要发育在有机质埋深达到高成熟阶段的地区,主要为各个凹陷的沉降中心部位,如整个盆地的南部地区及东部凹陷北部地区。正常原油伴生气在整个盆地均有分布,主要是与原油伴生的气顶气和溶解气。生物一热催化过渡带气主要发育在有机母质埋深浅于3000m 的未成熟和低成熟阶段,并有良好的盖层发育的地区,部分地区的局部构造亦可形成小型气藏,在盆地的大部分地区均有分布,主要在东部和大民电凹陷的有利地区。生物成因气理论上在整个盆地浅层都存在。因此,只要有良好的储盖组合,在整个盆地中都可望发现生物成因气藏。 总体来看,三个凹陷中,大民屯凹陷以成熟阶段的石油伴生气和生物一热催化过渡带气为主.有少量生物成因气。东部凹陷在不同的构造部位分布不同类型的气体,中生界发育并位于深大断裂边缘的地区,有煤型气和深源气的存在。南、北凹陷深部位置,主要是高成熟和成熟的热催化一热裂解气。而凹陷中部广泛发育生物一热催化过渡带气。在构造高部位有利地区,发育有较可观的生物成因气。西部凹陷主要发育热催化一热裂解气,特别是凹陷南部沉降中心处,热裂解形成的正常凝析油伴生气更为广泛。在有机母质埋深浅的部位发育生物一热催化过渡带气。当然,如果存在有利的储盖组合,生物成因气的存在勿需置疑。 2.断裂构造导致天然气广泛运移 广泛发育的断裂构造,使大多数天然气发生不同程度的运移,造成天然气更加广泛、更加复杂的分布格局。断裂构造或不整合面为气体运移通道,形成新生古储的古潜山油气藏。天然气的垂向和侧向运移,造成了大面积浅层气藏的形成。这部分气体的气源岩母质类型、演化程度,特别是天然气同位素组成特征均与原生气藏一致。最明显的差别是甲烷含量相对高,重烃含量低,愈向浅层,甲烷含量愈高,反映运移的地质特点是由斜坡低部位向高部位甲烷含量升高,由低台阶向高台阶甲烷含量亦升高,如兴隆台气田不同台阶的天然气组分由下到上变干。曙光一高升油气藏也有类似分布。在大民屯凹陷东部浅层及东、西部凹陷的大部分地区浅层干气也是运移形成 3.天然气藏类型分布 构造运动造成了多套油气层和多种类型的储集层,形成了多样的天然气藏类型,根据控制油气的主要因素,可以划分出四大类油气藏:(1)构造油气藏,包括背

页岩气储层评价(斯伦贝谢公司)

页岩气储层评价
斯伦贝谢DCS 2010年5月

汇报提纲
页岩气藏特征 页岩气储层评价技术 实例
2 5/18/2010

页岩气藏普遍特点
有机质含量丰富 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂

页岩气藏普遍特点
有机含量丰富的页岩 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 和单井产量低 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂
采收率 (%) 全球常规气储量:6,300 tcf/178.4万亿方 全球页岩气储量:16,112tcf/456万亿方 中国页岩气储量:3528tcf/99.9万亿方 引:BP Statistical Review of World Energy, June 2008
A O/NA L B
A B L O/NA
Antrim (Michigan) Barnett (Texas) Lewis (New Mexico) Ohio/New Albany

页岩气藏普遍特点
有机含量丰富的页岩 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 和单井产量低 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂

页岩气储层岩石物理性质研究

页岩气储层岩石物理性质研究 学生:袁亚丽陈改杰蔡家琛李龙指导老师:樊振军 (数理学院) 【摘要】页岩气藏开采首先要对其进行评价,充分考虑其储层性质和开采能力。储层性质主要通过储层参数来描述,通过对相关参数的分析进一步评价储层的生产能力,制定相应的增产措施和开采方案。本实验以龙马溪组页岩为例,采用电阻率测试装置、YS-Hf岩电声波综合测试仪器等仪器对页岩气储层岩石的物理性质进行了测试,并分析总结页岩气储层物理参数对页岩气开采的指导意义,为提高我国页岩气岩石物理实验分析技术和研究水平,为我国页岩气勘探开发奠定坚实的基础。 【关键词】页岩气;电导率;横波;纵波;泊松比 【项目编号】2015AB061 【背景意义】页岩气藏开采首先要对其进行评价,充分考虑其储层性质和开采能力.储层性质主要通过储层参数来描述,通过对相关参数的分析评价储层的生产能力,制定相应的增产措施和开采方案。页岩气储层以纳米级孔隙为主的特性,使得页岩岩石物理基础实验及相关理论模型研究在页岩气储层测井评价中发挥举足轻重的作用。页岩气地质条件和形成机理完全不同于传统石油地质理论,国内外针对页岩气形成机理、富集规律和主控因素等尚未完全搞清。由于页岩储层低孔隙度、超低渗透率、以纳米级孔隙为主的特性,使得页岩气储层岩石物理基础实验及相关理论模型研究在页岩气储层评价中发挥重大的作用,而中国目前在这方面的研究尚处于起步阶段。因此,急需了解和借鉴国外相关实验技术和研究方法,提高我国页岩气岩石物理实验分析技术和研究水平,为我国页岩气勘探开发奠定坚实的基础。. 1.电阻率测井 页岩气储层识别所利用的常规测井方 法有: 自然伽马测井、声波时差测井、体密度测井、中子密度测井、岩性密度测井、电阻率测井、井径测井等[2],本实验采用电阻率的方法对页岩含有机质量进行了评价,有机质不导电,随 TOC含量增加电阻率增大。在测井中可采用电阻率测井对有机质含量进行评价。本实验采用电阻率测试装置对四川沙坝乡龙马溪组的页岩的电阻率进行了测试,数据如表1所示;天津蓟县页岩的数据如表2所示:

A油田某油层储层精细描述方法研究

A油田某油层储层精细描述方法研究 【摘要】本文在充分调研国内某油层描述方法的基础上,综合运用现代沉积理论,以岩心资料为依据,从油层对比、沉积环境、油水分布特征等方面对A 油田某油层进行研究,研究成果对于指导某油层射孔方案编制、油田开发方案制定具有较高的应用价值。 【关键词】某油层储层描述研究 1 前言 A油田某油层为浅水湖泊—三角洲相沉积,空气渗透率一般在0.1~1.5mD 之间,孔隙度在10%~16%之间,属于低孔、特低渗储层。为降低启动压力梯度,建立有效驱动体系,提高井网控制程度,试验区采用井距300m、排距80m的大规模压裂矩形井网线性注水方式;为使井网系统面积波及系数最大,驱替效率最高,试验区井排方向采用裂缝系统方向,即北东70°方向。为了搞清某油层地质特征,从油层对比、沉积环境和油水分布等方面开展了项目研究。 2 建立垂向细分对比标准 某油层目的层地层厚度约340m,垂向划分为四个油层组。经过分析,决定GR、RLLD、RLLS、微电极、AC测井曲线作为垂向细分对比和微相识别曲线(如图1,2)。 在各级基准面旋回识别的基础上,充分利用试验井测井曲线特征进行闭合对比,将某油层细分为52个沉积单元。 3 某油层沉积环境 3.1 建立测井相模式 通过对取芯井分析,三角洲前缘亚相主要为绿色、灰绿色泥岩沉积,岩性以泥岩、泥质粉砂岩为主,三角洲分流平原相主要为紫色、紫红色砂、泥沉积,岩性以粉砂岩、泥质粉砂岩为主,岩性较三角洲前缘沉积粗。在某油层主要选取了GR、AC,RMG、RMN曲线,同时配合深浅侧向曲线,建立微相研究的标准测井相模式。根据曲线形态、韵律性、发育厚度共建立主河道砂、分流河道砂、河间薄层砂、滨湖砂坝、河间泥五种微相类型。 3.2 分析沉积环境 根据离研究区最近的C井岩心柱状综合图,结合高分辨率层序地层学,从下至上,将某油层划分为3个中期基准面半旋回。整个Y油层一组是中期基准面上升半旋回,岩心中紫红色泥岩大量存在,植物化石少,说明水体很浅,干旱

储层精细划分

油田进入开发后期,进一步提高采收率、挖掘剩余油潜力的难度越来越大,必须 进行精细的地层划分、对比工作。建立在地震地层学、层序地层学基础之上的高分辨 率层序地层学1995 年引入我国油气勘探领域后,其地层划分与对比方法在油田开发 中得以应用并取得了很好的效果;20 世纪60 年代,我国的石油地质工作者依据陆相 盆地多级次震荡运动学说和湖平面变化原理,在大庆油田会战中创造出了适用于湖相 沉积储层精细描述的“旋回对比、分级控制、组为基础”的小层对比技术,80 年代 中期,在小层沉积相研究的基础上,又将这一方法进一步发展为“旋回对比、分级控 制、不同相带区别对待”的相控旋回等时对比技术[56-58],使之更加适用于湖盆中的河 流-三角洲沉积,这项技术以其精细性和实用性,成为我国陆相油田精细油藏描述的 技术基础,得到了广泛应用。高分辨率层序地层对比与大庆油田的相控旋回等时对比 技术,一种理论性强,一种实用性强,均属于地层学中的精细地层划分、对比技术, 有许多相似之处,也各有其优缺点。本章首先简要介绍了高分辨率层序地层学的基本 原理和大庆油田的相控旋回等时对比技术,然后对这两种方法的作了比较,最后综合 应用两种方法,对商河油田南部沙二段地层进行了划分与对比,建立了研究区沙二段 的精细等时地层格架。 3.1 高分辨率层序地层学基本原理 层序地层学作为地层划分与对比的方法广泛应用于油气勘探的各个阶段。层序地 层学已发展成三个不同的学派,即Exxon 沉积层序、Galloway 成因层序及Cross 高分辨率层序地层学,它们已成为层序研究的三种基本方法。其共性是都与事件地层学相 关联,并且都是基于岩石地层旋回性以及相对地层格架的测定。主要差别在于旋回之 间界面的确定。Galloway 成因地层学使用了最大海(湖)泛面,Exxon 沉积层序使用 了不整合面,而Cross 的高分辨率测序地层则采用地层基准面原理。Cross 的高分辨 率层序地层与Galloway 成因地层和Exxon 沉积层序之间的差别在于前者采用二分时 间单元(地层基准面旋回),而后者采用的是三分时间单元。这三种方法各有其优缺 点,只要弄清楚用的是哪一种方法,或是在同一研究中使用几种方法都是可以的[59] 。由美国科罗拉多区矿业学院Cross 教授提出的高分辨率层序地层学理论,是近年 来新掘起的层序地层学新学派[33]。该理论经邓宏文、徐怀大等传入我国后,在我国 第三章地层的精细划分与对比 24 陆相盆地储层预测研究中发挥着重要的作用[22,60],极大地提高了陆相盆地的储层预 测精度。高分辨率层序地层学是在现代层序地层学的基础上发展起来的,它所依据的 仍然是层序地层学的基本原理。它与盆地或区域规模的层序分析不同在于,它以露头、 岩心、测井和高分辨率地震反射剖面资料为基础,运用精细层序划分和对比技术,建 立油田乃至油藏级储层的成因地层对比骨架。这里所谓的“高分辨率”是指“对不同 级次地层基准面旋回进行划分和等时对比的高精度时间分辨率,也即高分辨率的时间 -地层单元既可应用于油气田勘探阶段长时间尺度的层序单元划分和等时对比,也适 合开发阶段短时间尺度的砂层组、砂层和单砂体层序单元划分和等时对比”[24]。 以郑荣才、邓宏文两位教授为代表的高分辨率层序地层专家将高分辨层序地层的 理论运用于我国含油气盆地储层预测的实践中,极大地丰富和发展了高分辨率层序地 层学理论。高分辨层序地层应用于陆相盆地层序分析中的关键技术之一是识别和划分 不同成因的界面与不同级次的基准面旋回[20-26]。郑荣才教授根据他在辽河、胜利、长庆、大庆及滇黔桂等油田的实践,将不同构造性质的湖盆在盆地构造-沉积演化序列 中的控制因素进行分类,根据界面成因特征提出了“巨旋回,超长周期旋回、长周期 旋回、中期旋回、短期旋回、超短期旋回”的划分方案,建立了各级次旋回的划分标

页岩气吸附解吸研究调研

国内部分 2009--上扬子区志留系页岩气成藏条件 王社教等,对四川盆地长芯1井120m处所取岩心开展了70℃的等温吸附实验,该样品为志留系龙马溪组黑色页岩,有机碳含量为5.9,成熟度为3.26%。在70℃等温条件下,随着压力增高,页岩吸附甲烷的能力逐渐增大,在压力达到8.5 MPa时,页岩的甲烷吸附能力达到l m3/t。推测成熟度过高是导致吸附能力较低的主要原因。 2010--四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析蒲泊伶等,在温度为40 ℃、湿度为1.68% ~ 2 .25%、甲烷浓度为99.999% 的实验条件下进行的等温吸附实验表明,龙马溪组页岩具有较强的吸附气体的能力。龙马溪组页岩的压力系数可达1.4~ 1.89,埋深大致为0~3000m,选定8. 28MPa 作为地层平均压力,在8.28 MPa下页岩的吸附气含量为1.12~ 1.74m3/ t,平均为1.28 m3/ t。将实测数据拟合后发现,页岩中吸附气含量与压力和有机碳含量呈正相关关系。

2010--页岩等温吸附异常初探 方俊华等,对9个下志留统龙马溪组的页岩样进行了等温吸附实验,采用美国Terra-Tek公司的等温吸附解析仪IS-100型,实验前页岩样经平衡水分处理,温度为30℃。将页岩样品破碎到小于6 0-8 0目(0.25 mm ),再进行筛分分析,以确定样品的粒径分布。页岩样的水分含量达到平衡,就分别将80~150g的样品密封在两个不同实验缸内。在压力点早期,以0.01s的间隔收集数据,而在压力点晚期,则以0. 1min的间隔收集,连续进行,至30min内压力变化小于要求值为止。逐渐加压至最终压力。 结果表明,压力在130896~1034kPa时,页岩吸附量达到最大值,随后,随着压力的增加,吸附量逐渐减少,等压力达到一定程度时,吸附量减少到负值,出现所谓的“倒吸附”现象。 倒吸附的原因:1、煤与页岩在粘土矿物含量等方面不同;2、煤与龙马澳黑色页岩中有机组分存在方式不同;3、CH4的超临界赋存。 建议:1、选用新鲜样品粉末进行等温吸附实验;2、确立页岩实验测试的最佳粒度;3、选取新参数作为评价依据。

泥页岩储层特征及油气藏描述

泥页岩储层特征及油气藏描述 1、页岩气地质理论 页岩气藏因其自身的有效基质孔隙度很低,主要由大范围发育的区域性裂缝或热裂解生气阶段异常高压在沿应力集中面、岩性接触过渡面、脆性薄弱面产生的裂缝提供成藏所需的储集孔隙度和渗透率,孔隙度最高仅为4%-5%,渗透率小于1x10-3μm2。 页岩在地层组成上多为暗色泥岩与浅色粉砂岩的薄互层。在页岩中,天然气的赋存状态多种多样,除极少量的溶解状态天然气以外,大部分以吸附状态赋存于岩石颗粒和有机质表面,或以游离状态赋存于孔隙、裂缝中。吸附状态天然气的赋存与有机质含量关系密切,其中吸附状态天然气的含量为20%-85%,其成藏体现出非常复杂的多机理递变特点,表现为成藏过程中的无运移或极短距离的有限运移,因此页岩气藏具有典型煤层气、典型常规圈闭气成藏的多重机理。 页岩气藏的形成是天然气在烃源岩中大规模滞留的结果,是“自生自储”式气藏,运移距离极短,现今保存状态基本上可以反映烃类运移时的状态,即天然气主要以游离相、吸附相和溶解相存在。在生物化学生气阶段,天然气首先吸附在有机质和岩石颗粒表面,饱和后则富余的天然气以游离相或溶解相进行运移,当达到热裂解生气阶段,由于压力升高,若页岩内部产生裂缝,则天然气以游离相为主向其中运移聚集,受周围致密页岩烃源岩层遮挡、圈闭,易形成工业性页岩气藏。由于扩散作用对气态烃的运移起到相当大的作用,天然气继续大量生成,将因生烃膨胀作用使富余的天然气向外扩散运移,此时无论是页岩地层本身还是薄互层分布的砂岩储层,均表现为普遍的饱含气性。 在陆相盆地中,湖沼相和三角洲相沉积产物一般是页岩气成藏的最好条件,但通常位于或接近盆地的沉降-沉积中心,导致页岩气的有利分布区集中于盆地中心处。从天然气的生成角度分析,生物气的产生需要厌氧环境,而热成因气的产生也需要较高的温度条件,因此靠近盆地中心方向是页岩气成藏的有利区域。 2、页岩气的主要特征 2.1页岩气的成因特征 页岩气的成因类型有生物成因型、热解成因型和热裂解成因3类型及其混合类型。对生物成因气而言,其源岩的热演化程度低,R o一般不到0.7%,所生成

页岩气储层测井解释

页岩气储层测井解释 1.页岩油气储层地质特征 (1)连续型油气聚集单元 页岩油气藏的形成和富集有着自身独特的特点,其分布在盆地内,沉积厚度大、分布范围广的页岩地层中,自生自储,页岩即是烃源岩,也做为储集层,与常规油气藏不同,没有油水界面、气水界面等流体界面概念,属于连续型油气聚集单元。 (2)岩石矿物组成复杂 页岩油气储层不只是指黑色页岩,一切富含有机质,且天然气以吸附态、游离态赋存于岩石中的致密细碎屑岩都可统称为页岩油气储层。页岩油气储层矿物组成十分复杂,主要有石英、方解石、粘土矿物、黄铁矿等,而且不同盆地页岩油气储层的矿物含量差别很大。根据矿物组成的不同,页岩油气储层大致可分为三类:一类是富含方解石的钙质页岩油气储层;另一类是富含石英的硅质页岩油气储层,以及符合粘土矿物的粘土质页岩油气储层。 (3)富含有机质,储集空间类型复杂 页岩油气储层既是储集层,又是烃源岩,富含有机质,储集空间类型复杂,主要孔隙类型以粒间孔隙和有机质成熟后热解生成的孔隙为主,部分储层还发育天然裂缝。 (4)基质渗透率极低 页岩油气储层物性极差,储层孔隙度一般小于10%,基质渗透率一般为 0.0001~0.001mD,渗透率极低,一般以长距离水平钻井结合多级压裂方式求产。 (5)游离与吸附态两种赋存方式 页岩气主要有游离态、吸附态两种赋存状态,游离气是以游离状态赋存于孔隙和微裂缝中的天然气;吸附气则是吸附于有机质和粘土矿物表面的天然气,以有机质吸附为主,粘土矿物吸附可以忽略。致密砂岩气则主要是游离气,煤层气主要是吸附气。 2.页岩油气储层测井评价 在页岩油气储量评估中,测井专业的主要任务可分为两个部分内容:一是储层的定性识别;二是储层参数的定量计算。在储层参数的定量计算中主要包括有机碳含量、有机质成熟度、孔隙度、饱和度以及吸附气含量等几个要点。 (1)页岩油气储层定性识别 页岩油气储层由于含有丰富的有机质,测井响应特征与常规储层有明显不同。通常情况下,干酪根形成于还原环境,可以使铀沉淀下来,从而具有高自然伽马放射性特征,干酪根的密度较低,介于0.95~1.05g/cm3之间。干酪根的存在大大降低了储层体积密度,干酪根还具有较高的含氢指数和较低的光电吸收指数,导致储层具有高中子孔隙度、低光电俘获截面特征。页岩油气储层中含烃饱

页岩气国内外研究现状

页岩气国内外研究现状 一、页岩气的定义 关于页岩气的定义,Curtis 认为页岩气可以是储存在天然裂隙和颗粒间孔隙中的游离气,也可以是干酪根和页岩颗粒表面的吸附气或者是干酪根和沥青质中的溶解气。中国地质大学张金川教授给出的定义是:主体位于暗色泥页岩或者高碳泥页岩中,以吸附和游离状态为主要存在方式的地层中的天然气聚集。 二、页岩气资源的地质特征 2.1 多相态存在于致密页岩中 页岩气是以有游离、吸附和溶解状态存在于暗色泥页岩中的天然气,其赋存形式具有多样性,但以游离态和吸附态为主,溶解态仅少量存在。从美国的情况看,游离气在20%~80%之间,吸附气在80%~20%之间,范围很宽,其中部分页岩气含少量溶解气。游离气主要存在于粒间空隙和天然裂隙中,吸附气则存在于基质表面。随着页岩气研究的不断深入,学者们开始认为吸附态页岩气至少占到总储量的一半。天然气在页岩中的生成、吸附与溶解逃离,如图1 所示,当吸附在基质表面的气量达到饱和后,富余的气体会解析进入基质孔隙,然后随着天然气的产出,裂隙内压力降低,基质内气体进入裂隙聚集后流出。 2.2 源岩层系 页岩系统包括富有机质页岩,富有机质页岩与粉砂岩、细砂岩夹层,粉砂岩、细砂岩夹富有机质页岩;页岩气形成于富有机质页岩,储存于富有机质页岩或一套与之密切相关的连续页岩组合中,不同盆地页岩气层组合类型不相同。即页岩气为源岩层系天然气聚集的一种,为天然气生成后,未排出源岩层系,滞留在源岩层系中形成的。源岩层系油气聚集除页岩气外,还包括煤层气、页岩油和油页

岩。 2.3 页岩气为连续型油气聚集 Curtis对页岩气(Shale gas)进行了界定,并认为页岩气在本质上就是连续生成的生物化学成因气、热成因气或两者的混合,它具有普遍的地层饱含气性、隐蔽聚集机理、多种岩性封闭和相对很短的运移距离,它可以在天然裂缝和孔隙中以游离方式存在,在干酪根和粘土颗粒表面上以吸附状态存在,甚至在干酪根和沥青质中以溶解状态存在。即页岩气为连续型气藏(图1)。 2.4 页岩气为源岩层系油气聚集 在页岩气藏中,天然气也存在于夹层状的粉砂岩、粉砂质泥岩、泥质粉砂岩,甚至砂岩地层中,为天然气生成之后在源岩层内就近聚集的结果,表现为典型的“原地”成藏模式。从某种意义来说,页岩气藏的形成是天然气在源岩中大规模滞留的结果。 中国页岩气藏与北美地区相比较有以下特殊性:( 1) 海相页岩热演化程度较高(Ro值为2. 5%~5. 0% ) 、构造活动较强,需寻找保存有利的地区,避开露头和断裂破坏区:( 2) 陆相页岩热演化程度较低、分布非均质性较强:( 3) 地面多山地、丘陵等复杂地表,埋藏较深(5000~7000m) 。所以在勘探开发过程要有针对性地采取合理措施开发我国页岩气。张金川等学者认为页岩气成藏模式介于煤层气和根缘气之间,表现为过渡特征,并将我国页岩气资源富集类型分为:南方型、北方型和西北型。

精细油藏描述规范

3 工作流程 以油田钻井资料、地震资料为基础,通过井点地层精细对比、井断点的落实及地震精细解释,建立三维构造精细模型;通过储层精细划分、井点夹层描述、储层参数测井精细解释及取心井资料研究,建立三维储层精细模型(包括沉积相模型);开展模型合理粗化方法研究,把精细地质模型不失真的输入到数值模拟软件,并通过快速历史拟合,对模型进行验证,反馈信息,进一步修改完善地质模型。最终实现油藏的高精度拟合,并把数值模拟成果输出,进行各种剩余油指标的定量计算、统计分析,寻找剩余油潜力,结合油田开发状况分析及开发效果评价,制定合理、高效的油田开发调整及挖潜方案。同时实现油藏地质模型和数值模拟模型的资源共享,初步建立“数字油藏”。油藏描述工作流程见图1: 图1 精细油藏描述工作流程 4 精细油藏描述的基础资料 4.1 基础地质资料 4.1.1 地震资料:二维、三维地震资料。 4.1.2 钻井资料:工区内所有的探井、开发井、取心井,包括井别、井位坐标、

补心高、补心海拔、完钻井深、完钻层位、靶点坐标等信息。 4.1.3 测井资料:用于地层对比划分的常规测井曲线及相应的测井曲线数字带,特殊测井(核磁测井、成像测井等)曲线及数字带。 4.1.4 井斜资料:包括斜井、侧钻井、水平井的数字化井轨迹数据。 4.2 开发动态资料 4.2.1 开发数据:油田、开发单元及单井的开发数据,包括油水井月数据、油田开发月综合数据;井史资料(射孔、封堵、措施等数据)。 4.2.2 动态监测资料:包括动静液面、压力、试井、产液、吸水剖面,C/O测井、剩余油饱和度测井等监测资料。 4.3 开发实验资料 4.3.1 取心井资料:常规岩心分析、岩石薄片、扫描电镜、X衍射粘土矿物分析、X衍射全岩矿物分析、润湿性、敏感性、毛管压力、相对渗透率曲线等资料。 4.3.2 高压物性资料:包括油、气、水的高压物性数据(溶解油气比、地下原油密度、粘度、原油体积系数、压缩系数、天然气组份、体积系数等)。 4.3.3 原油性质数据:地面原油密度、粘度,不同含水时期、不同深度、平面不同部位原油性质变化数据。 4.3.4 油田水性质数据:主要包括矿化度和水型,不同含水时期的水型及水质变化数据。 4.3.5 天然气性质:气的类型(溶解气、气顶气和纯天然气)、气的主要成份、气密度等数据。 4.4 已有成果资料 以前开展研究的成果:包括文字报告、图件、表格及数据库等。 4.5 资料核实与修正 数据存在常规性错误,或数据之间存在着逻辑错误在所难免,为使研究成果更加准确、可靠,必须对数据进行检查与修正,减少数据的出错率,提高基础数据质量。如主要在以下几个方面进行数据校验: ◆数据的唯一性和一致性检查; ◆同一层的顶底面关系,顶面深度应小于或等于底面深度; ◆上下层之间的顶底面关系,上一层的底面深度应小于或等于下一层顶面深度;

储层描述工作内容及成果

储层描述工作内容及成果 一、储层描述工作内容 储层描述是油气藏开发过程中地质研究的一项重要内容,是编制油气藏开发方案的地质基础。其主要工作内容有如下几个方面: 1、储层细分与对比 制定储层细分与对比原则,确定对比标志层及对比方法、步骤,划分出合理的细分与对比单元。 2、储层产状描述 按不同区块分油层组、砂岩组、小层及单砂体,描述其储层顶、底埋藏深度,砂 ( 砾)层厚度,有效厚度,砂 ( 砾)层层数,砂 ( 砾)层形状及纵、横向的分布及变化。 3、储层岩性描述 主要包括岩矿组分、岩石结构、岩石分类及命名 4、沉积相描述 主要包括:取心井单井微相研究、平面微相研究、沉积微相模式及微相综合评价。 5、储层物性描述 5.1 储层物性参数确定依据 储层物性参数研究应以取心资料为基础,采用岩心刻度测井技术,利用标准化后的测井资料,建立研究区主要储层物性参数的测井解释模型,通过多井测井解释,提供高精度储层物性参数。 5.2 有效孔隙度

5.2.1 对裂缝性储集层应确定裂缝 ( 或溶孔、溶洞)孔隙度和基质孔隙度。 5.2.2单层中岩性相同的小段,当胶结程度也相同时,用算术平均法求得该岩性段的有效孔隙度;岩性相同的小段,当胶结程度不同时,用各胶结程度的小段有效厚度加权求得该岩性段的有效孔隙度。一个层组的有效孔隙度平均值用该层组内不同岩性段的有效厚度加权求得。 5.2.3如果各井或各井的同一层组的有效孔隙度值悬殊不大,且平面上井点分布比较均匀,则用算术平均法求得一个区块的有效孔隙度平均值。否则,必须用单井控制的有效孔隙体积加权求得。 5.2.4研究储集层孔隙压缩规律,并将地面孔隙度校正为地下孔隙度。 5.2.5 描述有效孔隙度与储集层岩性的关系,确定和评价各类岩性储集层工业油流的有效孔隙度下限值。 5.3渗透率 5.3.1 适量选取有代表性的岩心做垂直渗透率分析,并确定垂直渗透率与水平渗透率关系。 5.3.2 有效渗透率数据通过试井资料计算求得,描述测井解释渗透率与试井求得的有效渗透率两者之间的关系。 5.3.3 分井、分层、分岩性段的渗透率平均值计算方法按5. 2 . 2执行。 5.3.4一个区块的渗透率平均值,一般用调和平均方法求

石盘铺向斜页岩气储层特征浅析

云南化工Yunnan Chemical Technology Apr.2018 Vol.45,No.4 2018年4月第45卷第4期 页岩气主要是指呈吸附和游离状态储存于富有机质的泥页岩及夹层(储集岩系)中的非常规天然气。其成分以甲烷为主(甲烷含量96%~98%,氮气、二氧化碳含量少,不含硫化氢),是一种清洁、高效的能源,具有较高的工业经济价值。四川盆地是我国页岩气主要探区之一,中石油、中石化等先后在其中钻获了商业性页岩气产能。 1 工区勘探概况 荣昌-永川探区是中石化股份西南油气分公司(简称分公司)登记区块,石盘铺向斜位于该区块西北,行政隶属重庆市荣昌区。为了加快该区页岩气勘探步伐,2013年开始分公司在该区部署以志留系龙马溪组页岩层系为主要目的层的预探井-永页1井,该井2014年11月开钻,2015年5月完钻;同年8月又实施了水平井-永页1HF井,2015年11月完钻;12月对该井水平段进行23段大型压裂施工,试获气产量14.12×104m3/d,天然气无阻流量20.93×104m3/d,实现了该区页岩气勘探工作的突破[1]。 截止2017年底,该区共完成17口钻井,已取得阶段性的勘探成果。 2 局部构造简况 探区内新店子构造带(局部构造)为北东向的长轴背斜,整体表现为“两凹夹一隆”的构造格局,自北西往南东分别发育石盘铺向斜、新店子背斜、方家沟向斜。 石盘铺向斜位于新店子构造带西北翼,为北东走向的宽缓向斜,地层倾角0.2~4.7°;主体构造完整,无大断层破坏,油气保存条件良好。 3 页岩储层特征 永川探区页岩层系主要发育在志留系下统龙马溪组~奥陶系上统五峰组(简称本组),而优质页岩(气)储层则发育在龙马溪组一段(S1l1)~五峰组(O3w)(简称本段)。根据测、录井资料,一般将本段页岩自上往下划分为9段,依次编为⑨~①号小层,属于富含有机质页岩;其中⑦~①号小层气显示较好,属于优质页岩。 永页2井是分公司在石盘铺向斜部署的一口预探井,以龙马溪组一段~五峰组优质页岩层段为主要目的层。下面选取本井为代表,从八个方面重点论述石盘铺向斜本段(4014.50~4098.00m)页岩储层特征。3.1 分布特征 本井在本组钻遇储层(页岩气显示层)4层,主要分布在该组下部。单层厚度最大41.00m,最小3.00m,储层累厚80.00m,占本段钻厚的95.81%,占地层钻厚的21.92%,表明本段页岩气储层发育,厚度大。 3.2 岩性特征 储层主要为灰黑、黑色(含灰质)页岩,夹薄层(0.10m)深灰色泥晶生物灰岩[2]。 龙一段页岩:灰黑色为主,深灰色少量;微含粉砂及钙质;页理较发育;性较硬、脆。五峰组页岩:黑色;质纯;页理发育;性脆。 泥晶生物灰岩:深灰色。成分为方解石90%,泥质10%。泥晶生物结构:其中生物45%,岩心断面发育丰富的赫南特贝化石;生物碎屑5%,破碎;基质50%,成分为泥晶方解石。性硬且脆,致密。这是上奥陶统的区域标志层-观音桥灰岩段。 本组钻井取心6回次,岩心总长89.00m(本段为全取心),薄片鉴定成果总体反映:自上往下页岩颜色逐渐加深:由深灰色变为黑色;页岩有机质含量、脆性矿物含量逐渐增大。 3.3 电性特征 自然伽马(GR)平均测值123.5~186.7API;侧向深、浅电阻率(RD、RS)均值分别为14.6~56.6Ω.m、12.3~57.7Ω.m;补偿声波时差(AC)均值65.9~80.0μs/ ft,补偿中子(CNL)均值14.4~25.3%,补偿密度(DEN)均值2.49~2.68g/cm3。 测井曲线特征反映了本段页岩自然伽马相对高值,有机质较丰富,电阻率相对上段增大,声波时差、中子明显增大(本井优质页岩段中子读值与普通泥岩相比,稍微偏低),密度明显减小[3]。页岩气储层品质呈现自上往下逐渐变好的特征。 3.4 物性特征 实验分析:根据检测报告,岩心孔隙度介于1.79~ 7.75%,平均4.22%。 测井计算:有效孔隙度(POR)3.4~6.0%,绝对渗透率(PERM)(0.02~0.56)×10-3μm2,含水饱和度(SW)12.5~38.9%,可见微孔隙较发育给游离气提供了足够的储集空间。 以上反映本段页岩物性条件较好。 3.5 孔洞缝特征 钻井取心表明,本段裂缝总体欠发育,局部较发育。岩心观察:裂缝发育306条,平均密度3.44条/m,全 doi:10.3969/j.issn.1004-275X.2018.04.160 石盘铺向斜页岩气储层特征浅析 单 晖 (中石化西南石油工程有限公司地质录井分公司,四川 绵阳 621000) 摘 要:以永页2井为例,利用现场录井资料、测井解释成果及实验资料等,从储层分布、岩性、电性、物性、孔洞缝、总有机碳、含气水性、脆性等方面,针对石盘铺向斜优质页岩(气)储层特征进行了较全面的分析、总结及综合评价,建议“龙一段底部③底+②号小层”作为本构造区页岩气钻井(水平井)的目的层。 关键词:石盘铺向斜;龙一段;页岩气;储层特征 中图分类号:P618.13 文献标识码:B 文章编号:1004-275X(2018)04-201-02 ·201·

相关主题
文本预览
相关文档 最新文档