当前位置:文档之家› 大尺寸蓝宝石晶体制备技术及其生长装置

大尺寸蓝宝石晶体制备技术及其生长装置

大尺寸蓝宝石晶体制备技术及其生长装置
大尺寸蓝宝石晶体制备技术及其生长装置

Bridgman的晶体生长技术

Bridgman的晶体生长技术

Bridgman的晶体生长技术 1.Bridgeman法晶体生长技术简介 Bridgman法是由Bridgman于1925年提出的。传统Bridgman法晶体生长的基本原理如图.1所示。将晶体生长的原料装入合适的容器中,在具有单向温度梯度的Bridgman长晶炉内进行生长。Bridgman长晶炉通常采用管式结构,并分为3个区域,即加热区、梯度区和冷却区。加热区的温度高于晶体的熔点,冷却区低于晶体熔点,梯度区的温度逐渐由加热区温度过渡到冷却区温度,形成一维的温度梯度。首先将坩埚置于加热区进行熔化,并在一定的过热度下恒温一段时间,获得均匀的过热熔体。然后通过炉体的运动或坩埚的移动使坩埚由加热区穿过梯度区向冷却区运动。坩埚进入梯度区后熔体发生定向冷却,首先达到低于熔点温度的部分发生结晶,并随着坩埚的连续运动而冷却,结晶界面沿着与其运动相反的方向定向生长,实现晶体生长过程的连续进行。 图1Bridgman法晶体生长的基本原理 (a)基本结构;(b)温度分布。 图1.所示坩埚轴线与重力场方向平行,高温区在上方,低温区在下方,坩埚从上向下移动,实现晶体生长。该方法是最常见的Bridgman法,称为垂直Bridgman法。除此之外,另一种应用较为普遍的是的水平Bridgman法其温度梯度(坩埚轴线)方向垂直于重力场。垂直

Bridgman法利于获得圆周方向对称的温度场和对流模式,从而使所生长的晶体具有轴对称的性质;而水平Bridgman法的控制系统相对简单,并能够在结晶界面前沿获得较强的对流,进行晶体生长行为控制。同时,水平Bridgman法还有利于控制炉膛与坩埚之间的对流换热,获得更高的温度梯度。此外,也有人采用坩埚轴线与重力场成一定角度的倾斜Bridgman法进行晶体生长。而垂直Bridgman法也可采用从上向下生长的方式。 2.Bridgman法的结构组成 典型垂直Bridgman法晶体生长设备包括执行单元和控制单元。其中执行单元的结构,由炉体、机械传动系统和支撑结构3个部分构成。炉体部分采用管式炉,通过多温区的结构设计实现一维的温度分布,获得晶体生长的温度场。生长晶体的坩埚通过一个支撑杆放置在炉膛内的一维温度场中,如图1所示。机械传动部分包括电机和减速机构。减速机构将电机的转动转换为平移运动,控制坩埚与温度场的相对运动。可以采取控制炉体的上升或坩埚的下降两种方式实现晶体生长速率的控制。通常Bridgman生长设备还包括坩埚旋转机构,通过另外一个电机驱动坩埚支撑杆转动,控制坩埚在炉膛内按照设定的方式和速率转动,进行温度场和对流控制。支撑结构提供一个稳定的平台,用于固定炉体和机械传动系统,实现其相对定位。在支撑结构中设计位置调节结构和减震结构,保证晶体生长速率的稳定性。控制单元包括温度控制和机械传动控制。温度控制主要进行不同加热段加热功率的调节,形成恒定的温度场。通常通过热电偶等测温元件提供温度信息,进行实时控制。机械传动控制部分进行电机转速控制,从而实现坩埚或炉体移动速度的控制,以及坩埚的旋转。 3.坩埚的选材与结构设计 坩埚是直接与所生长的晶体及其熔体接触的,并且对晶体生长过程的传热特性具有重要的影响。因此,坩埚材料的选择是晶体生长过程能否实现以及晶体结晶质量优劣的控制因素之一。坩埚材料的选择是由所生长的晶体及其在熔融状态下的性质决定的。对于给定的晶体材料,所选坩埚材料应该满足以下物理化学性质: (1)有较高的化学稳定性,不与晶体或熔体发生化学反应。 (2)具有足够高的纯度,不会在晶体生长过程中释放出对晶体有害的杂质、污染晶体材料,或与晶体发生粘连。 (3)具有较高的熔点和高温强度,在晶体生长温度下仍保持足够高的强度,并且在高温下不会发生分解、氧化等。 (4)具有一定的导热能力,便于在加热区对熔体加热或在冷却区进行晶体的冷却。

晶体生长方法

晶体生长方法 一、提拉法 晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 二、热交换法

热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。 三、坩埚下降法 坩埚下降法又称为布里奇曼-斯托克巴格法,是从熔体中生长晶体的一种方法。通常坩埚在结晶炉中下降,通过温度梯度较大的区域时,熔体在坩埚中,自下而上结晶为整块晶体。这个过程也可用结晶炉沿着坩埚上升方式完成。与提拉法比较该方法可采用全封闭或半封闭的坩埚,成分容易控制;由于该法生长的晶体留在坩埚中,因而适于生长大块晶体,也可以一炉同时生长几块晶体。另外由于工艺条件

蓝宝石生长方法

一、蓝宝石生长 1.1 蓝宝石生长方法 1.1.1 焰熔法Verneuil (flame fusion) 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil) 和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末 与重铬酸钾而制成了当时轰动一时的“ 日内瓦红宝石”。后 来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil) 改进并发展这一技术使之能进行商业化生产。因此,这种方 法又被称为维尔纳叶法。 1)基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在 通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在种 晶上固结逐渐生长形成晶体。 2)合成装置与条件、过程 焰熔法的粗略的说是利用氢及氧气在燃烧过程中产生 高温,使一种疏松的原料粉末通过氢氧焰撒下焰融,并落在 一个冷却的结晶杆上结成单晶。下图是焰熔生长原料及设备 简图。这个方法可以简述如下。图中锤打机构的小锤7按一 定频率敲打料筒,产生振动,使料筒中疏松的粉料不断通过 筛网6,同时,由进气口送进的氧气,也帮助往下送粉料。 氢经入口流进,在喷口和氧气一起混合燃烧。粉料在经过高温火焰被熔融而落在一个温度较低的结晶杆2上结成晶体了。炉体4设有观察窗。可由望远镜8观看结晶状况。为保持晶体的结晶层在炉内先后维持同一水平,在生长较长晶体的结晶过程中,同时设置下降机构1,把结晶杆2缓缓下移。 焰熔法合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉中进行的。 A.供料系统 原料:成分因合成品的不同而变化。原料的粉末经过充分拌匀,放入料筒。如果合成红宝石,则需要Al2O 粉末和少量的 Cr2O3参杂,Cr2O3用作致色剂,添加量为 1-3%。三氧化 3 二铝可由铝铵矾加热获得。料筒:圆筒,用来装原料,底部有筛孔。料筒中部贯通有

单晶材料生长方法

单晶薄膜制备方法 薄膜材料相对于块体材料来说,可以应用较小的原料而达到相应的性能要求;而且薄膜材料还具有许多优异的性能,使薄膜材料能够满足现在大型集成电路以及各种功能器件的要求,使器件向小型化、轻便化方向发展。单晶薄膜由于膜层内部缺陷少、而且具有一定尺度的膜层具有一定的量子限域效应,电子在其内部运动时会有许多独特的状态和方式,从而产生更优的性能,具有极其重要的应用价值和应用前景。鉴于单晶薄膜的种种优势,人们对其的研究也进行了许多年,各种单晶薄膜的制备技术被相继开发出来,当前生长和制备单晶薄膜的主要方法有:分子束外延(MBE)、金属有机物化学气相沉积(MOCVD)、脉冲激光沉积(PLD)、电子束沉积(EBD)和原子束沉积法(ABD)等。 一、分子束外延(MBE) 分子束外延是一种在超高真空条件下,将原料通过热蒸发等方式气化升华,并运动致衬底表面沉积形成薄膜的的方法。配合仪器自带的原位分析仪器(如RHEED等)可以精确控制膜层的成分和相结构。分子束外延存在生长膜层速度太慢的缺点,每秒钟大约生长一个原子层厚度,但可以精确控制膜层厚度。David 等【1】运用等离子体增强的分子束外延(PEMBE)方法直接在SiC衬底上制备了具有纤锌矿结构的、膜层质量较好的GaN单晶薄膜。由于GaN与SiC存在较大的晶格失配,以往的研究往往是预先在SiC表面制备AlN缓冲层,来减小晶格失配,得到单晶GaN膜层。生长过程中引入等离子体大大降低了由于晶格失配而极易出现的堆垛缺陷浓度,使得膜层质量有较大改善。Yefan Chen等【2】同样运用PEMBE在蓝宝石衬底上制备了单晶ZnO膜层,RHEED模式照片显示ZnO在蓝宝石衬底表面的外延生长是逐渐由二维生长转变为三维岛状模式生长的;且XRD分析表明ZnO沿(0001)方向择优生长;PL谱分析显示ZnO膜层内部的污染和本征缺陷浓度较低,晶体质量较好。 二、金属有机物化学气相沉积(MOCVD) 金属有机物化学气相沉积(MOCVD)主要用于Ⅱ—Ⅵ族和Ⅲ—Ⅴ族化合物半导体薄膜的制备,它是运用载气将金属有机化合物气体输运至衬底处,金属有机化合物在输运过程中发生热分解反应,在衬底表面发生反应并沉积形成薄膜的技术。该法具有沉积温度低、对衬底取向要求低、沉积过程中不存在刻蚀反应、可

蓝宝石晶体生长技术回顾

蓝宝石晶体生长技术回顾 (2011-07-12 15:21:18) 转载 分类:蓝宝石晶体 标签: 蓝宝石 晶体生长 技术 历史 杂文 杂谈 引言 不少群众提出意见,博主说了这多不行的,能不能告诉广大投身蓝宝石长晶事业的什么设备行?说实话,这真的是为难我了!怎么讲?举个例子吧,Ky技术设备在Mono手里还真的是Ky,但到了你手里可能就是YY了。 可能你觉得受打击了,可是没有办法啊,事实如此啊,实话听 起来往往比较刺耳!本博主前面发表的《从缺陷的角度谈谈蓝宝石生长方向的选择》博文,迄今为止只有寥寥无几群众真正看出精髓所在..................................不服气群众可以留言谈谈自己了解了什么? 古人云“博古通今”、“温故知新”,我觉得很有道理,技术之道也是如此。如果没有对以往技术的熟练掌握、熟知精髓所在,没有

对以往技术的总结提炼,你就不可能对一个新技术真正的掌握。任何新技术新设备到你手里,充其量你只是一个熟练操作工而已。 还觉得不信的话,我就在这篇博文里用大家认为最古老的火焰法宝石生长的经验理论总结来给大家进行目前流行的衬底级蓝宝石晶体生长进行理论指导。 蓝宝石晶体生长技术简介

焰熔法(flame fusion technique)&维尔纳叶法(Verneuil technique) 1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳叶法。 弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)这几个哥们实际上就是做假珠宝的,一群有创新精神的专业人士。 博主对两类造假者比较佩服,一类是以人造珠宝以假乱真的,一类是造假文物的。首先、他们具有很高的专业素养;其次、他们也无关民生大计;还有利于社会财富的再分配。 至于火焰法简单的描述我就不啰嗦了,我讲讲一些你所不知道的火焰法长宝石的一些前人总结;这些总结和经验对今天的任何一种新方法长蓝宝石单晶都是有借鉴意义的。 100多年来火焰法工作者在气泡、微散射,晶体应力和晶体生长方向的关系,晶体生长方向与缺陷、成品率之间的关系做了大量的数据总结,可以讲在各个宝石生长方法中研究数据是最完备的。在这篇博文里我只讲讲个人认为对其他方法有借鉴意义的一些总结。

单晶制备方法综述

单晶材料的制备方法综述 前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。单晶整个晶格是连续的,具有重要的工业应用。因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。本文主要对单晶材料制备的几种常见的方法进行介绍和总结。 单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。 一、从熔体中生长单晶体 从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。二者速率的差异在10-1000倍。从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。 1、焰熔法[2] 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(V erneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳也法。 1.1 基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。 1.2 合成装置和过程: 维尔纳叶法合成装置

振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。此方法主要用于制备宝石等晶体。 2、提拉法[2] 提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。它是控制晶体形状的提拉法,即直接从熔体中拉制出具有各种截面形状晶体的生长技术。它不仅免除了工业生产中对人造晶体所带来的繁重的机械加工,还有效的节约了原料,降低了生产成本。 2.1、提拉法的基本原理 提拉法是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。 2.2、合成装置和过程 提拉法装置 首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,在不断提拉和旋转过程中,生长出圆柱状晶体。 在提拉法制备单晶时,还有几种重要的技术:(1)、晶体直径的自动控制技术:上称重和下称重;(2)、液封提拉技术,用于制备易挥发的物质;(3)、导模技术。

SiC晶体生长工艺装备

SiC晶体生长工艺装备 一、SiC晶体生长工艺装备发展现状 由于SiC具有宽带隙、高临界击穿电场、高热导率、高载流子饱和浓度、化学性能稳定、高硬度、抗磨损等特点,使得它在军用和航天领域的高温、高频、大功率光电器件方面具有优越的应用价值。具体来看,其导热性能是Si材料的3倍以上;在相同反压下,SiC材料的击穿电场强度比Si高10倍,而内阻仅是Si片的百分之一。SiC器件的工作温度可以达到600℃,而一般的Si器件最多能坚持到150℃。因为这些特性,SiC可以用来制造各种耐高温的高频大功率器件,应用于Si器件难以胜任的场合。 目前SIC半导体材料发展十分迅速,总的发展趋势是晶体大直径、大尺寸化,向高纯无缺陷发展。6H和4H单晶片实现了商品化,3英寸(直径≥76.2mm)是主流产品,4英寸也有少量供应。4H-SiC 上的微管缺陷密度显著减小,n型4H-SiC的极低微管缺陷晶片上微管密度可接近0cm-2。 SiC材料的生长需要特殊的工艺装备。目前这些工艺装备的技术主要掌握在美日欧三方手中。这些发达国家和地区已对SiC 生长设备进行了持续的研究,积累了宝贵的经验。特别是美国,技术最成熟,凭借着先进的技术,不断研制基于SiC基的新军事电子产品,目前在航空、航天、军舰、卫星、深海等方面都得到了实际的应用,得以使其继续在全球军事电子领域保持领先地位。欧盟和日本也紧随其后,投入大量的人力和财力进行追赶。

美国Cree公司是世界上能够商业化提供SiC 产品最大的公司,占全球市场90%以上,其在工艺装备方面的技术先进、成熟稳定,领先世界水平,但受政策影响,技术处于绝对保密之中。 欧洲SiC晶体生长工艺装备的设备制造商集中在德国、瑞典和英国,目前主要生产以3“直径为主的工艺装备,但为了追赶世界先进水平,已开始进行4” SiC晶圆工艺装备的研发。 无论是美国、欧洲还是日本,其晶体生长工艺装备都是军方在三代半导体方面要重点发展的方向之一,长期得到国家的支持和投入,如美国海军、陆军、空军、美国国家航空航天局(NASA )、弹道导弹防卫局和国防预研局、几乎美国国防部所有部门都将SiC技术研究列入了各自军事系统发展规划。其中SiC晶体生长工艺装备是重要的组成部分,美军正是凭借其在碳化硅装备方面的强大实力,在军事电子方面继续拉大与其他国家的距离。 国内碳化硅研究始于2000年前后,基本都是在Si晶圆研究的基础上进行一些理论性的研究,工艺装备也是在原有的Si晶圆的工艺装备基础上进行了部分改造,研究进展缓慢,装备的缺乏已成为国内SiC项目研究的瓶径。近些年有些研究机构通过各种渠道引进了部分国外发达国家的工艺装备,但价格高昂,所引进设备的技术也不属于前沿技术,并且在引进过程中,对引进单位也有条款上的种种制约,限制了SiC项目在国内的研究。尽管起步早,但目前研究水平还处于初级阶段。 总之,国内SIC项目的研究以进口晶片为主,昂贵的晶片价格,

蓝宝石晶体生长工艺研究

蓝宝石晶体生长工艺研究 【摘要】蓝宝石晶体具有硬度大、熔点高、物理化学性质稳定的特点,是优质光功能材料和氧化物衬底材料,广泛用于电子技术,军事、通信、医学等国防民用, 科学技术等领域。自19 世纪末, 法国化学家维尔纳叶采用焰熔法获得了蓝宝石晶体后,人工生长蓝宝石工艺不断发展, 除了焰熔法外还有冷坩埚法、泡生法、温度梯度法、提拉法、热交换法、水平结晶法、弧熔法、升华法、导模法、坩埚下降法等。本文主要对应用较为广泛的焰熔法、提拉法、泡生法、热交换法、导模法、下降法、等生长工艺进行论述。 【关键词】蓝宝石晶体晶体生长工艺研究蓝宝石晶体的化学成分是氧化铝(a -AI2O3 ),熔点高达2050C,沸点3500C,硬度仅次于金刚石为莫氏硬度9,是一种重要的技术晶体。蓝宝石晶体在光学性能、机械性能和物理化学性质方面表现出了优异性能,因此被各行业广泛应用,同时随着现代科学技术的发展,对蓝宝石晶体的质量要求也不断提升,这就对蓝宝石晶体生长工艺提出了新的挑战。 焰熔法。确切来讲焰熔法是由弗雷米、弗尔、乌泽在

1885 年发明的,后来法国化学家维尔纳叶改进、发 展并投入生产使用。焰熔法是以Al2O3 粉末为原 料,置于设备上部,原料在撒落过程中通过氢及氧气 在燃烧过程中产生的高温火焰,熔化,继续下落,落 在设备下方的籽晶顶端,逐渐生长成晶体。焰熔法生 产设备主要有料筒、锤打机构、筛网、混合室、氢气 管、氧气管、炉体、结晶杆、下降机构、旋转平台等 组成。锤打机构使料筒振动,与筛网合作使粉料少 量、等量或周期性的下落;氧气与粉末一同下降、氢气与氧气混合燃烧;在炉体设有观察窗口可通过望远镜查看结晶状况,下降机构控制结晶杆的移动,旋转平台为晶体生长平台,下方置以保温炉。焰熔法具有生长速度快、设备简单、产量大的优点,但是生产出的晶体缺陷较多,适用于对蓝宝石质量要求不高的晶体生产。 提拉法。提拉法能够顺利地生长某些易挥发的化合物,应用较为广泛。提拉法工艺:将原料装入坩埚中熔化为熔体,籽晶放入坩埚上方的提拉杆籽晶夹具中,降低提拉杆使籽晶插入熔体中,在合适的温度下籽晶不会熔掉也不会长大,然后转动和提升晶体,当加热功率降低时籽晶就会生长,通过对加热功率的调节和提升杠杆的转动即可使籽晶生长成所需的晶体。

蓝宝石应力

蓝宝石应力 1. 概述 在晶体生长过程中晶体内存在的应力将引起应变,当应变超过了晶体材料本身塑性形变的屈服极限时,晶体将发生开裂。一般来说,根据晶体内应力的形成原因,可将其分为三类:热应力,化学应力和结构应力。 1.1热应力 蓝宝石晶体在从结晶温度冷却至室温过程中并不发生相结构的转变,因此,晶体内应力主要是由温度梯度引起的热应力。晶体热应力正比于晶体内的温度梯度、晶体热膨胀系数及晶体直径。最大热应力总是出现在籽晶与新生晶体的界面区域,较大热应力一般出现在结晶界面、放肩、收尾及直径发生突变的部位,在等径部位热应力相对较小。 1.2结构应力 由特定材料构建成的一个功能性物体叫做结构,在结构的材料内部纤维受到结构自身重力或者外界作用力下,纤维会产生变形,这种变形的能量来自于材料所受的应力,这种应力就叫结构应力。 2. 产生因素 晶体全开裂主要与晶体的生长速率和冷却速率有关,生长速率或冷却速率过快,必将使晶体整体的热应力过大。当热应力值超过屈服应力时,裂纹大量萌生,不断扩展,相互交织造成晶体整体碎裂,具有此种裂纹的晶体已失去使用价值,应当严格避免。通过相关理论分析和多次实验证明,采用匀速的降温程序,降温速率控制在1.5~3.0 K/h的范围

内,晶体生长速率为1.0~5.0 mm/h;依据蓝宝石晶体退火工艺,晶体强度与温度的变化关系,在10~30 K/h范围内设计晶体的冷却程序,完成晶体的退火和冷却。此晶体生长速率及冷却程序,可使晶体的整体碎裂得到有效控制。 在晶体生长中时常发现在晶体的引晶、放肩及晶体直径突变等部位发生裂纹萌生,并沿特定的晶面扩展。具有该种裂纹的晶体虽然仍可利用,但会使器件的尺寸受到一定的限制,降低晶体坯料的利用率,故应尽力避免。 此种裂纹的形成与泡生法晶体生长控制工艺密切相关。在晶体生长的引晶和放肩阶段主要是通过调节热交换器的散热能力来控制晶体生长,在籽晶和新生晶体的界面区域,受热交换器工作流体温度的影响较显著,温度梯度较大。同时,在此阶段需不断的调整晶体的生长 状态,造成此位置晶体外形不规则以及较高的缺陷浓度等都极易引起应力集中,裂纹萌生的机率也相对较大。在后续实验中,本实验室采用加长籽晶杆长度,增加温度梯度过渡区长度和恒定热交换器工作流体温度等措施来控制该区域的裂纹萌生,并取得了较好的效果。 3. 检测方法 检测工具为应力仪。 台式应力仪:S-18应力测试仪应用范围广泛。该仪器可以从水平或垂直角度,对玻璃和塑料配件进行检测,大多运用于品控。S-18有足够大的使用空间供各种产品进行测量。测量过程中,主要通过手持被测物体在偏光下进行观察测量。 标准配置的S-18包括一个光源,一个装有四分之一波盘的分析器和另一个装有四分之一波盘的偏光装置。S-18应力仪中已经置入了一块全波盘。 S-18应力测试仪使用时要垂直放置。机身上有2对橡胶脚垫减震器,便于从水平或垂直方向操作。 应力仪功能的优越点 应力仪是一种无损检测应力情况的机器,便于人们在生产国产中更直观的判别样品的应力情况。做好分析应力的情况,更好的改进生产工艺,做出更好的产品。 应力仪的操作简便易学,机器性能一般可以稳定维持3-5年。

蓝宝石晶体材料应用及市场需求分析

蓝宝石晶体材料应用及市场需求分析 蓝宝石晶体材料是蓝宝石单晶体的原材料,是生产LED衬底、蓝宝石视窗等产业的上游产业,因此可分析其下游产业趋势来确定其市场需求。 据预计,未来LED蓝宝石衬底市场需求量年增速超过30%,蓝宝石视窗则受益于新机型屏幕升级和智能穿戴设备的潜在高速增长,全球性的蓝宝石经济即将到来。 LED市场对蓝宝石晶体材料的需求分析 图1 蓝宝石材料的应用及趋势 1)LED衬底 LED是一种节能环保、寿命长和多用途的光源,其能量转换效率大大高于白炽灯和节能灯。衬底材料是半导体照明产业技术发展的基石,不同的衬底材料,需要不同的外延生长技术、芯片加工技术和器件封装技术,衬底材料决定了半导体照明技术的发展路线。 衬底材料的选择取决于很多条件,目前只能通过外延生长技术的变更和器件加工工艺的调整来适应不同衬底上的半导体发光器件的

研发和生产。目前能用于生产的衬底只有三种,即蓝宝石Al2O3衬底和碳化硅SiC衬底以及Si衬底等。蓝宝石的性价比不断提升将成为LED上游衬底材料的最优选择。 由图1所示,LED衬底可应用于照明、信息、笔记本电脑等诸多领域,市场整体保持快速增长,尤其是LED照明市场应用扩张明显,而蓝宝石晶体材料是LED上游衬底材料的最优选择,受其影响,也将迎来高速增长。 蓝宝石由于性能优良是最为理想的衬底材料,并且被广泛应用于光电元件中。蓝宝石的应用领域主要涉及衬底材料,军事、武器方面的应用及消费性电子智能终端等。衬底依旧是蓝宝石的重要应用领域,以LED衬底材料为主。目前来看,蓝宝石衬底材料应用为蓝宝石的最主要应用,按照法国Yole统计,蓝宝石衬底材料应用占比约75%,非衬底材料应用占比约25%。其中衬底材料中主要是半导体照明(LED)衬底材料及SOS相关产品使用,其中LED衬底材料占比约95%以上,可见LED衬底目前是蓝宝石市场的主要驱动力,现在主要应用在LED照明市场。 2、LED照明市场分析 LED应用于照明,是继日光灯、节能灯后的第三次革命。LED 的发光效率,是白炽灯的8倍,是荧光灯的2倍多。LED的光谱中没有紫外线和红外线成分,所以不会发热,不产生有害辐射。而且LED的光通量半衰期大于5万小时,可以正常使用20年,器件寿命一般都在10万小时以上,是荧光灯寿命的10倍,是白炽灯的100倍,LED这种节能、长寿的特性,使其取代其他灯具成为主流照明产品是必然趋势。另一方面,LED在大尺寸光源、景观照明、汽车车灯、低温照明等应用市场将得到进一步发展,逐步成为推动LED市场发

数种蓝宝石晶体生长方法

蓝宝石晶体的生长方法 自1885年由Fremy、Feil和Wyse利用氢氧火焰熔化天然红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”,迄今人工生长蓝宝石的研究已有100多年的历史。在此期间,为了适应科学技术的发展和工业生产对于蓝宝石晶体质量、尺寸、形状的特殊要求,为了提高蓝宝石晶体的成品率、利用率以及降低成本,对蓝宝石的生长方法及其相关理论进行了大量的研究,成果显著。至今已具有较高的技术水平和较大的生产能力,为之配套服务的晶体生长设备——单晶炉也随之得到了飞速的发展。随着蓝宝石晶体应用市场的急剧膨胀,其设备和技术也在上世纪末取得了迅速的发展。晶体尺寸从2吋扩大到目前的12吋。 低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务。总体说来,蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有焰熔法、提拉法、区熔法、导模法、坩埚移动法、热交换法、温度梯度法、泡生法等。而泡生法工艺生长的蓝宝石晶体约为目前市场份额的70%。LED蓝宝石衬底晶体技术正属于一个处于正在发展的极端,由于晶体生长技术的保密性,其多数晶体生长设备都是根据客户要求按照工艺特点定做,或者采用其他晶体生长设备改造而成。下面介绍几种国际上目前主流的蓝宝石晶体生长方法。

图9 蓝宝石晶体的生长技术发展 1 凯氏长晶法(Kyropoulos method) 简称KY法,中国大陆称之为泡生法。泡生法是Kyropoulos于1926年首先提出并用于晶体的生长,此后相当长的一段时间内,该方法都是用于大尺寸卤族晶体、氢氧化物和碳酸盐等晶体的制备与研究。上世纪六七十年代,经前苏联的Musatov改进,将此方法应用于蓝宝石单晶的制备。该方法生长的单晶,外型通常为梨形,晶体直径可以生长到比坩锅内径小10~30mm的尺寸。其原理与柴氏拉晶法(Czochralski method)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(Seed Crystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇,图10即为泡生法(Kyropoulos method)的原理示意图。泡生法是利用温度控制来生长晶体,它与柴氏拉晶法最大的差异是只拉出晶颈,晶身部分是靠着温度变化来生长,少了拉升及旋转的干扰,比较好控制制程,并在拉晶颈的同时,调整加热器功率,使熔融的原料达到最合适的

deform中晶粒模拟

晶粒模拟 1.输入变形主要文件 2.输入与晶粒有关的材料参数 3.输入最初的晶粒变量 4.运行模拟 5.准备及运行空冷模拟 6. 准备及运行水中淬火模拟 7.后处理 8.改变条件 介绍 本章的目的是介绍如何采用DEFORM2D晶粒模拟模拟锻 造过程及热处理过程中微观组织的变化。 再结晶度及平均晶粒尺寸是使用者最关心的参数,该模型中共有16中晶粒变量,他们都放在数据库中。 静态再结晶、中间动态再结晶、动态再结晶的演化机理和结晶成长都在模型中被计算。在每一个时间步里,基于时间、温度、应力、应力速率、演化历史,变形机制被定义,晶粒的变化被计算和更新。关于该模拟完整的解释在用户文档中有。 注意: 1)由于锻造过程的复杂性,对动态再结晶的同步模拟几乎是不可能的。实际上动态再结晶的计算是在变形过程之后。中间动态

再结晶,动态再结晶也是如此。这就是说,用户将看不到任何的 结果除非一个非变形的模拟(例如:热处理)跟在一个变形模拟的后面。 2)要完成一个完整的晶粒变化模拟,用户必须确定一个完整的热处理过程。特别是坯料必须在模拟结束时彻底的冷却。 问题摘要 空冷水中淬火是一个既简单又让人头疼的过程,该问题 使用SI单位,轴对称。材料IN718,模具材料H13钢。 1.输入变形主要文件 做一个工作路径,打开DEFORM 2D,用Problem ID GRAIN_LAB, 打开前处理,装载KEY文件UPSET.KEY. 这个KEY文件包含了该模拟的所有信息。 2.输入与晶粒有关的材料参数 点击模拟控制按纽,激活“晶粒”,到材料中选择IN718,点击晶粒窗口,窗口显示如下: 激活meta-dynamic、grain growth,不激活其他俩个,输入以下数据到相应的矩阵。 最高应力 应变速率极限 中间动态再结晶动力 中间动态再结晶晶粒尺寸

蓝宝石晶体是第三代半导体材料GaN外延层生长最好的衬底材料之一

蓝宝石晶体是第三代半导体材料GaN外延层生长最好的衬底材料之一,其单晶制备工艺成熟。 GaN为蓝光LED制作基材。 一、GaN外延层的衬底材料 1、SiC 与GaN晶格失配度小,只有3.4%,但其热膨胀系数与GaN差别较大,易导致GaN外延层断裂, 并制造成本高,为蓝宝石的10倍。 2、Si 成本低,与GaN晶格失配度大,达到17%,生长GaN比较难,与蓝宝石比较发光效率太低。 3、蓝宝石 晶体结构相同(六方对称的纤锌矿晶体结构),与GaN晶格失配度大,达到13%,易导致GaN 外延层高位错密度(108—109/cm2)。为此,在蓝宝石衬底上AlN或低温GaN外延层或SiO2层等,先进方法可使GaN外延层位错密度达到106/cm2水平。 二、蓝宝石、GaN的品质对光致发光的影响 蓝宝石单晶生长技术复杂,获得低杂质、低位错、低缺陷的单晶比较困难。蓝宝石单晶质量对GaN外延层的质量有直接的影响,其杂质和缺陷会影响GaN外延层质量,从而影响器件质量(发 光效率、漏电极、寿命等)。 蓝宝石单晶的位错密度一般为104/cm2数量级,它对GaN外延层位错密度(108—109/cm2)影 响不大。 三、蓝宝石衬底制作 主要包括粘片、粗磨、倒角、抛光、清洗等,将2英寸蓝宝石衬底由350—450μm(4英寸600μm 左右)减到小于100μm(4英寸要厚一些) 四、蓝宝石基板 市场上2英寸蓝宝石基板的主要技术参数: 高纯度—— 99.99%以上(4—5N) 晶向——主要是C面,C轴(0001)±0.3° 翘曲度——20μm 厚度——330μm—430μm±25μm 表面粗糙度—— Ra<0.3nm 背面粗糙度——Ra<1μm(不是很严格) yq_chu666 at 2010-7-06 08:53:02 这是美国公司的要求吧? 如何降低翘曲、弯曲呀? ljw.jump at 2010-7-06 16:41:37 国内做蓝宝石的厂家我知道有个不错的,在安徽吧 qw905 at 2010-7-06 18:26:50 还是哈工大与俄罗斯合作的泡生法-钻孔取棒最成功! qw905 at 2010-7-06 18:29:06 一篇蓝宝石研发总结 藍寶石單晶生長技術研發Sapphire Crystal Instruction.pdf (2010-07-06 18:29:06, Size: 1.67 MB, Downloads: 28) HP-led at 2010-7-20 12:00:50 在云南,不过他去年不咋地,今年慢慢恢复生产

蓝宝石晶体生长设备

大规格蓝宝石单晶体生长炉技术说明 一、项目市场背景 α-Al2O3单晶又称蓝宝石,俗称刚玉,是一种简单配位型氧化物晶体。蓝宝石晶体具有优异的光学性能、机械性能和化学稳定性,强度高、硬度大、耐冲刷,可在接近2000℃高温的恶劣条件下工作,因而被广泛的应用于红外军事装置、卫星空间技术、高强度激光的窗口材料。其独特的晶格结构、优异的力学性能、良好的热学性能使蓝宝石晶体成为实际应用的半导体GaN/Al2O3发光二极管(LED),大规模集成电路SOI和SOS及超导纳米结构薄膜等最为理想的衬底材料。低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务。 蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有熔焰法、提拉法、区熔法、坩埚移动法、热交换法、温度梯度法和泡生法等。但是,上述方法都存在各自的缺点和局限性,较难满足未来蓝宝石晶体的大尺寸、高质量、低成本发展需求。例如,熔焰法、提拉法、区熔法等方法生长的晶体质量和尺寸都受到限制,难以满足光学器件的高性能要

求;热交换法、温度梯度法和泡生法等方法生长的蓝宝石晶体尺寸大,质量较好,但热交换法需要大量氦气作冷却剂,温度梯度法、泡生法生长的蓝宝石晶体坯料需要进行高温退火处理,坯料的后续处理工艺比较复杂、成本高。 二、微提拉旋转泡生法制备蓝宝石晶体工艺技术说明 微提拉旋转泡生法制备蓝宝石晶体方法在对泡生法和提拉法改进的基础上发展而来的用于生长大尺寸蓝宝石晶体的方法,主要在乌克兰顿涅茨公司生产的 Ikal-220型晶体生长炉的基础上改进和开发。晶体生长系统主要包括控制系统、真空系统、加热体、冷却系统和热防护系统等。微提拉旋转泡生法大尺寸蓝宝石晶体生长技术主要是通过调控系统内的热量输运来控制整个晶体的生长过程,因此加热体与热防护系统的设计,热交换器工作流体的选择、散热能力的设计,晶体生长速率、冷却速率的控制等工艺问题对能否生长出品质优良的蓝宝石晶体都至关重要。 微提拉旋转泡生法制备蓝宝石晶体,生长设备集水、电、气于一体,主要由能量供应与控制系统、传动系统、晶体生长室、真空系统、水冷系统及其它附属设备等组成。传动系统作为籽晶杆(热交换器)提拉和旋转运动的导向和传动机构,与立柱相连位于炉筒之上,其主要由籽晶杆(热交换器)的升降、旋转装置组成。提拉传动装置由籽晶杆(热交换器)的快速及慢速升降系统两部分组成。籽晶杆(热交换器)的慢速升降系统由稀土永磁直流力矩电机,通过谐波减速器与精密滚珠丝杠相连,经滚动直线导轨导向,托动滑块实现籽晶杆(热交换器)在拉晶过程中的慢速升降运动。籽晶杆(热交换器)的快速升降系统由快速伺服电机经由谐波减速器上的蜗杆、蜗杆副与谐波的联动实现。籽晶杆的旋转运动由稀土永磁式伺服电机通过楔形带传动实现。该传动系统具有定位精度高、承载能力大,速度稳定、可靠,无振动、无爬行等特点。采用精密加热,其具有操作方法简单,容易控制的特点。在热防护系统方面,该设计保温罩具有调节气氛,防辐射性能好,保温隔热层热导率小,材料热稳定性好,长期工作不掉渣,不起皮,具有对晶体生长环境污染小,便于清洁等优点。选用金属钼坩埚,并依据设计的晶体生长尺寸、质量来设计坩埚的内径、净深、壁厚等几何尺寸,每炉最大可制备D200mmX200mm,重量25Kg蓝宝石单晶体。Al2O3原料晶体生长原料采用纯度为5N的高纯氧化铝粉或熔焰法制备的蓝宝石碎晶。 从熔体中结晶合成宝石的基本过程是:粉末原料→加热→熔化→冷却→超过临界过冷度→结晶。 99.99%以上纯度氧化铝粉末加有机黏结剂,在压力机上形成坯体;先将该坯体预先烧成半熟状态的氧化铝块,置入炉内预烧,将炉抽真空排出杂质气体,先后启动机械泵、扩散泵,抽真空至10↑[-3]-10↑[-4]Pa,当炉温达1500-1800℃充入混合保护气体,继续升温至设定温度(2100-2250℃);(3)炉温达设定温度后,保温4-8小时,调节炉膛温度

神坛上的美国蓝宝石晶体生长设备

神坛上的美国蓝宝石晶体生长设备 (2011-07-01 12:07:38) 转载 标签: 分类:蓝宝石晶体 arc gt hem tgt 坩锅下降法 蓝宝石晶体生长 杂谈 引言 华裔背景的美国科学家朱棣文博士因激光冷却和俘获原子的实验而分享了1997年的诺贝尔物理学奖。获奖后朱棣文博士访问中国的第一站选择了中国科学院上海光学精密机械研究所拜访王育竹院士。因为王育竹院士比获得1997年诺贝尔物理学奖的朱棣文博士早了近10年就提了关于激光冷却的实验方法和理论设想,但是实验必需器材的购置费120万元迟迟未申请到,以致拖了14年才出成果,结果当然他不可能拿诺贝尔奖。 向王育竹院士表示致敬! ………………………………………………………………… 话说世界500强联合利华新换了一批自动香皂包装机以后,经常出现香皂盒子是空的没有香皂情况,而在装配线一头用人工检查因为效率问题不太可能而且不保险,这不,一个由自动化,机械,机电一体化等专业的博士组成的Solution队伍来解决这个问题,没多久他们在装配线的头上开发了全自动的X光透射检查线,透射检查所有的装配线尽头等待装箱的香皂盒,如果由空的就用机械臂取走。 同样,中国一乡镇企业生产香皂也遇到类似问题,老板吩咐线上小工务必想出对策解决之,小工拿了一个电风扇放在产线上吹风。 一堆最先进的零部件的堆积物,未必是最合适的机器。............................................................................ 事关中国人面子的诺贝尔奖,我们纠结了很多很多年..............其实大可不必,诺贝尔奖已经带有了浓厚的政治色彩.............. 如果我们老百姓能安居乐业、如果有一个让我们的科技工作者心无旁鹫安心工作的环境、如果我们的百姓人人从心底就淡定................不要说我们从未拿过诺贝尔,即使从未有奥运奖牌又能如何? 不能为官员的面子而活,要为百姓的尊严而活! 中国从来不缺乏优秀的人才,只是缺乏合适的制度和尊重知识的土壤。在急功近利的环境中,我们缺乏的是自信和心态;喜欢神话,能为有钱人服务的神话.................尤其是外来的神话。 神坛上美国蓝宝石晶体生长设备 本博主学习和研究晶体生长技术十五年以上,也跑过不少国家和地区,对晶体生长技术和设备的发展水平自认为略知一二。十多年前开始跟踪蓝宝石晶体生长的技术和设备,应该讲前苏联地区的水平在世界上是处于领先水平的。跟踪Crystal System 也是在十年前的事了;在本人的学识范围内,晶体生长的技术和设备绝对是一个需要理论和经验相结合的一个技术活。

蓝宝石单晶生长技术研发

合約編號:華機95專案字011號 中華技術學院 產學合作研究計畫 結案報告 機械工程系 合作廠商:越峯電子材料股份有限公司計畫執行時程:95年3月17日至 96年8月31日 計畫金額:1,262,000元 計畫主持人﹕黃聖芳博士

藍寶石單晶生長技術研發 越峰電子材料股份有限公司 委託主導性研究計畫 結案報告 計畫主持人:黃聖芳 中華技術學院機械系 Tel:02-27867048ext.24, 0921833132 Fax:27867253 e-mail:sfhuang@https://www.doczj.com/doc/cb15644085.html,.tw 台北市115南港區研究院路三段245號 計畫執行時程:95年3月17日至96年8月31日

目錄 1、研究背景2 2、藍寶石之特性5 3、藍寶石單晶生長方法介紹7 4、原料、設備與實驗方法17 5、晶體檢測程序27 6、計畫執行成果28 7、結論36

1、研究背景: 藍寶石(Sapphire)是一種氧化鋁(Al2O3)的單晶,又稱為剛玉(Corundum),由於具有優良的機械、光學、化學以及抗輻射性質,因此近年來受到工業界廣泛的應用。由於藍寶石的光學穿透範圍非常的寬,從波長190nm的近紫外光到波長5500nm的中紅外光,藍寶石都有很好的透光率,因此大量被使用作為特種光學元件的透鏡材料、高功率雷射的透鏡材料以及飛彈彈頭光罩的材料,如圖1所示。由於藍寶石具有非常高的硬度與耐磨耗性能,因此也常作為精密機械的軸承材料,如圖2所示。又因具有的良好之抗幅射性能,也使得藍寶石常被應用於航太機具或暴露於輻射環境中的光學元件材料,如圖3所示。此外,目前在製作藍白光LED時所使用的基板材料(Substrate),也是以藍寶石為主,圖4所示即為藍光發光二極體(LED)的結構示意圖。由於藍白光LED具有使用壽命長、消耗功率低,發光效率高等優勢,已成為未來照明燈具的主流,深具市場發展潛力,因而使得作為製作藍白光LED基材的藍寶石之市場需求量也大幅提升。 目前國內工業界對藍寶石的需求量很大,但幾乎全仰賴從美、日、俄等國進口,主要原因是國內缺乏生長藍寶石單晶的技術與人才。而美日等國有能力生產藍寶石單晶的廠商,所提出的技術移轉費用都非常的高,以致迄今尚無國內業者與美日等國的藍寶石單晶生產廠商進行合作。本校(中華技術學院)與俄羅斯的Vniisims公司進行技術合作,引進生長藍寶石單晶的長晶爐與長晶技術,並建置完成整套生長藍寶石的製程,並已多次成功生長出符合工業品質需求的藍寶石單晶。 越峰電子材料股份有限公司正在積極發展藍寶石單晶的長晶技術,並已從俄羅斯引進所需的長晶設備。本計畫即為本校與越峰公司共同簽定的主導性科專產學合作計畫,期望藉由本校已從俄羅斯技術移轉所得的藍寶石單晶長晶技術為基礎,繼續研究開發在藍寶石單晶的長晶製程中,各個參數對晶體品質的影響程度,進而發展出可生產品質更佳且更穩定的藍寶石單晶之製程技術,提供產業界量產之用。 本研究計畫預定完成之工作項目計有下列六項: 1、瞭解不同形態的氧化鋁原料在藍寶石單晶長晶時的合適的比例。 2、確認長晶程序中各個階段的調配與控制對藍寶石單晶品質的影響程度。 3、透過製程參數的控制,包括:加熱電壓、加熱時間、加熱溫度、下晶種方 式以及晶種拉升速率等。掌控製程參數對藍寶石單晶品質之影響程度。 4、獲悉藍寶石單晶所含的缺陷型態與數量。 5、完成硬度分析。

相关主题
文本预览
相关文档 最新文档