当前位置:文档之家› 鸡兔同笼经典例题与解析(经典).docx

鸡兔同笼经典例题与解析(经典).docx

鸡兔同笼经典例题与解析(经典).docx
鸡兔同笼经典例题与解析(经典).docx

鸡兔同笼经典试题

【例一】小芳家养了一些鸡和兔子,同时养在一个笼子里,小芳数了数,它们共有35个头,94只脚.问:小芳家养的鸡和兔各有多少只?(基本假设法)

【解析】方法一:抬腿法。每只动物都抬起2条腿,剩下94-35×2=24.剩下的每只兔子两条腿,所以共有12只兔子。

方法二:假设35只都是兔子,那么就有35×4=140(只)脚,假设的比实际的多了140-94=46(只).多46只的原因是35只里不全是兔子,现在我们得把鸡给换回来,

一只兔子换一只鸡会少2条腿,所以得换46÷2=23只鸡回来。

方法三:还可以假设35只都是鸡,那么共有脚2×35=70(只),比94只脚少了94-70=24(只)脚,每只鸡比兔子少2只脚,那么共有兔子24÷2=12(只).

要点:“抬腿”法简单易操作,但适用范围较小;“假设法“稍有难度,但必须掌握,因为假设法在以后很多题目中都会用到,比如工程问题和行程问题等。

一般假设法总结:假设兔子,得出鸡;假设鸡,得出兔子。(方便孩子做题,但千万不能单纯记忆)

【例题2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?(变型假设法)

【解析】方法一:假设鸵鸟数跟梅花鹿一样多,那么总脚数就得减去多出来20只鸵鸟的40 只脚,新的总脚数就是168只。鸵鸟和梅花鹿一样多,

所以梅花鹿的腿数是鸵鸟的两倍。那么168只就是3倍,所以梅花鹿的腿数是112条,就由28只,鸵鸟是48只。

方法二:假设梅花鹿数跟鸵鸟一样多,那么总脚数就得增加80只脚,新的总脚数就是288只。梅花鹿和鸵鸟一样多,所以梅花鹿的腿数是鸵鸟的两倍。

那么288只就是3倍,所以鸵鸟有96条腿,就有48只,梅花鹿有28只。

要点:和倍问题与鸡兔同笼

【例题3】在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆?(变型题)

【解析】假设都是三轮摩托车,应有3×41=123轮子,少了127-123=4(个)轮子.每把一辆汽车假设为三轮摩托车,会减少4-3=1(个)轮子.汽车有4÷1=4(辆);

从而求出三轮摩托车有37辆.同理,可假设都是汽车。

要点:基础变型练习,学生要敏锐的发现隐藏的鸡兔同笼。

【例题4】100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?(变型题)

【解析】本题由中国古算名题“百僧分馍问题”演变而得.如果将大和尚、小和尚分别看作

鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解.

假设100人全是大和尚,那么共需馍300个,比实际多160个.现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),

因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人).

同样,也可以假设100人都是小和尚,这里不再作说明.

要点:基础变型练习,学生要敏锐的发现隐藏的鸡兔同笼。

【例题5】(中国古代僧粥问题)一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?(变型题)

【解析】我们把大碗换小碗,换小碗盛粥!把一大碗粥分成三小碗粥,则原题变为一百个和尚喝三百碗粥,一个大和尚喝九碗粥,一个小和尚喝一碗粥.

然后仍然用假设法:

假设都是小和尚,只能喝1×100=100(碗)粥,有一个大和尚被当成小和尚会少9-1=8(碗)粥,一共少了300-100=200(碗)粥.所以大和尚有200÷8=25(个);

小和尚有100-25=75(个).

要点:转化的思想,把大碗换小碗,换小碗盛粥。

【例题6】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?(变型题)

【解析】本题中“损坏一个倒赔100元”的意思是运一个完好的花瓶与损坏1个花瓶相差100+20=120(元),即损1个花瓶不但得不到20元的运费,而且要赔偿100元.本例可假设250个花瓶都完好,这样可得运费20×250=5000(元).这样比实际多得5000-4400=600(元).

就是因为有损坏的瓶子,损坏1个花瓶相差120元.现共相差600元,从而求出共损坏多少个花瓶.根据以上分析,可得损坏了600÷120=5个

要点:一来一回是学生经常犯的错误。

【例题7】甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10发,共得208分,最后甲比乙多得64分,乙打中多少发?

【解析】乙得分为(208-64)÷2=72(分),如果乙每发都打中可以得20×10=200(分),脱靶一发少20+12=32(分);乙脱靶(200-72)÷32=4(发),

所以乙打中10-4=6(发)。

要点-和差问题与鸡兔同笼

【例题8】一张数学试卷,只有25道选择题.做对一题得4分,做错一题倒扣1分;如不做,不得分也不扣分.若小明得了78分,那么他做对____ 题,

做错_____ 题,没做___ 题.(有难度的变型题)

【解析】这道题不是普通的鸡兔同笼问题,需要寻找一些特殊的线索.

小明得了78分,而且只有做对了题目才能得分.

78÷4>19,所以可以知道小明至少做对20道题目,否则一定低于4×19=76(分);

再假设他做对21题,发现即使另外四题都错,小明仍然有21×4-4×1=80(分),超过了78分,所以小明至多做对20道题目;

综上,可以断定小明做对了20道题.

至此本题转化为简单鸡兔同笼问题.

假设剩下5题全部没做,那么小明应得4×20=80(分).

但是只得了78分,说明又倒扣了2分,说明错了2道题,3道题没做.

所以小明做对了20道题,做错了2道题,没做3道题.

要点:得分、扣分、不给分相当于三种动物,不能直接用鸡兔同笼。

【例题9】光华小学3名学生参加数学竞赛,共10道题,答对一道题得10分,答错一道题扣3分,这3名同学都回答了所有的题,

小明得了87分,小红得了74分,小华得了9分,他们三人一共答对了_____道题.

【解析】三人共得87+74+9=170(分),比满分10×10×3=300(分),少300-170=130(分) 因此三个人共做错:130÷(10+3)=10(道)题,

共答对了30-10=20(道)题

要点:合起来算比单个算更节省时间,给孩子提供合起来算的思路。

【例题10】李明和张亮轮流打一份稿件,李明每天打15页,张亮每天打10页,他们一连打了25天,平均每天打12页,

问李明、张亮各打了多少天?(为工程问题假设法做准备)

【解析】从总数入手,由题意可知他们一共打了25×12=300(页).假设25天都是李明打的,那么打的页数是:15×25=375(页),

比实际打的多375-300=75(页),而李明每天比张亮多打:15-10=5(页),所以张亮打的天数是:75÷5=15(天),李明打的天数是:25-15=10(天)

要点:为工程问题中的假设法做准备

【例题11】使用甲种农药每千克要兑水20千克,使用乙种农药每千克要兑水40千克.根据农科院专家的意见,把两种农药混起来用可以提高药效,

现有两种农药共50千克,要配药水1400千克,那么,其中甲种农药用了多少千克?(浓度问题中的假设法)

【解析】假设50千克都是乙种农药,那么需要兑水40×50=2000(千克).但题目要求配药水1400千克,即实际兑水1400-50=1350(千克).

多用了2000-1350=650(千克)水,又已知使用乙种农药每千克兑水需要比使用甲种农药多兑水40-20=20(千克),所以推知,

在混合农药中甲种农药有650÷20=32.5(千克).

要点:浓度问题比较抽象,用鸡兔同笼有些难度,需要加深对浓度问题的认识。

【例题12】一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆.已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?

【解析】要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨.利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每

辆小卡车多装4吨,所以要剩下4×36=144 (吨).根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车.这样每辆小卡车能装144÷9=16(吨).

由此可求出这批钢材有720吨.

要点:列方程会简单,但算数的办法会更有意思,激发孩子的兴趣。

【例题13】有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对。问蜻蜓有多少只?(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀)

【解析】可用假设法来求解:先假设全都是6只脚的蝉则蜘蛛有:(118-6×18)÷(8-6)=5(只),那么蝉和蜻蜓共有18-5=13(只)再假设全都是一对翅膀的,则蜻蜓就有:(20-1×13)÷(2-1)=7(只),蝉有:13-7=6(只)

要点:先要脚开始进行假设,求出其中一种动物,在从翅膀着手进一步假设求出另两种动物,这其中知识绕了个弯子而已!

【例题14】现有大、小桶共50个,每个大桶可装油6千克,每个小桶可装油3千克,大小桶共装有210千克油。问大、小油桶各有多少个?

【解析】可以假设都是大油桶,那么共装油50x6=300(千克),这样比实际多出300-210=90(千克);多出来的90千克不是50个都是大油桶,所以我们现在要拿大油桶去换回小油桶,一个大油桶比一个小油桶多装6-3=3(千克),在用多出来90÷3=30(个)即为小油桶的个数,大油桶就等于50-30=20(个)当然我们也可以假设全都是小油桶,具体过程不再一一叙述;

【例题15】在一片草地放羊,如果放养27只羊,则6天可以把草吃完;如果放养23只羊,则9天把草吃完。问若是放养21只羊,几天可以把这片草地的草吃尽?

【解析】假设1只羊吃的草为1.则每天长出来的草是:(23×9-27×6)÷(9-6)=15

草地原有的草是:27×6-15×6=72. 21只羊把草吃尽的天数为:72÷(21-15)=12(天)

要点:在计算此类牛(羊)吃草的问题,必须注意的是草场的草它不是固定不变的,而是可以不断在生的,所以计算是一定要考虑这点才是关键。

小学数学典型应用题《鸡兔同笼问题》专项练习

小学数学典型应用题专项练习 《鸡兔同笼问题》 【含义】 这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。 【数量关系】 第一鸡兔同笼问题: 假设全都是鸡,则有 兔数=(实际脚数-2×鸡兔总数)÷(4-2) 假设全都是兔,则有 鸡数=(4×鸡兔总数-实际脚数)÷(4-2) 第二鸡兔同笼问题: 假设全都是鸡,则有 兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2) 假设全都是兔,则有 鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2) 【解题思路和方法】 解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。

【经典例题讲解】 1、长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡? 解: 假设35 只全为兔,则 鸡数=(4×35-94)÷(4-2)=23(只) 兔数=35-23=12(只) 也可以先假设35 只全为鸡,则 兔数=(94-2×35)÷(4-2)=12(只) 鸡数=35-12=23(只) 答:有鸡23只,有兔12 只。 2、2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16 亩,施肥9 千克,求白菜有多少亩? 解: 此题实际上是改头换面的“鸡兔同笼”问题。“每亩菠菜施肥(1÷2)千克” 与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4 只脚相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。假设16 亩全都是菠菜,则有 白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩) 答:白菜地有10 亩。

集合与命题专题-历年上海高考真题

2015年普通高等学校招生全国统一考试 上海 数学试卷(理工农医类) 1.设全集U R =.若集合{}1,2,3,4A =,{} 23x x B =≤≤,则U A B= e . 15.设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 2014年普通高等学校招生全国统一考试 上海 数学试卷(理工农医类) 11.已知互异的复数a,b 满足ab ≠0,集合{a,b}={2a ,2 b },则a+b= 。 15.设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 2013年普通高等学校招生全国统一考试 上海 数学试卷(理工农医类) 16.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的() (A)充分条件 (B)必要条件 (C)充分必要条件 (D)既非充分也非必要条件 2012年全国普通高等学校招生统一考试 上海数学试卷(理) 2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A 。

2011年全国普通高等学校招生统一考试 上海数学试卷(理) 2. 若全集U R =,集合{1}{|0}A x x x x =≥≤ ,则U C A = . 2010年普通高等学校招生全国统一考试(上海卷) 数学(理科) 14.以集合U={}a b c d ,,,的子集中选出4个不同的子集,需同时满足以下两个条件: (1)a 、b 都要选出;(2)对选出的任意两个子集A 和B ,必有A B B A ??或,那么共有 种不同的选法。 15.“()24x k k Z π π=+∈”是“tan 1x =”成立的 [答]( ) (A )充分不必要条件. (B )必要不充分条件. (C )充分条件. (D )既不充分也不必要条件. 2009年普通高等学校招生全国统一考试(上海卷) 数学(理科) 1. 已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ?=, 则实数a 的取值范围是______________________ . 15.”“22≤≤-a 是“实系数一元二次方程012 =++ax x 有虚根”的 (A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

鸡兔同笼典型例题

【例 3】动物园里养了一些梅花鹿和鸵鸟,共有脚只,鸵鸟比梅花鹿多只,梅花鹿 和鸵鸟各有多少只? 【考点】鸡兔同笼 【解析】假设梅花鹿和鸵鸟的只数相同,则从总脚数中减去鸵鸟多的只的脚数得: (只)。这只脚是梅花鹿的脚数和鸵鸟的脚数 (注意此时梅花鹿和鸵鸟的只数相同)脚数的和,一只梅花鹿和一只鸵鸟 的脚数和是:(只),所以梅花鹿的只数是:(只),从 而鸵鸟的只数是:(只) . 【答案】鸵鸟48只,梅花鹿28只 【例 5】鸡兔同笼,鸡、兔共有只,兔的脚数比鸡的脚数多只,问鸡、兔各多少只? 【考点】鸡兔同笼 【解析】不妨假设只都是兔,没有鸡,那么就有兔脚:(只),而鸡的脚数为零。这样兔脚比鸡脚多只,而实际上只多只,这说明 假设的兔脚比鸡脚多的数比实际上多:(只)。现在以鸡换 兔,每换一只,兔脚减少只,鸡脚增加只,即兔脚与鸡脚的总数差就 会减少(只)。 鸡的只数:(只),兔的只数:(只)。 【答案】兔45只,鸡62只 【例 6】每只完整的螃蟹有2只鳌、8只脚。现有一批螃蟹,共有25只鳌,120只脚。其中 可能有多少缺鳌少脚的,但每只螃蟹至少保留1只鳌、4只脚。这批螃蟹最多有 只,至少有只。

【考点】鸡兔同笼 【解析】若要螃蟹尽量多,那么螃蟹的鳌和脚要尽量少,光看鳌的话,鳌最少为1,螃蟹最多为25只,只看脚的话,脚最少为4,螃蟹最多为 (只),所以螃蟹最多为25只,同理若要螃蟹尽量少,那么螃蟹的鳌和 脚要尽量多, 光看鳌的话,鳌最多为2,螃蟹最少为(只), 只看脚的话,脚最多为8,螃蟹最少为(只),所以螃蟹最少为13只。 【答案】螃蟹最多有25只,至少有13只 【例 10】箱子里红、白两种玻璃球,红球数是白球数的倍多只,每次从箱子里取出只 白球、只红球.如果经过若干次以后,箱子里剩下只白球、只红球.那么 箱子里原有红球多少只? 【考点】鸡兔同笼 【解析】假设每次一起取只白球和只红球,由于每次拿得红球都是白球的倍,所以最后剩下的红球数应该刚好是白球数的倍多。由于每次取的 白球和原定的一样多,所以最后剩下的白球应该不变,仍然是个。按 照我们的假设,剩下的红球应该是白球的倍多,即(只)。 但是实际上最后剩了只红球,比假设多剩只,因为每一次实际取得 与假设相比少只,所以可以知道一共取了(次)。所以可以知道 原来有红球(只)。 【答案】红球有158只

高一数学集合典型例题、经典例题

《集合》常考题型 题型一、集合元素的意义+互异性 例.设集合 {0} 例.已知A ={2,4,a 3-2a 2-a +7},B ={1,a +3,a 2-2a +2,a 3+a 2+3a +7},且A ∩B ={2,5},则A ∪B =____________________________ 解:∵A∩B={2,5},∴5∈A. ∴a 3-2a 2-a +7=5解得a =±1或a =2. ①若a =-1,则B ={1,2,5,4},则A∩B={2,4,5},与已知矛盾,舍去. ②若a =1,则B ={1,4,1,12}不成立,舍去. ③若a =2,则B ={1,5,2,25}符合题意.则A ∪B ={1,2,4,5,25}. 题型二、空集的特殊性 例.已知集合{}{}25,121A x x B x m x m =-<≤=-+≤≤-,且BA , 则实数m 的取值范围为_____________ 例.已知集合{}R x x ax x A ∈=++=,012,{} 0≥=x x B ,且φ=B A I , 求实数a 的取值范围。 解:①当0a =时,{|10,}{1}A x x x R =+=∈=-,此时{|0}A x x ≥=ΦI ; ②当0a ≠时,{|0}A x x ≥=ΦQ I ,A ∴=Φ或关于x 的方程2 10ax x ++=的根均为负数. (1)当A =Φ时,关于x 的方程210ax x ++=无实数根, 140a ?=-<,所以14a > . (2)当关于x 的方程210ax x ++=的根均为负数时, 12121401010a x x a x x a ???=-≥??+=-?? 140a a ?≤?????>?104a <≤. 综上所述,实数a 的取值范围为{0}a a ≥. 题型三、集和的运算 例.设集合S ={x |x >5或x <-1},T ={x |a

(完整版)集合练习题及答案-经典

集合期末复习题12.26 姓名 班级________________ 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=-的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=}{ 12x x <<,B=}{ x x a <,若A ?B ,则a 的取值范围是 ( ) A }{ 2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{ 2a a ≤ 9、 满足条件M U }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={} 22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人.

鸡兔同笼应用题解法

一、提出问题 大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。(板书课题) 二、解决问题 出示例1 :鸡兔同笼,有20个头,54条腿,鸡、兔各有几只? (同时出示鸡兔同笼情境图) 师:想一想,如何来解决这个问题?请同学们把你的想法,你的 思考过程用你喜欢的方式表达出来。 学生思考、分析、探索,接下来是讨论、交流、争辩。(老师参与其中,启发、点 拔、引导适当,师生互动。) 10分钟后进入小组汇报、集体交流阶段。 师:谁能说一说你们小组探究的结果,鸡、兔各有几只?你们是怎样得出结论的? 学生汇报表达的方式: 生1:我们利用画图凑数的方法: ①先画10个头。 ②每个头下画上两条腿。 数一数,共有40条腿,比题中给出的腿数少54-20=14条腿。 ③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够54条腿。 每把一只鸡添上两条腿,它就变成了兔,显然添14条腿就变出来7只兔.这样就得出答案,笼中有7只兔和13只鸡。 2.列表法: 生1:我们一个一个地试,把结果列成表格,最后得出7只鸡、3只兔 生2:我们组得出的结果也是只13鸡、7只兔,但我们不是一个一个地试,这样太 麻烦了,我们是5个5个地试

生3:因为鸡、兔共20只,我们先假设鸡、兔各10只,这样共有60条腿,比54 条腿多6条,说明假设的兔多了3只,鸡少了3只,于是兔只有7只,鸡有13只。生4:我们是先按鸡兔各一半来算的。 师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。 师:谁还有其他的解法吗?(老师让举手的其中三名学生上台板演) 生5:假设20只都是鸡,那么兔有:(54-20 X 2) + (4-2 )=7 (只),鸡有20- 7=13 (只)。 生6:假设20只都是兔,那么鸡有:(4X 20-54) + (4-2)=13(只),兔有20-13=7 (只)。 生7:设鸡有XM,那么兔有(20-X)只。 2X+4 (20-X)=54, X=13, 20-13=7 (只)即鸡有13只,兔有7只。 师:同学太聪明了,想出了这么多好办法,通过以上的学习,你有什么发现,有什么想法吗? 生:解决一个问题可以有不同的方法。 三、想一想,做一做: 1.尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何? 2.完成书中练一练中的4道题第4道题, 小结:师生共同总结,我们今天学习的鸡兔同笼问题,发现了可以用画图的方法解决、可以用列表的方式进行分析。还可以用假设的方法(亦可称作置换法),可以先假设都是一种事物(换成同一种事物),再根据题中给出的条件进行修正、推算。有的同学还用方程来解决这个问题,一个问题可以用多种方法来解决,真是条条大路通罗马呀!希望同学们今后在学习中也能象今天一样肯于动脑,勤于思考,使我们每一个同学都越学聪明。 一,基本问题 "鸡兔同笼"是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

集合典型例题

集合·典型例题 能力素质 例用符号∈或填空1 ? 1________N , 0________N , -3________N , 0.5N N ,;2 1________Z , 0________Z , -3________Z , 0.5Z Z ,;2 1________Q , 0________Q , -3________Q , 0.5Q Q ,;2 1________R , 0________R , -3________R , 0.5R R ,;2 分析元素在集合内用符号∈,而元素不在集合内时用符号. ? 解∈, ∈,-,,; 1N 0N 3N 0.5N N ???2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈, ∈,-∈,,;∈,∈,-∈,??2 0.5Q Q 1R 0R 3R 0.5R R ∈,; ∈,∈,-∈,∈,; 22?? 说明:要注意符号的规范书写. 例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来; (2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0). 解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}. (2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标.

鸡兔同笼练习题大全

鸡兔同笼练习题大全 鸡兔同笼类练习题一 1. 有鸡兔共20只,脚44只,鸡兔各几只? 2、龟鹤共有100个头,350只脚.龟、鹤各多少? 3、鸡兔共笼,兔比鸡多4只,共有脚76只,鸡、兔各多少只? 4、鸡兔共200只,鸡的脚比兔的脚少56只,则鸡有几只,兔有几只? 5、鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只? 6、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只? 鸡兔同笼类练习题二 1、有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔有多少盒?铅笔有多少盒? 2、大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个? 3、 100个馒头100个和尚吃,大和尚每人吃4个,小和尚4人吃一个,则大和尚有多少个?小和尚有多少个? 4、 100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有多少个?小和尚有多少个? 5、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只? 6、停车场上停了35辆小轿车和两轮摩托车,地面上数一上共有10个轮子,请问小轿车和摩托车各有多少辆? 7、一次植树活动,规定大树每人种2棵,小树每人种4棵,全班50人植树140棵,问种这两种树的各有多少人? 8、幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小桌、小凳的价格各多少? 9、一个大人一次吃两个苹果,两个小孩一次吃一个苹果,现在有大人和小孩供

99人,共吃了99个苹果,大人小孩各多少人? 10、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个? 鸡兔同笼类练习题三 1. 学校有象棋、跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副? 2. 王老师带48名同学去公园划船,共租了10条船恰好坐满。每条大船坐6人,每条小船坐4人。问大船、小船各租了几条? 3. 某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多多少人? 4. 体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,体育老师买了运动服上衣和裤子各多少件? 5. 自行车越野赛全程 220千米,全程被分为20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个? 6. 六年二班全体同学,植树节那天共栽树180棵.平均每个男生栽5棵、每个女生栽3棵;又知女生比男生多4人,该班男生和女生各多少人? 7. 一辆汽车参加车赛,9天共行了5000公里。已知它晴天每天行688公里,雨天平均每天行390公里。在比赛期间,有几个晴天?有几个雨天? 8. 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条? 9. 肖老师带51名学生去公园里划船。他们一共租了44条船,其中有大船和小船,每条大船坐6人,小船4人。每条都坐满了人。他们租的大船有几条,小船有几条?

集合典型例题

1。集合得含义及其表示 (一)集合元素得互异性 1、已知,则集合中元素x所应满足得条件为 变式:已知集合,若,则实数得值为_______ 2。中三个元素可以构成一个三角形得三边长,那么此三角形可能就是 ①直角三角形②锐角三角形③钝角三角形④等腰三角形 (二)集合得表示方法 1. 用列举法表示下列集合 (1) __________________________ 变式:已知a,b,c为非零实数,则得值组成得集合为___ (2) ____ 变式1: 变式2: (3)集合用列举法表示集合B (4)已知集合M=,则集合M中得元素为 变式:已知集合M=,则集合M中得元素为 2。用描述法表示下列集合 (1)直角坐标系中坐标轴上得点_______________________________ 变式:直角坐标平面中一、三象限角平分线上得点______________ (2)能被3整除得整数_______________________、 3.已知集合,, (1)用列举法写出集合;(2)研究集合之间得包含或属于关系 4。命题(1) ;(2);(3);(4)表述正确得就是、 5、使用与与数集符号来替代下列自然语言:

(1)“255就是正整数” (2)“2得平方根不就是有理数” (3)“3、1416就是正有理数” (4)“-1就是整数” (5)“不就是实数” 6、用列举法表示下列集合: (1)不超过30得素数(2)五边形得对角线 (3)左右对称得大写英文字母(4)60得正约数 7。用描述法表示:若平面上所有得点组成集合, (1)平面上以为圆心,5为半径得圆上所有点得集合为_________ (2)说明下列集合得几何意义:; 8。当满足什么条件时,集合就是有限集?无限集?空集? 9、元素0、空集、、三者得区别? 10. 请用描述法写出一些集合,使它满足: (i)集合为单元素集,即中只含有一个元素; (ii)集合只含有两个元素; (iii)集合为空集 11.试用集合概念分析命题:先有鸡还就是先有鸡蛋? 解释:表述问题时把有关集合得元素说清楚,大有好处。先有鸡还就是先有鸡蛋?让我们运用集合概念来分析它。设地球上古往今来得鸡组成一个集合,孵出了最早得鸡得蛋算不算鸡蛋呢?这就是关键问题。设所有得鸡蛋组成集合,要确定得元素,就得立个标准,说定什么就是鸡蛋,一种定义方法就是:鸡生得蛋才叫鸡蛋;另一种定义方法就是:孵出了鸡得蛋与鸡生得蛋都叫鸡蛋。如果选择前一种定义,问题得答案只能就是先有鸡;选择后一种定义,答案当然就是先有鸡蛋。至于如何选择,不就是数学得任务,那就是生物学家得事。 (三)空集得性质 1.若?{x|x2≤a,a∈R},则实数a得取值范围就是________ 2、已知a就是实数,若集合{x| ax=1}就是任何集合得子集,则a得值就是_______.0?

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q },其中a 0≠,A=B,求q 的值. 例2 设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合=A {2,3,2a +4a +2},B ={0,7,2a +4a -2,2-a },且A I B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合 ()()[]{}(){}2,,,,=∈=x y x b a x x f y y x I 中元素的个数为…………………………………………………………………………() (A )1(B )0(C )1或0(D )1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P I 等于() A.(0,2),(1,1)B.{(0,2),(1,1)}C.{1,2}D. {}2≤y y 集合与方程 例1、已知{}φ=∈=+++=+R A R x x p x x A I ,,01)2(2,求实数p 的取值范围。 例2、已知集合(){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和,如果φ≠B A I ,求 实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若φ=B A I ,求实数a 的值。 集合学习中的错误种种 数学是一门严谨的学科,在集合学习中,由于对概念理解不清或考虑问题不全面等,稍不留心就会不知不觉地产生错误,本文归纳集合学习中的种种错误,认期帮助同学们避免此类错误的再次发生. 一、混淆集合中元素的形成 例 集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则A B =I 忽视空集的特殊性 例 已知{}|(1)10A x m x =-+=,{}2|230B x x x =--=,若A B ?,则m 的值为 没有弄清全集的含义

小学奥数-鸡兔同笼问题(教师版)

鸡兔同笼问题 在我国古代的数学著作《孙子算经》中,记载着流传甚广的数字歌谣:鸡兔同笼不知数,三十五头笼中露。数清脚共九十四双,各有多少鸡和兔。翻译成现代数学语言为:今有鸡兔共居一笼,已知鸡头与兔头共有35个,鸡脚与兔脚一共有94只。问鸡和兔一共有多少只? 这就是我们通常说的“鸡兔同笼”问题。这一古老的数学问题在现实生活中普遍存在,解法多种多 样,但一般采用假设法。 【例1】★今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。问鸡、兔各有多 少只? 【解析】鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。 假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只。减 少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。所以兔有24÷2=12只,鸡有35-12=23只。 【小试牛刀】小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只? 【解析】假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情 况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换 同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个 2,就可以求出兔的只数。有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。 【例2】★面值是2元、5元的人民币共27张,全计99元。面值是2元、5元的人民币各有多少张? 【解析】这道题类似于“鸡兔同笼”问题。假设全是面值2元的人民币,那么27张人民币是 2×27=54元,与实际相比减少了99-54=45元,减少的原因是每把一张面值2元的人民币当作一 张面5元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45÷3=15张,面值2元的人民币有27-15=12张。 【小试牛刀】小白有2分、5分硬币共40枚,一共是1元7角。两种硬币各有多少枚? 【解析】2分10枚,5分30枚 【例3】★一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。每辆大车比小车多装4吨,这批水泥有多少吨? 【解析】求出大车每辆各装多少吨,是解题关键。如果用36辆小车来运,则剩4×36=144吨,需 45-36=9辆小车来运,这样可以求出每辆小车的装载量是144÷9=16吨,所以,这批水泥共有 16×45=720吨。 【小试牛刀】一批货物用大卡车装要16辆,如果用小卡车装要48辆。已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨? 【解析】96吨

高一数学集合练习题及答案-经典

选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A= }{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U= {}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________.

鸡兔同笼典型例题及详细讲解

鸡兔同笼问题与假设法 鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。 例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只? 分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。 解:有兔(44-2×16)÷(4-2)=6(只), 有鸡16-6=10(只)。 答:有6只兔,10只鸡。 当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。 有鸡(4×16-44)÷(4-2)=10(只), 有兔16—10=6(只)。 由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。 例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人? 分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。 假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有 100-80=20(人)。 答:大和尚有20人,小和尚有80人。 同样,也可以假设100人都是小和尚,大家不妨自己试试。

小学奥数 鸡兔同笼问题(三) 精选例题练习习题(含知识点拨)

1. 熟悉鸡兔同笼的“砍足法”和“假设法”. 2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象. 一、鸡兔同笼 这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔? 你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 二、解鸡兔同笼的基本步骤 解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了。这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”. 假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到. 解鸡兔同笼问题的基本关系式是: 如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数 如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数 当头数一样时,脚的关系:兔子是鸡的2倍 当脚数一样时,头的关系:鸡是兔子的2倍 在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法 模块一、多个量的“鸡兔同笼”——鸡兔同笼问题 【例 1】 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅 膀;蝉6条腿,一对翅膀),求蜻蜓有多少只? 【巩固】 希望小学的生物标本室里有蜻蜓,蝉,蜘蛛共11只,它们共有74条腿,10对翅膀,由图7知该标 本室里有 只蜘蛛。 图7 【巩固】 犀牛、羚羊、孔雀三种动物共有头26个,脚80只,犄角20只.已知犀牛有4只脚、1只犄角,羚 例题精讲 知识精讲 教学目标 6-1-9.鸡兔同笼问题(三)

鸡兔同笼问题五种基本公式和例题讲解..

鸡兔同笼问题五种基本公式和例题讲解 【鸡兔问题公式】 (1)已知总头数和总脚数,求鸡、兔各多少: (总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。 或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。 例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?” 解一(100-2×36)÷(4-2)=14(只)………兔; 36-14=22(只)……………………………鸡。 解二(4×36-100)÷(4-2)=22(只)………鸡; 36-22=14(只)…………………………兔。 (答略) (2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式 (每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数 或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。(例略) (3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。 (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。 或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数; 总头数-鸡数=兔数。(例略) (4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式: (1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。 例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

相关主题
文本预览
相关文档 最新文档