当前位置:文档之家› 微机电系统的发展与应用

微机电系统的发展与应用

微机电系统的发展与应用
微机电系统的发展与应用

微机电系统的发展与应用

文章主要介绍并分析了微机电系统在国内外发展的现状,重点对微机电系统的发展与运用进行了研究,突出围绕在军事领域的侦察、打击行动中的应用,在救援与医疗领域的探查和诊断、手术中的应用,以及在航空航天领域的微型卫星制造与发射中的应用进行了分析,对认识微机电系统的特点,发展相关技术和应用具有一定的借鉴和参考。

标签:微机电系统;发展现状;应用展望

微机电系统(MEMS,Micro-Electro-Mechanical System)的产生最早可追溯到上世纪70年代美国斯坦福大学所开发的硅微加工的气象色谱仪。而MEMS这个概念则是在80年代末被首次正式提出,这标志着其研究的真正开始[1]。MEMS 得益于微电子学制造的飞速发展,它将普通芯片的电气特性和机械可动结构这两种特性相结合,具有微型化、能耗低、灵敏度高等优异的性能特点,同时还适合批量生产降低了生产成本[2],MEMS现被广泛应用于高薪技术产业。

很多人容易将MEMS和纳米技术混为一谈,事实上这是两个截然不同却有一定的共同点的领域,两者都有不同于其他常规工程系统的设计理念。主要原因是与常规的机电系统相比,他们之间最根本的区别就是尺寸缩放的物理现象,简单来说就是微尺寸装置与常规尺寸装置的主导力量是不同的。由于尺寸的减小,常规的机电系统可以忽略的作用力就会变成MEMS的主要作用力,比如静电力[3],而惯性力相比较之下就会显得微不足道,因此仅靠缩小几何尺寸而去制造出微尺寸的装置是不现实的。

MEMS主要包括微执行器,微型传感器等,也可由独立的微器件嵌入尺寸较大的系统中,这能够使系统的可靠性、智能化及自动化水平得以提升。执行器与传感器的基本原理是能量转换,在微小尺寸下主要是利用静电感应和电磁感应原理进行开发的。静电驱动器是最广泛使用的微驱动器,有直线型和旋转型两种,对于平板电容驱动力为:

F=■

式中,?着为空气的介电常数,A为平行板的正对面积,v为板间电压,x 为板间距。由这个公式的量纲可以发现,驱动力与几何和运动学的缩放是无关的,事实上当尺寸减小,大多数力会急剧衰减,相比较之下静电力就会显得很大。另一种广泛使用的微驱动器则是电磁驱动器,电磁驱动在常规尺寸的驱动器中是很常见的,但在微型尺寸中却存在很大的技术难题。主要是由于电流的缩放并不理想,当将几何尺寸缩小时,电磁驱动力会相应的减小更高的倍数,因此电磁驱动存在着能耗大,制造困难的不足之处。除了上述的这两种主要的微驱动器,还有压电驱动器、形状记忆合金驱动器、热驱动器等。对于微传感器,由于不需要传输功率,因此对力的缩放相对于微执行器并不重要。微传感器的重要指标参数依然是线性度、分辨率、滞后和抗干扰性等。微传感器已经被成功且广泛应用于应

MEMS传感器的现状及发展前景

M E M S传感器的现状及 发展前景 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

毕 业 设 计 指 导 课 论 文 MEMS传感器的现状及发展前景 摘要:MEMS传感器是随着纳米技术的发展而兴起的新型传感器,具有很多新的特性,相对传统传感器其具有更大的优势。在追求微型化的当代,其具有良好的发展前景,必将受到各个国家越来越多的重视。文章首先介绍了MEMS传感器的分类和典型应用,然后着重对几个传感器进行了介绍,最后对MEMS传感器的发展趋势与发展前景进行了分析。 关键词:MEMS传感器;加度计;陀螺仪;纳米技术;微机构;微传感器StatusandDevelopmentProspectofMEMSSensors Abstract:MEMSsensorisanewtypeofsensorwiththedevelopmentofnanotechnology.Ithasma nynewfeatures,whichhasagreatadvantageovertraditionalsensors.Inthepursuitofminia turizationofthecontemporary,itsgoodprospectsfordevelopment,willbesubjecttomorea

ndmoreattentioninvariouscountries.Firstly,theclassificationandtypicalapplicatio nofMEMSsensorareintroduced.Then,severalsensorsareintroduced.Finally,thedevelopm enttrendanddevelopmentprospectofMEMSsensorareanalyzed. Keywords:MEMSsensor;accelerometer;gyroscope;nanotechnology;micro- mechanism;micro-sensor 目录 一、引言 MEMS传感器是采用微机械加工技术制造的新型传感器,是MEMS器件的一个重要分支。1962年,第一个硅微型压力传感器的问世开创了MEMS技术的先河,MEMS技术的进步和发展促 进了传感器性能的提升。作为MEMS最重要的组成部分,MEMS传感器发展最快,一直受到各发达国家的广泛重视。美、日、英、俄等世界大国将MEMS传感器技术作为战略性的研究领域之一,纷纷制定发展计划并投入巨资进行专项研究。 随着微电子技术、集成电路技术和加工工艺的发展,MEMS传感器凭借体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成以及耐恶劣工作环境等优势,极大地促进了传感器的微型化、智能化、多功能化和网络化发展。MEMS传感器正逐步占据传感器市场,并逐渐取代传统机械传感器的主导地位,已得到消费电子产品、汽车工业、航空航天、机械、化工及医药等各领域的青睐。

微机电系统文献综述

基于Galerkin法分析微梁的动态响应 一、课题研究背景 1.MEMS的概念 MEMS是微机电系统(Micro-Electro-Mechanical System)的英文缩写,是指将微结构的传感技术、致动技术和微电子控制技术集成于一体,形成同时具有“传感-计算(控制)-执行”功能的智能微型装置或微型系统[1]。 随着技术的兴起和发展,MEMS已成为继微电子技术之后在微尺度研究领域中的又一次革命。MEMS通过力、电、磁等能量的转换来实现自身的特有功能,涉及多种物理场的互相耦合,因此它是一个多能量域耦合作用的极其复杂的系统。 2.MEMS的特点 一般地说MEMS具有以下几个非约束性的特征: (1)MEMS器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。尺寸在毫米到微米范围之内,区别于一般宏(Macro),即传统的、大于1cm 尺度的“机械”,并非进入物理上的微观层次。(2)以硅为主要材料,机械电器性能优良:硅的强度、硬度和杨氏模量与铁相当,密度类似于铝,热传导率接近钼和钨。基于(但不限于)硅微加工技术制造。 (3)批量生产大大降低了MEMS 产品成本。用硅微加工工艺在一片硅片上同时可制造出成百上千个微型机电装置或完整的MEMS,批

量生产使性能价格比比之传统“机械”制造技术大幅度地提高。(4)集成化。可以把不同功能、不同敏感方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能器件集成在一起,形成复杂的微系统。微传感器、微执行器和微电子器件集成在一起可制造成可靠性、稳定性很高的MEMS。 3.MEMS的研究领域 作为一门交叉学科,MEMS的研究和开发更是为了在微观领域探索新原理、开发新功能、制造新器件。由于MEMS具有体系小、重量轻、能耗低、集成度高和智能化程度高等一系列优点,MEMS的研究领域不仅与微电子学密切相关,而且还广泛涉及到机械、材料、光学、流体、化学、热学、声学、磁学、自动控制、仿真学等学科,技术影响遍及包括各种传感器件、医疗、生物芯片、通信、机器人、能源、武器、航空航天等领域[2-5],所以MEMS技术是一门多学科的综合技术。 MEMS的研究包括理论基础、技术基础和应用与开发研究。MEMS 理论基础研究主要包括由于尺寸的微小型化、结构材料以及加工方法的不同带来的一些新的理论问题。结构尺寸效应和微小型化理论,如:力的尺寸效应、微结构表面效应、微观摩擦机理、热传导、误差效应和微构件材料性能等等。尺寸减小到一定程度,有些宏观物理量甚至要重新定义,随着尺寸减小,需要进一步研究微结构力学、微动力学、微液体力学、微磨擦学、微电子学、微光学和微生物学等。 4.MEMS的应用

国外MEMS发展大致状况介绍 Microsoft Office Word 97 - 2003 文档

1.1 MEMS概况 1.1.1 MEMS的定义 MEMS是微机电系统(Micro-Electro-Mechanical Systems)的英文缩写。MEMS是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的,目前MEMS加工技术还被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。MEMS主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。 MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。MEMS技术正发展成为一个巨大的产业,就象近20年来微电子产业和计算机产业给人类带来的巨大变化一样,MEMS也正在孕育一场深刻的技术变革并对人类社会产生新一轮的影响。目前MEMS市场的主导产品为压力传感器、加速度计、微陀螺仪、墨水喷咀和硬盘驱动头等。大多数工业观察家预测,未来5年MEMS器件的销售额将呈迅速增长之势,年平均增加率约为18%,因此对对机械电子工程、精密机械及仪器、半导体物理等学科的发展提供了极好的机遇和严峻的挑战。 微机电系统MEMS(Micro-Electro-Mechanical Systems)是一种全新的必须同时考虑多种物理场混合作用的研发领域,相对于传统的机械,它们的尺寸更小,最大的不超过一个厘米,甚至仅仅为几个微米,其厚度就更加微小。采用以硅为主的材料,电气性能优良,硅材料的强度、硬度和杨氏模量与铁相当,密度与铝类似,热传导率接近钼和钨。采用与集成电路(IC)类似的生成技术,可大量利用IC生产中的成熟技术、工艺,进行大批量、低成本生产,使性价比相对于传统“机械”制造技术大幅度提高。完整的MEMS是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。 1.1.2 MEMS的相关技术主要有以下几种: 1.微系统设计技术主要是微结构设计数据库、有限元和边界分析、CAD/CAM仿真和模拟技术、微系统建模等,还有微小型化的尺寸效应和微小

微机电学习心得体会

《微机电机械系统》 学习心得 众所周知,21世纪是一个信息经济时代。为适应时代的发展,作为一名当代大学生,所受的社会压力将比任何时候的大学生都要来得沉重,因此在校期间,我们必须尽可能的利用好学习时间,尽可能地学习更多的知识和能力,学会创新求变,以适应社会的需要。 毕竟,不管将来是要从事什么样的相关行业,都需要掌握较为全面的电子知识,因为小到计算机的组装维修,大到器件的设计与制造,知道的更多更全面,那么对于自己以后找工作以及参加工作帮助就越大。在知识经济时代,没有一个用人单位会傻到和知识作对。 基于这样对社会现状的认识,让我积极、认真地对于学习微机电机械系统有了较为良好的心理基础。而我在第一次接触电子就觉得很新鲜,觉得很奇妙,但随着需求的变化,自己对电子接触的不断深入,认识越来越深,特别是进到大学,专业要求学习电路分析,模拟电路,数字电路,微机电机械系统等等之类。 通过学习微机电机械系统,我了解到:微机电系统是一种先进的制造技术平台。它是以半导体制造技术为基础发展起来的。MEMS技术采用了半导体技术中的光刻、腐蚀、薄膜等一系列的现有技术和材料,因此从制造技术本身来讲,MEMS中基本的制造技术是成熟的。但MEMS更侧重于超精密机械加工,并要涉及微电子、材料、力学、化学、机械学诸多学科领域。它的学科面也扩大到微尺度下的力、电、光、磁、声、表面等物理学的各分支。 微机电系统是微电路和微机械按功能要求在芯片上的集成,尺寸通常在毫米或微米级,自八十年代中后期崛起以来发展极其迅速,被认为是继微电子之后又一个对国民经济和军事具有重大影响的技术领域,将成为21世纪新的国民经济增长点和提高军事能力的重要技术途径。 微机电系统的优点是:体积小、重量轻、功耗低、耐用性好、价格低廉等优点。、性能稳定等。微机电系统的出现和发展是科学创新思维的结果,使微观尺度制造技术的演进与革命。微机电系统是当前交叉学科的重要研究领域,涉及电子工程、材料工程、机械工程、信息工程等多项科学技术工程,将是未来国民经济和军事科研领域的新增长点。

MEMS技术发展现状及发展趋势

MEMS技术发展现状及发展趋势 MEMS系统在工业、信息通信、国防、航空航天、航海、医疗、生物工程、农业、环境和家庭服务等领域有着潜在的巨大应用前景,它将成为本世纪最重要的科技领域和主要的支柱技术之一。 目前对MEMS的需求产业主要来自于汽车工业、通信网络信息业、军事装备应用、生物医学工程;而按专业MEMS分四大类:生物MEMS技术、光学、MEMS技术、射频MEMS技术、传感MEMS 技术。 1.总述 1.1生物MEMS技术 生物MEMS系统具有微型化、集成化、成本低的特点。功能上有获取信息量大、分析效率高、系统与外部连接少,具有实时通信、连续检测的特点。国际上生物MEMS的研究已成为热点,在不久将为生物、分析化学分析系统带来一场重大的革新。 CardioMEMS公司采用MEMS技术制成心血管微传感器可测量动脉的压力,该传感器就像汽车里的EZPass设备(一种在高速公路入口无需停车即可完成付费的自动感应装置)一样工作,本身不带电源,读取信息时在外面用一个感应棒启动传感器即可得到此人动脉的所有相关数据。利用MEMS还能制作出智能型外科器械,减少手术风险和时间,缩短病人康复时间,降低治疗的费用。Verimetra公司正

在利用MEMS把现有手术器械转变成智能型手术器械,可用于多种场合,包括小手术、肿瘤、神经、牙科和胎儿心脏手术等。 药物注入是生物医学MEMS另一个可能有巨幅增长潜力的领域,MicroChipd公司正在开发的一种药物注入系统利用了硅片或聚合物微芯片,其上带有成千上万个微型贮液囊,里面充满药物、试剂及其它药品。这些微芯片能够向人体注入药物,使止痛剂、荷尔蒙以及类固醇之类的注入方式发生革命性的变化。类似这样的生物医学新进展还将催生出新型器械,如便携式掌上型透析机等。 1.2光学MEMS技术 随着信息技术、光信息技术的迅猛发展,MEMS发展的又一领域是与光学结合。即综合微电子、微机械、光电子技术等基础技术,开发新型光器件称为微光机电系统MOEMS,它能把各种MEMS机构件与微光学器件、光波导器件、半导体激光器、光电检测器件等完整地集成在一起,形成一种全新的功能系统。目前较成功的应用科学研究主要集中在两方面:一是基于MOEMS的新型显示、投影设备,主要研究如何通过反射面的物理运动进行光的空间调制,典型代表为新型投影仪、数字微镜阵列芯片和光栅光阀。二是通信系统,主要研究通过微镜的物理运动来控制光路发生预期的改变,较成功的有光开关、关调制器、光滤波器及复用器等光通信器件

2014年微机电系统MEMS行业分析报告

2014年微机电系统MEMS行业分析报告 2014年1月

目录 一、MEMS:智能化时代的核心交互器件 (3) 1、MEMS简介 (3) 2、MEMS发展历程 (4) 3、汽车电子、消费电子和医疗电子是MEMS主要应用领域 (4) 二、智能化时代来临,MEMS迎来黄金发展期 (5) 1、消费电子领域:智能手机等智能终端快速普及驱动MEMS出货量倍增.5 (1)智能手机和平板电脑开启MEMS在消费电子领域应用的新篇章 (6) (2)可穿戴设备MEMS市场启动在即,增长潜力大 (8) 2、医疗电子:MEMS应用最有潜力的领域之一 (9) 3、汽车电子:仍将惯性增长 (11) 4、市场容量预测 (12) 5、从长期来看,物联网崛起将打开MEMS应用的蓝海 (13) 三、MEMS行业技术壁垒高,市场集中度高 (14) 1、技术壁垒高,新产品开发周期长 (14) 2、市场集中度高 (16) 四、国内MEMS产业发展相对滞后,但有望加速 (18) 1、国内市场空间巨大 (18) 2、政策助推,国内MEMS产业有望提速 (19) 3、国内企业在中低端市场已经开始有所突破 (22) 五、相关公司概况 (23) 六、主要风险 (24)

一、MEMS:智能化时代的核心交互器件 1、MEMS简介 在智能化时代,随着技术进步及应用终端朝着“短、小、轻、薄”方向发展,对传感器设备的微型化、低功耗等性能提出了新的要求,MEMS正好适应这一潮流,迎来了黄金发展期。 MEMS(微机电系统)是指集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统,简言之,其工作原理是外部环境物理、化学和生物等信号输入,通过微传感器转换成电信号,经过信号处理(模拟信号或数字信号)后,由微执行器执行动作,达到与外部环境“互动”的功能。

微电子学与集成电路分析

微电子学与集成电路分析 1微电子学与集成电路解读 微电子学是电子学的分支学科,主要致力于电子产品的微型化,达到提升电子产品应用便利和应用空间的目的。微电子学还属于一门综合性较强学科类型,具体的微电子研究中,会用到相关物理学、量子力学和材料工艺等知识。微电子学研究中,切实将集成电路纳入到研究体系中。此外,微电子学还对集成电子器件和集成超导器件等展开研究和解读。微电子学的发展目标是低能耗、高性能和高集成度等特点。集成电路是通过相关电子元件的组合,形成一个具备相关功能的电路或系,并可以将集成电路视为微电子学之一。集成电路在实际的应用中具有体积小、成本低、能耗小等特点,满足诸多高新技术的基本需求。而且,随着集成电路的相关技术完善,集成电路逐渐成为人们生产生活中不可缺少的重要部分。 2微电子发展状态与趋势分析 2.1发展与现状 从晶体管的研发到微电子技术逐渐成熟经历漫长的演变史,由晶体管的研发→以组件为基础的混合元件(锗集成电路)→半导体场效应晶体管→MOS电路→微电子。这一发展过程中,电路涉及的内容逐渐增多,电路的设计和过程也更加复杂,电路制造成本也逐渐增高,单纯的人工设计逐渐不能满足电路的发展需求,并朝向信息化、高集成和高性能的发展方向。现阶段,国内对微电子的发展创造了良好的发展空间,目前国内微电电子发展特点如下:(1)微电子技术创新取得了具有突破性的进展,且逐渐形成具有较大规模的集成电路设计产业规模。对于集成电路的技术水平在0.8~1.5μm,部分尖端企业的技术水平可以达到0.13μm。(2)微电子产业结构不断优化,随着技术的革新产业结构逐渐生成完整的产业链,上下游关系处理完善。(3)产业规模不断扩大,更多企业参与到微电子学的研究和电路中,有效推动了微电子产业的发展,促使微电子技术得到了进一步的完善和发展。 2.2发展趋势 微电子技术的发展中,将微电子技术与其他技术联合应用,可以衍生出更多

微系统集成与封装技术发展现状与趋势探讨

微系统集成与封装技术发展现状与趋势探讨 李晨 王杨 中国电子科技集团公司发展战略研究中心 微系统原来是指MEMS(微机电系统),在欧洲被称为微系统,在美国被称为MEMS,在日本被称为微机器。 如今,美国DARPA的MTO给予微系统技术的定义是:赋予未来能力的一项综合系统技术能力。欧洲对微系统技术的定义是:两类以上技术的微集成。美国军方权威专家评价这是一项引发武器装备新一轮革命性变革的重大创举,是未来战场对抗的核心技术。对我国来说,微系统是继集成电路之后的下一个基础性、战略性、先导性产业,是关注太空、海洋、战略预警和电磁的技术基础。 微系统涉及微电子、光电子、MEMS、架构、算法五方面的集成。微电子、光电子和MEMS 器件是微系统的核心硬件,而架构和算法是构成微系统的宏观基础。本文分别以传感—信息处理—通信与导航—电源管理—集成微细统(功能集成)、新材料—设计方法—制造工艺—系统封装(研发流程)为主线介绍了几十项MTO和IPTO主持的微系统项目,分析微系统的国外技术发展现状。接下来分析了微系统技术的未来发展趋势,包括后摩尔定律将成为指导微系统发展的新规律、三维异构集成是微系统的核心集成技术、向纳米尺度发展、与生物技术相结合、与信息系统一体化等。 由于在未来5~10年,微系统的三维异构集成技术在我国难以应用于大规模批量生产,但在MCM的基础上利用封装技术发展功能集成的微系统可能是比较现实的技术途径。除了实现功能集成,封装还能提高微系统的可信度、抗辐照等特殊环境适应能力,是实现关注海洋、太空、战略预警和电磁的技术途径之一。美国的NASA正在大力开展NEPP项目,希望国内引起足够重视。 在对比分析国内外技术发展差距的基础上,本文总结了国内制约微系统发展的主要问题,包括对微观性与系统性协同发展认识不足、需求超前探索力度不够、系统性研究不够、传统的微电子与MEMS研发水平落后、基础平台投入不足、技术攻关方向不够聚焦与明确、科技情报与技术发展战略研究力量不足等。最后,针对上述问题、未来技术发展趋势和我国国情提出了推动我国微系统技术发展的措施建议,包括加强科技情报与发展战略研究、加强需求牵引落实具体重大项目、创新微系统研发的合作模式、加强领军人才培养、创新项目运作管理模式等。

论述微机电系统mems原理应用以及发展趋势

论述危机电系统(MEMS)原理应用以及发展趋势 090920413 贾猛机制四班首先,我们了解什么叫MEMS。 MEMS是微机电系统(Micro-Electro-Mechanical Systems)的英文缩写。MEMS是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的,目前MEMS加工技术还被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。 MEMS发展的目标在于,通过微型化、集成化来探索新原理、新功能的元件和系统,开辟一个新技术领域和产业。MEMS可以完成大尺寸机电系统所不能完成的任务,也可嵌入大尺寸系统中,把自动化、智能化和可靠性水平提高到一个新的水平。21世纪MEMS将逐步从实验室走向实用化,对工农业、信息、环境、生物工程、医疗、空间技术、国防和科学发展产生重大影响。 微机电系统基本上是指尺寸在几厘米以下乃至更小的小型装置,是一个独立的智能系统,主要由传感顺、作动器(执行器)和微能源三大部分组成。微机电系统涉及物理学、化学、光学、医学、电子工程、材料工程、机械工程、信息工程及生物工程等多种学科和工程技术。微机电系统的制造工艺主要有集成电路工艺、微米/纳米制造工艺、小机械工艺和其他特种加工工种。微机电系统在国民经济和军事系统方面将有着广泛的应用前景。主要民用领域是医学、电子和航空航天系统。美国已研制成功用于汽车防撞和节油的微机电系统加速度表和传感器,可提高汽车的安全性,节油10%。仅此一项美国国防部系统每年就可节约几十亿美元的汽油费。微机电系统在航空航天系统的应用可大大节省费用,提高系统的灵活性,并将导致航空航天系统的变革。例如,一种微型惯性测量装置的样机,尺度为2厘米×2厘米×0.5厘米,重5克。在军事应用方面,美国国防部高级研究计划局正在进行把微机电系统应用于个人导航用的小型惯性测量装置、大容量数据存储器件、小型分析仪器、医用传感器、光纤网络开关、环境与安全监测用的分布式无人值守传感等方面的研究。该局已演示以微机电系统为基础制造的加速度表,它能承受火炮发射时产生的近10.5个重力加速度的冲击力,可以为非制导弹药提供一种经济的制导系统。设想中的微机电系统的军事应用还有:化学战剂报警器、敌我识别装置、灵巧蒙皮、分布式战场传感器网络等。 MEMS的特点是: 1)微型化:MEMS器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。 2)以硅为主要材料,机械电器性能优良:硅的强度、硬度和杨氏模量与铁相当,密度类似铝,热传导率接近钼和钨。 3)批量生产:用硅微加工工艺在一片硅片上可同时制造成百上千个微型机电装置或完整的MEMS。批量生产可大大降低生产成本。 4)集成化:可以把不同功能、不同敏感方向或致动方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能的器件集成在一起,形成复杂的微系统。微传感器、微执行器和微电子器件的集成可制造出可靠性、稳定性很高的MEMS。 5)多学科交叉:MEMS涉及电子、机械、材料、制造、信息与自动控制、物理、化学和生物等多种学科,并集约了当今科学技术发展的许多尖端成果。 MEMS发展现状及市场规模:MEMS技术发展日新月异,各种新产品不断涌现。随着新微机电系统和微系统产品的诞生和不断发展,这些产品的市场扩展非常迅速,MEMS产品在商业市场的每个方面都将占据主导地位。根据市场研究机构The Information Network预估,2008年全球MEMS应用市场将成长11%,市场规模可达78亿美元,其中MEMS在消费电子应用比例可近五成,规模将为35亿美元,预估到2012年全球MEMS应用市场规模将达154亿美元,其中MEMS消费电子应用规模可成长至71亿美元。iSuppli的报告则指出,手机将会是MEMS 下一阶段最具潜力的应用市场,成长预期可超过PC周边和汽车感测领域;到2012年MEMS在手机领域的应用规模将达8.669亿美元,约为2007年3.048亿美元的3倍,出货量达2.009亿颗,是2007年的4倍。市调机构Yole Development的报告更为乐观,其预计2012年MEMS零组件在手机应用市场规模可望达到25亿美元。

机电一体化专业调研报告

机电一体化专业调研报告 一、行业企业人才需求调研 1、机电一体化专业现状及发展趋势 机电一体化是指在机构得主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。机电一体化技术是基于上述群体技术有机融合的一种综合技术,而不是机械技术、微电子技术以及其它新技术的简单组合、拼凑。这是机电一体化与机械加电气所形成的机械电气化在概念上的根本区别。 20世纪90年代后期,开始了机电一体化技术向智能化方向迈进的新阶段,机电一体化进入深入发展时期。一方面,光学、通信技术等进入了机电一体化,微细加工技术也在机电一体化中崭露头脚,出现了光机电一体化和微机电一体化等新分支;另一方面对机电一体化系统的建模设计、分析和集成方法,机电一体化的学科体系和发展趋势都进行了深入研究。同时,由于人工智能技术、神经网络技术及光纤技术等领域取得的巨大进步,为机电一体化技术开辟了发展的广阔天地。这些研究,将促使机电一体化进一步建立完整的基础和逐渐形成完整的科学体系。未来的机电一体化更加注重产品与人的关系,机电一体化的人格化有两层含义。一层是,机电一体化产品的最终使用对象是人,如何赋予机电一体化产品人的智能、情感、人性显得越来越重要,特别是对家用机器人,其高层境界就是人机一体化。另一层是模仿生物机理,研制各种机电一体化产品。 2、机电一体化专业的人才结构和对高技能人才需求分析 2006年第三季度,我校对常州企业的用人情况作了调研,受调研的企业共有60家,这些企业遍及常州各个区及其它地区,从收集的信息来看,受调研的企业只是全市机电类企业的少部分,但有在企业规模、技术力量、产品类型和质量、人才构成的基本状况有一定的代表性。分析数据可以发现,数控机床操作的仍占较多的份额,但也不见去年大需求的状况,电工用工需求明显高于去年,对焊工的需求量在增加,而一些机加工的

MEMS传感器的发展说课讲解

MEM传感器的现状及应用0引言 MEMS (微电子机械系统)传感器是利用集成电路技术工艺和微机械加工方法将基于各种物理效应的机电敏感元器件和处理电路集成在一个芯片上的传感器。20世纪60年代霍尼韦尔研究中心和贝尔实验室研制出首个硅隔膜压力传感器和应变计开创了MEMS技术的先河。此后,MEMS技术的快速发展使得MEMS 传感器受到各发达国家的广泛关注,与此同时,美国、俄国、日本等世界大国将MEMS传感器技术作为战略性的研究领域之一,纷纷制定相关的计划并投入巨资进行专项研究。 MEMS传感器具有体积小、质量轻、功耗低、灵敏度咼、可靠性咼、易于集成以及耐恶劣工作环境等优势,从而促进了传感器向微型化、智能化、多功能化和网络化的方向发展。步入21世纪以后,MEMS传感器正逐步占据传感器市场,并逐步取代传统机械传感器的主导地位,在消费电子产品、汽车工业、航空航天、机械、化工及医药等各领域备受青睐。 1 MEMS专感器的分类及原理 MEMS传感器种类繁多,按照测量性质可以分为物理MEMS传感器、化学MEMS传感器、生物MEMS传感器。按照被测的量又可分为加速度、角速度、压力、位移、流量、电量、磁场、红外、温度、气体成分、湿度、pH值、离子浓度、生物浓度及触觉等类型的传感器。目前,MEMS压力传感器、MEMS加 速度计、MEMS陀螺仪等已在太空卫星、运载火箭,航空航天设备、飞机、各种车辆、生物医学及消费电子产品等领域中得到了广泛的应用。 MEMS传感器主要由微型机光电敏感器和微型信号处理器组成。前者功能与传统传感器相同,主要区别在于用MEMS工艺实现传统传感器的机光电元器

件的同时对敏感元件输出的数据进行各种处理,以补偿和校正敏感元件特性不理想和影响量引入的失真,进而恢复真实的被测量。 待测量 / : 基片/ :——------- -------------- 图1.1 MEMS传感器原理图 MEMS传感器主要用于控制系统。利用MEMS技术工艺将MEMS传感器、MEMS执行器和MEMS控制处理器都集中在一个芯片上,则所构成的系统称为MEMS芯片控制系统。微控制处理器的主要功能包括A/D和D/A转换,数据处理和执行控制算法;微执行器将电信号转换成非电量,使被控对象产生平动、转动、 声、光、热等动作。 2 MEMS专感器的典型应用 2.1 MEMS压力传感器 MEMS压力传感器一般采用压阻力敏原理,即被测压力作用于敏感元件引起电阻变化,利用恒流源或惠斯顿电桥将电阻变化转化成电压,是目前应用最为 广泛的传感器之一,其性能由测量范围、测量精度、非线性和工作温度决定。这种传感器以单晶硅作材料,并采用MEMS技术在材料中间制成力敏膜片,然后在膜片上扩散杂质形成四只应变电阻,再以惠斯顿电桥的方式将应变电阻连接成电路,来获得高灵敏度。从信号检测方式来划分,MEMS压力传感器可分为压 阻式、电容式和谐振式等; 2.1.1 MEMS压力传感器在汽车上的应用 MEMS传感器是在汽车上应用最多的微机电传感器。汽车上MEMS压力传感器可用于测量气囊贮气压力、燃油压力、发动机机油压力、进气管道压力、空气过

机电行业分析报告

机电行业分析报告 机电行业分析报告 机电行业分析报告 机电发展的趋势便是机电一体化,机电市场分析投资价值研究报告提到,机电一体化是集机械、电子、光学、控制、计算机、信息等多学科的交叉综合,它的发展和进步依赖并促进相关技术的发展和进步。因此,机电一体化的主要发展方向如下: 1、智能化 智能化是21 世纪机电一体化技术发展的一个重要发展方向。机电市场分析研究报告指出,人工智能在机电一体化建设者的研究日益得到重视,机器人与数控机床的智能化就是重要应用。这里所说的“智能化”是对机器行为的描述,是在控制理论的基础上,吸收人工智能、运筹学、计算机科学、模糊数学、心理学、生理学和混沌动力学等新思想、新方法,模拟人类智能,使它具有判断推理、逻辑思维、自主决策等能力,以求得到更高的控制目标。诚然,使机电一体化产品具有与人完全相同的智能,是不可能的,也是不必要的。但是,高性能、高速的微处理器使机电一体化产品赋有低级智能或人的部分智能,则是完全可能而又必要的。 2、模块化

模块化是一项重要而艰巨的工程。由于机电一体化产品种类和生产厂家繁多,北京电机研制和开发具有标准机械接口、电气接口、动力接口、环境接口的机电一体化产品单元是一项十分复杂但又是非常重要的事。如研制集减速、智能调速、电机于一体的动力单元,具有视觉、图像处理、识别和测距等功能的控制单元,以及各种能完成典型操作的机械装置。这样,可利用标准单元迅速开发出新产品,同时也可以扩大生产规模。这需要制定各项标准,以便各部件、单元的匹配和接口。由于利益冲突,近期很难制定国际或国内这方面的标准,但可以通过组建一些大企业逐渐形成。显然,从电气产品的标准化、系列化带来的好处可以肯定,无论是对生产标准机电一体化单元的企业还是对生产机电一体化产品的企业,规模化将给机电一体化企业带来美好的前程。 3、网络化 机电市场分析研究发现,20 世纪90 年代,计算机技术等的突出成就是网络技术。网络技术的兴起和飞速发展给科学技术、工业生产、政治、军事、教育义举人么日常生活都带来了巨大的变革。各种网络将全球经济、生产连成一片,企业间的竞争也将全球化。机电一体化新产品一旦研制出来,只要其功能独到,质量可靠,很快就会畅销全球。由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾,而远程控制的终端设备本身就是机电一体化产品。现场总线和局域网技术是家用电器网络化已成

探讨压电MEMS微执行器技术现在及发展趋势

探讨压电MEMS微执行器技术现在及发展趋势 压电MEMS通过单片即可实现微执行、能量收集、传感和无线通信,是应用潜力巨大的热点技术。压电MEMS微执行器能够精确、自主地执行复杂动作如直线、旋转、加速度、钳动等,以此完成对极微小器件与结构的纳米尺度精确操作。因此,压电MEMS微执行器不但能够满足集成微系统(IMS)对自测试性、微定位性和片上操控性的严苛要求,同时能够满足集成微系统对输出力矩/体积效能比、响应速度、分辨率、功耗、集成度方面的需求。 2015年开始,以集成微系统任务需求为牵引,通过问题定位、技术分解,确立了基于PZT 材料的MEMS微执行器研究,目前取得的研究进展包括以下几个方面:压电MEMS 多自由度微振动台技术、MEMS惯性传感器自标定技术、MEMS压电微马达技术与PZT材料与微执行器长期稳定性研究。 1 压电MEMS多自由度微振动台技术 压电MEMS微执行器的设计难点包括了大位移与低驱动电压之间的制约、驱动负载功率与执行器薄型化之间的制约、不可避免的工艺误差带来的性能退化。针对上述性能提升难点,在不断的摸索过程中形成和发展了位移放大机构设计、叠加模态去耦设计、负载带宽优化等相关技术。同时,根据多轮次的流片与设计、版图相互调整的摸索经验,完成压电多自由度微振动台数学模型研究,建立工艺参数与器件性能的映射关系,同时结合器件设计优化,实现器件设计与工艺制备的协同优化,获得压电微执行器稳定工艺流程与优异器件性能。 如图1所示,制得的多自由度微振动台芯片,在位移/电压、执行器厚度方面处于国际领先水平。而微执行器薄型化、低电压、位移等指标的进步对于后续集成和应用具备重要意义。指标对比见表1。 图1 (a)不同结构微振动台与(b)动态测试结果 表1 微振动台性能参数及对比

微电机行业分析报告

微电机行业发展报告 录目 第一章:行业电机概念 :电机定义1.1 :电机类别2.1 :电机结构3.1 第二章:行业简介 :行业发展简史1.1 章:微电机行业界定及结论汇总第3 :1.1微电机行业定义及界定 :2.1报告结论汇总 第四章:微电机行业发展分析 1.1:信息处理机器(含通讯器材)用的微电机 2.1:视听设备用微电机:汽车用微电机 3.1:家用电器用微电机 4.1 :各类机械设备、机器人、武器装备、保健设备等用微电机5.1 第五章:中国微电机行业发展趋势

1.1:节能高效化 :永磁化、无刷化2.1. 3.1:智能化、模块化 :中国微电机行业发展前景分析第六章 1.1:中国微电机行业发展存在的问题 2.1:中国微电机行业发展趋势及前景 第七章:影响行业发展的有利和不利因素 :1.1影响行业发展的有利因素 :2.1影响行业发展的不利因素 第一章:行业电机概念 :定义1.1 160mm或额定功率小于750mW的电微电机,全称“微型电动机”,是指直径小于 机。微电机常用于控制系统或传动机械负载中,用于实现机电信号或能量的检测、解析运算、放大、执行或转换等功能。 2.1:类别

微电机门类繁多,大体可分为直流电动机、交流电动机、自态角电动机、步进电动机、 旋转变压器、轴角编码器、交直流两用电动机、测速发电机、感应同步器、直线电机、压 电电动机、电机机组、其他特种电机等13大类。 微电机综合了电机、微电子、电力电子、计算机、自动控制、精密机械、新材料等多 门学科的高新技术行业,尤其是电子技术和新材料技术的应用促进了微特电机技术进步。 微电机品种众多(达6000余种)、规格繁杂、市场应用领域十分广泛,涉及国民经济、 国防装备、人类生活的各个方面,凡是需要电驱动的场合都可以见到微电机。. 微电机制造工序多,涉及精密机械、精细化工、微细加工、磁材料处理、绕组制造、绝缘处理等工艺技术,需要的工艺装备数量大、精度高,为了保证产品的质量还需一系列精密的测试仪器,是投资性较强的行业。 简而言之,微电机行业是劳动密集型和技术密集型的高新技术产业。 :结构3.1 微特电机在结构上大体可分为三类:电磁式、组合式、非电磁式 :电磁式、基本组成与普通电机相似,包括定子、转子、电枢绕组、电刷等部件,3.11但结构格外紧凑。 :组合式、常见的有两种:微电机与电子线路的组合。例如直流电动机与传感器的3.12方向直线电动机的组合等。方向与Y组合,X:非电磁式、外形结构与电磁式一样,如旋转类产品作成圆柱形,直线类产品作成3.13方形,但内部结构因其工作原理不同而差别很大。 第二章:发展简史: 我国微电机行业创建于20世纪50年代末期,从为满足国防武器装备需要开始,经 历了仿制、自行设计和研究开发的阶段,至今已有40余年的发展历史,已形成产品开发、 规模化生产和关键零部件、关键材料、专用制造设备、测试仪器配套的完整的工业体系。

MEMS封装技术的发展与应用

MEMS封装技术的发展与应用 一、MEMS技术的发展状况 1.1 MEMS概述 MEMS是微机电系统(Micro-Electro-Mechanical Systems)的英文缩写。它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。MEMS技术是以微电子、微机械和材料科学科学为基础,研究、设计、制造具有特定功能的微型装置的一门学科。MEMS器件与传感器集成技术经过十几年的发展,目前已相当成熟。但是封装的制造成本目前仍是制约MEMS产品市场进一步扩大的关键因素。 MEMS器件由于其应用环境的复杂而和很难与一般的封装方法相适应。通常,MEMS 器件的封装应满足下列要求: 1)封装应对传感器芯片提供一个或多个环境接口 2)封装对传感器芯片,尤其是那些对应力特别敏感的传感器带来的应力要尽可能小3)封装与封装材料不应对应用环境造成不良影响 4)封装应保护传感器及电子器件免遭不利环境的影响 5)封装必须提供与外界的通道,可通过电接触或无线的方法 通常情况下,可将各种封装方法分为三类:晶片级封装方法、单芯片封装和多芯片模块与微系统封装。 1.2 封装技术现状 1.2.1 晶片级封装 过去十几年中晶片贴合技术备受关注,国外已经开发了多种硅-硅、玻璃-硅和玻璃-玻璃贴合方法。早期的硅-硅贴合方法只能用于较高的温度,最近几年不断有低温方法出现,目前已可在120~400℃下实现牢固而可靠的贴合。因此可采用双极和CMOS工艺完成。玻璃-硅贴合通常采用阳极氧化。当只有一层玻璃介质层时可采用30~60V的低电压。当使用含碱量低的低熔点玻璃时,可用融化玻璃的方法实现镜片贴合,并完全与CMOS工艺兼容,如果在实际贴合之前用热处理的方法去除玻璃种的气泡,就可形成密封性能极好的高真空腔。晶片-晶片贴合的其他选择还包括采用粘结剂和易熔方法等。贴合期间在接触点上施加压力还可实现晶片之间的电互连。 另一种晶片级封装的方法是在一排生化传感器上制作一些微型Si3N4帽,用于保护化学传感器的寿命界面,从而达到延长传感器寿命的目的。还可以在晶片上制作流量敏感器和微泵的进出通道。可用晶片金属化技术通过服饰空实现晶片有源面与背面的连接。采用这种方法可使背面接触很容易地与有源面隔离开,芯片很容易的安装到任何载体上或任何屏蔽中,而不会妨碍进出通道。 1.2.2 单芯片封装

微机电系统的发展与应用

微机电系统的发展与应用 文章主要介绍并分析了微机电系统在国内外发展的现状,重点对微机电系统的发展与运用进行了研究,突出围绕在军事领域的侦察、打击行动中的应用,在救援与医疗领域的探查和诊断、手术中的应用,以及在航空航天领域的微型卫星制造与发射中的应用进行了分析,对认识微机电系统的特点,发展相关技术和应用具有一定的借鉴和参考。 标签:微机电系统;发展现状;应用展望 微机电系统(MEMS,Micro-Electro-Mechanical System)的产生最早可追溯到上世纪70年代美国斯坦福大学所开发的硅微加工的气象色谱仪。而MEMS这个概念则是在80年代末被首次正式提出,这标志着其研究的真正开始[1]。MEMS 得益于微电子学制造的飞速发展,它将普通芯片的电气特性和机械可动结构这两种特性相结合,具有微型化、能耗低、灵敏度高等优异的性能特点,同时还适合批量生产降低了生产成本[2],MEMS现被广泛应用于高薪技术产业。 很多人容易将MEMS和纳米技术混为一谈,事实上这是两个截然不同却有一定的共同点的领域,两者都有不同于其他常规工程系统的设计理念。主要原因是与常规的机电系统相比,他们之间最根本的区别就是尺寸缩放的物理现象,简单来说就是微尺寸装置与常规尺寸装置的主导力量是不同的。由于尺寸的减小,常规的机电系统可以忽略的作用力就会变成MEMS的主要作用力,比如静电力[3],而惯性力相比较之下就会显得微不足道,因此仅靠缩小几何尺寸而去制造出微尺寸的装置是不现实的。 MEMS主要包括微执行器,微型传感器等,也可由独立的微器件嵌入尺寸较大的系统中,这能够使系统的可靠性、智能化及自动化水平得以提升。执行器与传感器的基本原理是能量转换,在微小尺寸下主要是利用静电感应和电磁感应原理进行开发的。静电驱动器是最广泛使用的微驱动器,有直线型和旋转型两种,对于平板电容驱动力为: F=■ 式中,?着为空气的介电常数,A为平行板的正对面积,v为板间电压,x 为板间距。由这个公式的量纲可以发现,驱动力与几何和运动学的缩放是无关的,事实上当尺寸减小,大多数力会急剧衰减,相比较之下静电力就会显得很大。另一种广泛使用的微驱动器则是电磁驱动器,电磁驱动在常规尺寸的驱动器中是很常见的,但在微型尺寸中却存在很大的技术难题。主要是由于电流的缩放并不理想,当将几何尺寸缩小时,电磁驱动力会相应的减小更高的倍数,因此电磁驱动存在着能耗大,制造困难的不足之处。除了上述的这两种主要的微驱动器,还有压电驱动器、形状记忆合金驱动器、热驱动器等。对于微传感器,由于不需要传输功率,因此对力的缩放相对于微执行器并不重要。微传感器的重要指标参数依然是线性度、分辨率、滞后和抗干扰性等。微传感器已经被成功且广泛应用于应

MEMS传感器研究现状和发展趋势

MEMS传感器研究现状和发展趋势摘要:微型化、集成化及智能化是当今科学技术的主要发展方向。随着微机电系统(MicroElectroMechanicalSystem,MEMS)和微加工技术的发展,微型传感器也随之迅速发展。介绍了MEMS传感器概念及种类,并对其研究现状、应用领域进行了分析总结和介绍。最后,对MEMS传感器的一些发展趋势进行了论述和展望。 关键词:MEMS;传感器;微系统 0引言 MEMS传感器是采用微电子和微机械加工技术制造出来的新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。同时,微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。第一个微型传感器诞生于1962年,至此开启了MEMS 技术的先河[1]。此后,MEMS传感器作为MEMS技术的重要分支发展速度最快,长期受到美、日、英、俄等世界大国的高度重视,各国纷纷将MEMS传感器技术作为战略性技术领域之一,投入巨资进行专项研究。随着微电子技术、集成电路和加工工艺的发展,传感器的微型化、智能化、网络化和多功能化得到快速发展,MEMS传感器逐步取代传统的机械传感器,占据传感器主导地位,并在消费电子、汽车工业、航空航天、机械、化工、医药、生物等领域得到了广泛应用。 1MEMS传感器及分类 从微小化和集成化的角度,MEMS(或称微系统)指可批量制作的、

集微型机构、微型传感器、微型执行器以及信号处理和控制电路,直至接口、通讯和电源等于一体的微型器件或系统[2]。微机电系统(MEMS)是在微电子技术的基础上发展起来的,融合了硅微加工和精密机械加工等多种微加工技术,并应用现代信息技术构成的微型系统。是20世纪末、21世纪初兴起的科学前沿,是当前十分活跃的研究领域,涉及多学科的交叉,如物理学、力学、化学、生物学等基础学科和材料、机械、电子、信息等工程技术学科[3]。该领域研究时间虽然很短,但是已经在工业、农业、机械电子、生物医疗等方面取得很大的突破,同时产生了巨大的经济效益。 1.1MEMS传感器 MEMS传感器是采用微机械加工技术制造的新型传感器,是MEMS 器件的一个重要分支。依赖于MEMS技术的传感器主要有以下技术特点:1)微型化:体积微小是MEMS器件最为明显的特征,其芯片的尺度基本为纳米或微米级别。2)多样化:MEMS的多样化主要表现在其工艺、应用领域及材料等方面。3)集成化:通过MEMS工艺,可以实现对功能、敏感方向不同的多个传感器的集成,形成微传感器阵列或微系统。4)尺度相应现象:MEMS芯片尺度的缩小,对原有理论基础带来了较大影响,如力的尺寸效应、微摩擦学、微构造学、微热力学等,都需要更加深入的研究。5)批量化:MEMS器件与微电子芯片相似,可进行大批量生产且生产成本不高,有利于MEMS 产品工业化规模经济的实现。 1.2MEMS传感器典型分类

相关主题
文本预览
相关文档 最新文档