当前位置:文档之家› 北大版高等数学第五章 向量代数与空间解析几何答案 习题53.

北大版高等数学第五章 向量代数与空间解析几何答案 习题53.

北大版高等数学第五章 向量代数与空间解析几何答案 习题53.
北大版高等数学第五章 向量代数与空间解析几何答案 习题53.

习题5.3

1.:

(1)5310(2)270(3)50(4)290(5)50(6)0.(1).(2).(3).(4).(5).(6).2.:

(1)(1,5,1)(3,2,2);(2)(5,2,8);

(3)x z x y z y y z x y x y Oxz x z Oyz y Oxz -+=+-=+=-=--==---指出下列平面位置的特点平行于轴过原点平行于平面过轴平行于轴平面求下列各平面的方程平行于轴且通过点和平行于平面且通过点垂直于平解451(2,7,3)(0,0,0);(4)(5,4,3)(2,1,8).(1)(0,1,0),(2,7,3),010(3,0,2).

273

3(1)2(1)0,3250.(2) 2.

(3)(1,4,5),(2,7,3),145(47,13,1).

27347x y z Oyz x z x z y -+=---==-==-------=+-===-=-=-=----面且通过点及垂直于平面且通过点及解i j

k

a b n i j k

a b n 1310.

(4)(1,0,0),(7,5,5),100(0,5,5)5(0,1,1).

755(4)(3)0,70.

x y y z y z ++===-==-=---++-=-+=i

j k

a b n

3.(2,4,8),(3,1,5)(6,2,7).(5,3,3)(4,6,1).

533(15,17,42),

4

61

15(2)17(4)42(8)0,1517422380.

4.1,A B C x y z x y z y z a a --=---=-----=--------+-=+-+=++=求通过点及的平面方程设一平面在各坐标轴上的截距都不等于零并相等,且过点(5,-7,4),求此平面的方程.

x 5 a 解解a ,b i j

k

n =741,2,20.

5.(2,1,2)(8,7,5),.(6,8,7).6(8)8(7)7(5)0,6871390.

a x y z a a

A B B AB x y z x y z -++==++-=--=-+-+-=++-=a 已知两点及求过且与线段垂直的平面解n

126.(2,0,3)22470,3250.

224(0,16,8)8(0,2,1).2(3)0,30.

3127.94230.0,420,1,2,20.

2408.:380x y z x y z y z y z x x y z By Cz B C B C y z x z l l y z --++=+-+=-==++=++=---+=+=--===--=+-=??-+=?求过点且与垂直的平面方程求通过轴且与平面垂直的平面方程取求通过直线且与直线解解i

j

k

n =0101240

:.

6010

2(6,1,3),11

0(1,1,1),031

1

1

613(2,9,7).0,4,8/3.1

11

2(4)9(8/3)7()0,297320.

383129.::1324x y y z z l y x y z x y z x t x y z l l y t z --=??--=?

==--=--=-=--===---++-=-+-+==+++-===+0平行的平面方程用代入的方程得x 求直线与直线解i

j k

i j k

a b =i j k n 000,

26

383112621116

,11,,3243223

13141314

8,,,(8,,3333

324(0,6,3)3(0,2,1).2(1)(2)0,240.

312

t t t t t t t t x y z y z y z ??

??=+?

+++++-==+=+=+=-=-=-=----==-=-+--=-+=的交点坐标并求通过此两直线的平面方程.

求两条直线交点坐标:交点).

解i j k

n

121112210.:

:.211422

(1,1,1)(2,2,0).211(4,5,3).3314(1)5(1)3(1)0,45320.

x y z x y z

l l x y z x y z -+++-====-------=------+++=--++=求通过两直线和的平面方程两直线平行.平面过点和解 i j k

n =

12211212

11.:

:.121012

,(1,2,1)(0,1,2)21123,5,0,.121210(1)3x y z x y z l l t t l t t x y z -++--====----?--+-+?

====?-??

+-+=证明两直线和是异面直线证首先两直线的方向向量 和 不平行.

x=-2

y=1+t 矛盾故两直线无公共点.

z=2-2t

两直线不平行,又无交点,故是异面直线.

12.将下列直线方程化为标准方程及参数方程:0000350(2)280;280.

(1)211(1,7,5).

31

2

10

(1)0,6,7.

280;67

.

7567,.

75(2)(1)103(3,2,1).

012

(2)0,x z x y z y z y z x y z y z y z x t y t t z t -+=????

-+-=-+=??=-=----+=?===?-+-=?--==--=??

=--∞<<+∞??=-?=-=-=解中令解之得x 标准方程1参数方程:中令z 直i j k

n i j k

n 005,8.58.3215382,.

y x y z

x t y t t z t =-=-++===-+??

=-+-∞<<+∞??=?接得x 标准方程

参数方程:

00013.(3,2,5)3790.

100(0,5,2),

325520.

520

3790.

052(33,6,15)3(11,2,5).

317500,0, 3.

390.

3:11x y z y z y z x y z y z y x x y x ---+===-+=+=??

--+=?==--=----=?===-?-+=?+=-求通过点及x 轴的平面与平面的交线方程解地第一个平面的法向量平面方程直线方程直线的方向向量直线方程i j k

n i j k

a .

25

y z

=-

0000

1213260

14.,403260

(0,0,),

40

260 3.

024040

15.::.

380601020x y z D Oz x y z D x y z Oz z x y z D z D z z D x z x y l l y z z y l -+-=??+-+=?

-+-=???+-+=?-=???==?-+=?--=--=????-+=-+=??

=-当为何值时直线与轴相交?

解直线与轴相交存在在此直线上试求通过直线并与直线平行的平面方程解的方向向量i

j k

a 2000(6,1,3).31

110(1,1,1)(1,1,1).

011613(2,3,5).

111

8

04,.

38

:2(4)3()50,2350.

3

l z x y x y z x y z =-=-=---=--==--===----++=+-=的方向向量平面的法向量在的方程中令得所求平面方程即i j k

b i

j k

n

043

16.(1,2,3).

132

(1,2,3):(1)3(2)2(3)0.43.

32:

1

(1)3(432)2(323)0,,

2

15

(,,2).

222

x y z x y z x t y t z t t t t t d --==-------==??

=-??=-?

-------====求点到直线的距离解过点垂直于直线的平面直线参数方程:代入平面方程得对应交点的参数直线与平面交点为所求距离

000017.(2,1,3)2230.

(2,1,3)2230:2212,.32

2(22)2(12)(3)30..

9

141325,,.

999

141325(2,1,3)2230,,999x y z x y z x t

y t t z t t t t t x y z x y z -+-=-+-==+??

=--∞<<+∞??=+?

+--++-==-===?-+-=求点到平面的距离与投影解过点垂直于平面的直线方程的参数方程代入平面方程点在平面

上的投影为.

(2,1,3)22302.3

x y z ? ???

-+-==点在平面的距离为

01111

18..123123

11

(1,1,0)123

11

(1,1,0)123

(1)2(1)30.

12,131

(1)2(2)3(13)0,7

x y z x y z x y z x y z x y z x t y t z t t t t t -++-====--+--==-+--==---++==??

=--??=+?

---++==-求两平行直线

与的距离解所求的就是点到直线的距离.

作法与16题雷同.过点垂直于直线的平面:

直线的参数方程

代入平面方程

111.

154

(,,).

7771119.(2,1,3):321

3(2)2(1)(3)0.1312:

3(33)2(2d x y z

A l A l x y z x t l y t

z t t t t --==+-==--+---==-+??

=+??=-?

-++直线与平面交点所求距离求过点并与直线垂直且相交的直线方程.

解过点垂直于直线的平面方程直线的参数方程代入平面方程求交点对应的参数他03

)(3)0,.

7

2133

(,,).

777

,2133126246

(2,1,3)(,,)(2,1,4).

7777777

213

:.

214

t t B A B AB x y z ---==-=----=--=-----==-交点连结点 的直线的方向向量

所求直线方程

020.36270362140.

7

(0,0,)2

367/227/22)140,

391837,(,,).

77714 3.

x y z x y z A x t A y t

z t t t +--=+-+=-=??

=??=--?--+==----==求两平行平面与之间的距离解点在第一张平面上.

过垂直于第二张平面的直线的参数方程:求直线与第二张平面的交点:3(3t)+6(6t)-2(所求距离

北大版高等数学第4章习题集解答

习题 4.1 3212121.()32[0,1][1,2]Rolle 0,(0)(1)(2)0,()[0,1][1,2]Rolle 620,33(0,1),(1,2),()()0.33 2.f x x x x f f f f f x x x x x x f x f x =-+==='-+===+''= ∈===2验证函数在区间及上满足定理的条件并分别求出导数为的点. 处处可导故在区间及上满足定理的条件.f (x)=3x 讨论下列 解1111()[1,1]Rolle ,,(1,1),()0. (1)()(1)(1),,;(2)()1(1)()(1)(1)(1)(1)(1)(1)()0,(1,1),()0.1 (2)(m n m n m n m n f x c f c f x x x m n f x f x m x x n x x m n x x m mx n nx c f c m f x -----∈-'==+-='=+--+--'=+----== ∈-=+'函数在区间上是否满足定理的条件若满足求使为正整数解1/32 ),(0). 3 3.()ln [1,],?11 (),()(1)ln ln11(1), 1. https://www.doczj.com/doc/ca16271003.html,grange (1)|sin sin |||; (2)|tan tan |||,,(/2,/2); (3) ln x f f x x e c f x f e f e e c e x c y x x y x y y x x y b a b b b a ππ-'=-=='=-=-==-=--≤--≥-∈--<<不存在写出函数在区间上的微分中值公式并求出其中的应用中值定理,证明下列不等式:解222(0).(1)|sin sin ||(sin )|()||cos |||||.(2)|tan tan ||(tan )|()|sec ||||. (3)ln ln ln (ln )|()((,)).5.()(1)(4)x c x c x c a a b a x y x x y c x y x y y x x y x c y x y x b a b b a b a b a x b a c a b a a c a P x x x ===-<<'-=-=-≤-'-=-=-≥----'<=-=-=∈<=--证明多项式的导函数的证1,212,. ()1,2,Rolle ,,,()(2,1),(1,1),(1,2). 6.,,,:()cos cos 2cos (0,). n n P x P x c c c f x c x c x c nx π±±---=+++L L 三个根都是实根并指出它们的范围有四个实根根根据定理它的导函数有三个实根又作为四次多项式的导函数是三次多项式,最多三个实根,故的导函数的三个根都是实根,分别在区间设为任意实数证明函数在内必有根证

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

北大版高数答案

习题 1.1 22 22222222222222 22. ,,.3,3.3, ,313 2.961,9124,31.3,93,3,3.,,. ,,,,p p p q p q p q q p p k p k p k k p k k p p k k q q k q p q p a a a b p a pb b b ====+=+=++=++======为互素自然数除尽必除尽否则或除将余故类似得除尽与互素矛盾.设是正的素数为互素自然数,则素证 2.证 1.2222222,, .,..,: (1)|||1| 3.\;(2)|3| 2. 0,13,22,1,(1,0);01,13,13,(0,1);1,13,3/2,(1,3/2).(1,0)(0,1)p a p a a pk p k pb pk b p b a b x x x x x x x x x x x x x x x X ===+-<-<<-+-<>->--<<+-<<>+-<<=-?数除尽故除尽类似得除尽此与为互素自然数矛盾.解下列不等式若则若则若则3.解 (1)222(1,3/2). (2)232,15,1||5,1||(1).,(1)||||||;(2)||1,|||| 1.(1)|||()|||||||||,||||||.(2)|||()||||||x x x x x a b a b a b a b a b a a b b a b b a b b a b a b a b a b b a b b ?-<-<<<<<<<=?-+≥--<<+=++-≤++-=+++≥-=+-≤+-<设为任意实数证明设证明证4. ,| 1.(1)|6|0.1;(2)||. 60.160.1. 5.9 6.1.(, 6.1)( 5.9,).(2)0,(,)(,);0,;0,(,). 1 1,01,. 1, 1.11x x a l x x x x X l X a l a l l x a l X a a n n a b a ++>->+>+<->-<-=-∞-?-+∞>=++∞?-∞-=≠<=-∞+∞-><<>=>-=-=解下列不等式或或若若若若证明其中为自然数若解(1)证5.: 6.1200001)(1)1).(,),(,).1/10.{|}.(,),,{|}, 10 {|}./10,(1)/10,/10(1)/101/10n n n n n n n n n n n b b n a b a b n b a m A A m A a b A B C B A x x b C A x x a B m m C b a m m --+++><-=∈?=?=?=?≥=?≤-∈-≤-Z L 设为任意一个开区间证明中必有有理数取自然数 满足考虑有理数集合 = 若则中有最小数-=证 7.(,),(,).1/10.|}.10n n n n a b a b m n b a A m <-=∈Z ,此与的选取矛盾. 设为任意一个开区间证明中必有无理数取自然数 满足考虑无理数集合 以下仿8题.8.证习题1.2

高等代数(北大版第三版)习题答案III

高等代数(北大*第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第三部分,其他请搜索,谢谢!

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

北大版高等数学课后习题答案完整版

习题 1.1 22 22222222222222 223. 33,,.3,3.3, ,313 2.961,9124,31.3,93,3,3.,,. ,,,,p p p q p q p q q p p k p k p k k p k k p p k k q q k q p q p p a a p a b p a pb b b ====+=+=++=++======证明为无理数若不是无理数,则为互素自然数除尽必除尽否则或除将余故类似得除尽与互素矛盾.设是正的素数证明是无理数设为互素自然数,则素证 2.证 1.2222222,, .,..,: (1)|||1| 3.\;(2)|3| 2. 0,13,22,1,(1,0);01,13,13,(0,1);1,13,3/2,(1,3/2).(1,0)(0,1)p a p a a pk p k pb pk b p b a b x x x x x x x x x x x x x x x X ===+-<-<<-+-<>->--<<+-<<>+-<<=-?数除尽故除尽类似得除尽此与为互素自然数矛盾.解下列不等式若则若则若则3.解 (1)222(1,3/2). (2)232,15,1||5,1||5,(1,5)(5,1).,(1)||||||;(2)||1,|||| 1.(1)|||()|||||||||,||||||.(2)|||()||||||x x x x x a b a b a b a b a b a a b b a b b a b b a b a b a b a b b a b b ?-<-<<<<<<<=?--+≥--<<+=++-≤++-=+++≥-=+-≤+-<设为任意实数证明设证明证4.,| 1.(1)|6|0.1;(2)||. 60.160.1. 5.9 6.1.(, 6.1)( 5.9,).(2)0,(,)(,);0,;0,(,). 1 1,01,. 1, 1.11n n n n x x a l x x x x X l X a l a l l x a l X a a a n n a a b a a ++>->+>+<->-<-=-∞-?-+∞>=++∞?-∞-=≠<=-∞+∞-><-<>=>-=-=解下列不等式或或若若若若证明其中为自然数若显然解(1)证5.: 6.120000(1)(1)(1). (,),(,).1/10.{|}.(,),,{|}, 10 {|}./10,(1)/10,/10(1)/101/10n n n n n n n n n n n n n a b b n a a b a b n b a m A A m A a b A B C B A x x b C A x x a B m m C b a m m ---+++>-<-=∈?=?=?=?≥=?≤-∈-≤-Z 设为任意一个开区间证明中必有有理数取自然数 满足考虑有理数集合 = 若则中有最小数-=证7.(,),(,).1/10.{2|}.10n n n n a b a b m n b a A m <-=+ ∈Z ,此与的选取矛盾. 设为任意一个开区间证明中必有无理数取自然数 满足考虑无理数集合 以下仿8题.8.证习题1.2

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

北大版高等数学第5章习题解答

习题5.1 1.,,,,,().11 ,,().22 ABCD AB AD AC DB MA M AC DB MA AM AC ===+=-=-=- =-+设为一平行四边形试用表示为平行四边形对角线的交点解a b.a b a b a b a b () 2.,1 (). 2 11 22 1 ().2 M AB O OM OA OB OM OA AM OA AB OA OB OA OA OB =+=+=+=+-=+设为线段的中点,为空间中的任意一点证明 证 3.,,1 (). 3 221 () 332 1 (), 3 1(),3M ABC O OM OA OB OC OM OA AM OA AD OA AB AC OA AB AC OM OB BA BC OM OC =++=+=+=+?+=++=++=设为三角形的重心为空间中任意一点证明证1 (). 3 1 3,(). 3 CA CB OM OA OB OC OM OA OB OC ++=++=++ 4.,1 ,(). 4 1 (), 2 11 (),(), 221 (). 2 4ABCD M O OM OA OB OC OD OM OA AM OA AB AD OM OB BA AD OM OC BA DA OM OD AB DA OM OA OB OC OD =+++=+=++=++=++=++=+++设平行四边形的对角线交点为为空间中的任意一点证明证1 ,(). 4 OM OA OB OC OD =+++

2222225.?(1)()();(2)();(3)()(). (1).:()().(2).:()0, 1.(3),6.==?=?======0对于任意三个向量与判断下列各式是否成立不成立例如,不成立例如,成立都是与组成的平行六面体的有向体积利用向量证明三角形两边中点的连线平行解a,b c,a b c b c a a b a b a b c c a b a b i c =j.a b c =j,b c a =a i b j,a b a b a,b c .,1122 11 ().22DE DA AE BA AC BA AC BC =+= +=+=于第三边并且等于第三边长度之半.证 2227.: (1),;(2).(1)()()()()||||0. ()cos |||||||||||||AC BD AB BC BC CD AB BC BC CD BC CD AB AC AB AB AD AB AB AB AD a AB AD AB AC AB AC AB AC α=++=+-=-=+++===利用向量证明菱形的对角线互相垂直且平分顶角勾股弦定理证2, ||()cos cos . ||||||||||| ,. a AC AD AB AD AD AB AD AD a AB AD AB AC AB AC a AC βααβαβ+++=====与都是锐角故 22 2 2 2 (2)||()()||||2||||. AC AC AC AB BC AB BC AB BC AB BC AB BC ==++=++=+ 2222222222222222228.()()||||. ()()||||cos ||||sin ||||(cos sin )||||.9..||.AB AC ABC ABC ABDC AB AC αααα?+=?+=+=+=?=?证明恒等式试用向量与表示三角形的面积11 的面积= 的面积22 证解a b a b a b a b a b a b a b a b a b 2222222 2 2210.,,,()()2(). ()()()()()()222(). =++-=+++-=+++--=-+给定向量记为即现设为任意向量证明证a a a a a a a.a b , :a b a b a b a b a b a b a b a b a b a a +b b +a b +a a +b b a b =a b

高等代数北大版第章习题参考答案

高等代数北大版第章习 题参考答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第六章 线 性空 间 1.设,N M ?证明:,M N M M N N ==。 证任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N M ∈。又因 ,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪一种情形,都有,N ∈α此即。但,N M N ?所以M N N =。 2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。 证),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若 )()(L M N M x ∈,则.L M x N M x ∈∈或在前一情形,,,N x M x ∈∈因此 .L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N L ∈,得 ),(L N M x ∈故),()()(L N M L M N M ? 于是)()()(L M N M L N M =。 若x M N L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈,X M L ∈且,x M N ∈因而()(M L )。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L ) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2)设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;

北大版高等数学第一章 函数及极限答案 第一章总练习题

第一章总练习题 221.:581 2. 3|58|1422.|58|6,586586,. 3552 (2)33,5 2 333,015. 5 (3)|1||2| 1 (1)(2),2144,. 2 2|2|,. 2,2,4,2;2,3x x x x x x x x x x x x x x x x x y x x x y x y x y x y x y x -≥-≥-≥-≥-≤-≥≤-≤-≤-≤≤≤+≥-+≥-+≥-+≥=+-≤=+≤=->=求解下列不等式()或或设试将表示成的函数当时当时解解解2. 解22231231 2,4,(2). 3 2,41 (2), 4.3 1 3.1. 2 2,4(1)44,0.1,0.4.:1232(1)2.22222 121 1,.22 123222n n y x y y y x y y x x x x x x x x x x n n n n ->=--≤??=?->??<+≥-<++<++>≥-≠+++++=-+==++ 的全部用数学归纳法证明下列等式当时,2-等式成立设等式对于成立,则 解证1231111 12 1 2 112 22 11231222222 2124(1)(1)3222,2222 1..1(1)(2)123(1). (1)1(11)1(1)1,(1)(1) n n n n n n n n n n n n n n n n n n n n n x nx x x nx x x x x x n x x ++++++-+++++=++++++++-+++=-+=-=-+-++++++=≠--++-===-- 即等式对于也成立故等式对于任意正整数皆成立当时证1,1 21 2 .1(1)123(1)(1)(1) n n n n n n n x nx x x nx n x n x x +--++++++++=++- 等式成立设等式对于成立,则

北大版高等数学第一章-函数及极限答案-习题1.2

习题 1.2 2 22 2 22 ln(4);(2) 40,||4,||2,(,2)(2,). 1010 1 (2)0..11,(1,1). 1010 1 5 (3)1,540.540,( 4 y x y y y x x x D x x x x D x x x x x x x x x x =-=== ->>>=-∞-?+∞ ->-< ?? + >-<<=- ?? +>+< -?? - >--<-+= 求下列函数的定义域 或 1.: (1) 解(1) 12 2 12 2 1)(4)0,1, 4. (1,4). (4)2530.(21)(3)0,3,1/2.(,3)(1/2,). (), ()1,(0,3).()(1,10). (2)()ln(1sin),(/2,],()(,ln2]. (3)( x x x D x x x x x x D f X X f x x X f X f x x X f X f x ππ --=== = +->-+==-==-∞-?+∞ =+== =+=-=-∞ 求下列函数的值域其中为题中指定的定义域 2.. (1) 22 12 2 )[1,3],320,230,(1)(3)0, 1,3,()[0,(1)][0,4]. (4)()sin cos,(,). ()cos(/4)cos sin(/3))/4),()[ ln (1)(),(1) ln10 X x x x x x x x x f X f f x x x X f x x x x f X x f x f πππ ==-+-=--=+-= =-=== =+=-∞+∞ =+=+= =- 求函数值: 设求 3. 2 ,(0.001),(100); (2)()arcsin,(0),(1),(1); 1 ln(1),0, (3)()(3),(0),(5). , 0, cos,01, (4)()1/2,1,(0),(1),(3/2),(2). 2, 13 (1)()l x f f x f x f f f x x x f x f f f x x x x f x x f f f f x f x - =- + --∞<≤ ? =- ? -<<+∞ ? ?≤< ? == ? ?<≤ ? = 设求 设求 设求 解264 og,(1)log10,(0.001)log(10)6,(100)log10 (2)(0)0,(1)arcsin(1/2)/6,(1)arcsin(1/2)/6. (3)(3)ln4,(0)0,(5) 5. (4)(0)cos01,(1)1/2,(3/2)(2) 4. 2 4.(), 2 x f f f f f f f f f f f f f x f x x x ππ - -==-==-= ===-=-=- -===- ===== + =≠ - =4.设函数 11 2,(),(1),()1,,. () 2213 (),2;(1),1,3, 2211 f x f x f x f x f x x x x f x x f x x x x x x ?? ±-++ ? ?? -+++ -=≠±+==≠≠- +--- 求 解

最新北大版高等数学第四章微分中值定理与泰勒公式答案第四章总练习题

北大版高等数学第四章微分中值定理与泰勒公式答案第四章总 练习题

第四章总练习题 000000001..()()[()()]. ()(),[0,].()()(),(0)0. Lagrange ,(0,1)()(0)(),f x h f x h f x h f x h h f x x f x x x h g g x f x x f x x g g h g g h h θθθθθθ''+--=++-+--∈'''=++-=∈'-=00设y=f(x)在[x -h,x +h](h>0)内可导证明存在,0<<1使得令g(x)=(x)在[0,h]内可导,根据公式存在使得 证00000 ()()[()()].2.:0,()1/4()1/2lim ()1/4,lim ()1/2.4(())211()(124x x f x h f x h f x h f x h h x x x x x x x x x x θθθθθθθθ→→+∞ ''+--=++-≥= ≤≤=== = =+=++=+即证明当时中的满足且 00). 11()(12), 441 11()(12)(1(1)2). 442 11 lim ()lim (12).44 1 lim ()lim (12)4 1 lim 4x x x x x x x x x x x x x x x x θθθθ→→→+∞→+∞≥+=-=+≤+++-==+==+=由算术几何平均不等式得 2 2 111lim lim .442 3,012 3.()()[0,2]1, 1,01 (2)(0)1().12 0, 1x x x x f x f x x x x x f f f x x x = ===?-≤≤??=??<<+∞??-≤≤?-? '==?--<<+∞??设求在闭区间上的微分中值定理的中间值. 解2/23/21. 221111,;,()[0,2]222x x x f x x -=--=-=-=-=1 在闭区间上的微分中值定理的中间值为2

高等数学( 北大版)答案一习题1.3

习题1.3 1.(1,2,),lim 1,0,,2 |-1|,: n n n n n x n x N n n N x εε→∞= ==>+>< 设证明即对于任意求出正整数使得 当时有 并填下表 220,1,|-1|| 1|,2,2222,,|-1|. 2.lim 0,lim ||||. 3.{}(1)n n n n n n n n x n n n N n N x a N a l a εεεε εεε→∞ →∞ ?><=-=<>-++?? =->?=不妨设要使只需取则当时就有设设证证(2){}(1) ||||| 1. (2) -31(1)lim 23n n n a l l l M N n n εε→∞-+<+=+-对于令4.用证23/23/2(3)lim 1(5)lim 1223(1)11(6)lim 0.(1)(2)3 1311(1),2322(23)n n n n n q n n n n n n n n εεε→∞→∞→∞?+ ?-????++= ?+?? +?-=<-- 不妨设要使只需证>0,<1,311 3, 2113133133,,,lim . 22322321 (2),,, n n n N n N n n n εεεεεεε →∞>+++?? =+>-<=??--?? ?<≤<>取当时故>0,

32222333331,. 1 (3)||(0).41||(1)(1)(2)(1)126 6242424,,max{4,}.(1)(2)!111(4) ,,. n n n n N n N q n n n n q n n n n n n n n N n n n n n N εεαααααααεααεαεαε?? =>>+==---++++++?? <<<>=??--???? ≤<>=?? 取当 5. n =2222226.4.(1)(1)(1)12 7.: (1)l n n n n n n n εεεεεεεε? ??-+-?? ++故而 求下列各极限的值证证32232244 432 220. 310013/100/1(2)lim lim .4241/2/4(210)(210/)(3)lim lim 16.11/11(4)lim 1lim 1.n n n n n n n n n n n n n n n n n n n n n n n e n n →∞→∞→∞→∞→∞---→∞ →∞==+-+-==-+-+++==++?? ????+=+=?? ? ??? ??????

北大版高等数学课后习题答案完整版

习题1.1 2 222 2 2222 22222 2 22 2 . ,,.3,3.3, ,313 2.961,9124,3 1.3,93,3,3., ,. ,,,, p p p q p q p q q p p k p k p k k p k k p p k k q q k q p q p a a a b p a pb b b === =+=+=++=++ === === 为互素自然数除尽 必除尽否则或除将余故类似得除尽与互素矛盾. 设是正的素数 为互素自然数,则素 证 2. 证 1. 2 22222 2 ,, .,.., : (1)|||1| 3.\;(2)|3| 2. 0,13,22,1,(1,0); 01,13,13,(0,1); 1,13,3/2,(1,3/2). (1,0)(0,1) p a p a a pk p k p b pk b p b a b x x x x x x x x x x x x x x x X === +-<-< <-+-<>->-- <<+-<< >+-<< =-? 数除尽故除尽 类似得除尽此与为互素自然数矛盾. 解下列不等式 若则 若则 若则 3. 解 (1) 222 (1,3/2). (2)232,15,1||5,1||(1). ,(1)||||||;(2)||1,|||| 1. (1)|||()|||||||||,||||||. (2)|||()|||||| x x x x x a b a b a b a b a b a a b b a b b a b b a b a b a b a b b a b b ? -<-<<<<<<<=?- +≥--<<+ =++-≤++-=+++≥- =+-≤+-< 设为任意实数证明设证明 证 4. , | 1. (1)|6|0.1;(2)||. 60.160.1. 5.9 6.1.(, 6.1)( 5.9,). (2)0,(,)(,);0,;0,(,). 1 1,01,. 1, 1.11 x x a l x x x x X l X a l a l l x a l X a a n n a b a + +>-> +>+<->-<-=-∞-?-+∞ >=++∞?-∞-=≠<=-∞+∞ - ><< >=>-=-= 解下列不等式 或或 若若若 若证明其中为自然数 若 解(1) 证 5.: 6. 12 00 00 1)(1)1). (,),(,). 1/10. {|}.(,),,{|}, 10 {|}./10,(1)/10, /10(1)/101/10 n n n n n n n n n n n b b n a b a b n b a m A A m A a b A B C B A x x b C A x x a B m m C b a m m -- +++> <- =∈?=?=?=?≥ =?≤-∈ -≤- Z 设为任意一个开区间证明中必有有理数 取自然数 满足考虑有理数集合 =若则 中有最小数 -= 证 7. (,),(,). 1/10.|}. 10 n n n n a b a b m n b a A m <-=∈Z ,此与的选取矛盾. 设为任意一个开区间证明中必有无理数 取自然数 满足考虑无理数集合 以下仿8题. 8. 证 习题1.2

高等代数(北大版)第10章习题参考答案

第十章双线性函数与辛空间 1、设V是数域P上的一个三维线性空间,ε1,ε2,ε3是它的一组基,f是V上的 一个线性函数,已知 f (ε1+ε3)=1,f (ε2-2ε3)=-1,f (ε1+ε2)=-3 求f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ). 解因为f是V上线性函数,所以有 f (ε1)+ f (ε3)=1 f (ε2)-2 f (ε3)=-1 f (ε1)+f (ε2)=-3 解此方程组可得 f (ε1)=4,f (ε2)=-7,f (ε3)=-3 于是 f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ).=X 1 f (ε1)+X2 f (ε2)+X3 f (ε3) =4 X 1 -7 X 2 -3 X 3 2、设V及ε1,ε2,ε3同上题,试找出一个线性函数f ,使 f (ε1+ε3)=f (ε2-2ε3)=0, f (ε1+ε2)=1 解设f为所求V上的线性函数,则由题设有 f (ε1)+ f (ε3)=0 f (ε2)-2 f (ε3)=0 f (ε1)+f (ε2)=1 解此方程组可得 f (ε1)=-1,f (ε2)=2,f (ε3)=1 于是?a∈V,当a在V的给定基ε1,ε2,ε3下的坐标表示为 a= X 1ε 1 +X 2 ε 2 +X 3 ε 3 时,就有 f (a)=f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 )

= X 1 f (ε1)+X2 f (ε2)+X3 f (ε3) =-X 1+2 X 2 + X 3 3、设ε1,ε2,ε3是线性空间V的一组基,f1,f2,f3是它的对偶基,令α1=ε1-ε3,α2=ε1+ε2-ε3,α3=ε2+ε3 试证:α1,α2,α3是V的一组基,并求它的对偶基。 证:设 (α1,α2,α3)=(ε1,ε2,ε3)A 由已知,得 A= 110 011 111????????-?? 因为A≠0,所以α1,α2,α3是V的一组基。设g1,g2,g3是α1,α2,α3得对偶基,则 (g1,g2,g3)=(f1,f2,f3)(Aˊ)1- =(f1,f2,f3) 011 112 111 -???? - ????--?? 因此 g1=f2-f3 g2=f1-f2+f3 g3=-f1+2f2-f3 4.设V是一个线性空间,f1,f2,…fs是V*中非零向量,试证:?α∈V,使 fi(α)≠0 (i=1,2…,s) 证:对s采用数学归纳法。 当s=1时,f1≠0,所以?α∈V,使fi(α)≠0,即当s=1时命题成立。 假设当s=k时命题成立,即?α∈V,使fi(α)=αi≠0 (i=1,2…,k) 下面证明s=k+1时命题成立。 若f 1 k+(α)≠0,则命题成立,若f 1 k+ (α)=0,则由f 1 k+ ≠0知,一定?β∈V 使f 1 k+ (β)=b,设fi(β)=di(i=1,2…,k),于是总可取数c≠0,使 ai+cdi≠0(i=1,2…,k) 令c γαβ =+,则γ∈V,且

高等代数-北京大学第三版--北京大学精品课程

一个集合,如果在它里面存在一种或若干种代数运算, 这些运算满足一定的运算法则, 则称这样的一个体系为 定义(数域) 设K 是某些复数所组成的集合。如果 K 中至少包含两个不同的复数,且 K 对复数的加、减、乘、 四则运算 是封闭的,即对K 内任 两个数a 、 b ( a 可 以等于b ), 必有 b K , ab K ,且当b 0时,a/b K ,则称 K 为一个数域。 1.1典型的数域举例: 复数域C ;实数域R ;有理数域 Q ; Gauss 数域:Q (i) = { a b i | a, b € Q},其中 i = ?. 1 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素 K ,且 a 0。于是 进而 最后, m, n Z 巴K 。这就证明了 n K 。证毕。 1.1.3 集合的运算, 集合的映射(像与原像、单射、满射、双射)的概念 和B 中的元素合并在一起组成的集合成为 A 与 B 的并集, 记做A B ;从集合A 中去掉属于B 的那些元素之后剩 定义(集合的映射) 设A 、B 为集合。如果存在法则 f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定 若a a'代都有f (a) 第一章代数学的经典课题 § 1若干准备知识 1.1.1代数系统的概念 个代数系统。 1.1.2数域的定义 定义(集合的交、并、差)设S 是集合,A 与B 的公共元素所组成的集合成为 A 与 B 的交集,记作A B ;把A 下的元素组成的集合成为 A 与 B 的差集,记做A B 。 的元素(记做f(a)),则称f 是A 到B 的一个映射,记为 B, f (a). 如果f(a) b B ,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的 B 的 子集称为A 在f 下的像,记做 f (A),即 f (A) f(a)| a A 。 f(a'),则称f 为单射。若 b B,都存在a A ,使得f(a) b ,则称f 为满射。 1.1.4 求和号与求积号 1 ?求和号与乘积号的定义.为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数a 1,a 2, ,a n ,我们使用如下记号: 第一学期第一次课 如果f 既是单射又是满射,则称 f 为双射,或称一一对应。

北大版高等数学第三章 积分的计算及应用答案 习题3.2

习题3.2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2111.ln ln ln ln 2 2 2 111 ln ln ln .2 2 222 4 1 1112 2.1212212 a x a x a x a x a x a x a x a x a x a x a x a x x x xd x xd x x x d x x x x x x x d x x xd x x C x x e d x x d e x e e d x x e xe d x a a a a a x x e xd e x e e e d x a a a a a x e a == - =- =-= -+==- = - =-=-+=- ??? ???????? 求下列不定积分 :2 2 2 3 2232 122 122.1 11 3.sin 2co s 2co s 2co s 22 2 2 11co s 2sin 2. 2 4 4.arcsin arcsin arcsin arcsin 1arcsin 2 a x a x a x a x a x x xd e x e e e C a a a a x e x C a a a x xd x xd x x x xd x x x x C xd x x x xd x x x x x x = - + +??=-++ ? ??=-=- + =- + +=-=- =+ =? ????? ? ? arcsin . x C + 2 2 2 2 222222225.arctan arctan arctan arctan 11(1)1arctan arctan ln (1).2 12 1116.co s 3co s 3co s 3co s 32 2 2 1313co s 3sin 3co s 3sin 3222 4 1x x x x x x x x xd x xd x x x xd x x x x d x x x x x x C x I e xd x xd e e x e d x e x e xd x e x xd e =-=- ++=-=- +++== =- =+= + =?? ?? ?????() ()22222223 co s 3sin 33co s 324 139co s 3sin 3, 24 44131co s 3sin 32co s 33sin 3.132413sin 37.sin 3sin 33co s 3sin 33co s 3sin 33x x x x x x x x x x x x x x x e x e x e xd x e x e x I I x x e C x x e C x I d x xd e e x e xd x e e x xd e e x e -------+-=+ - ??= ++=++ ? ?? ==-=-+=--=--?? ???( )co s 33sin 3x x e xd x -+?

相关主题
文本预览
相关文档 最新文档