当前位置:文档之家› 第36届国际物理奥林匹克竞赛实验试题及解答(英文)

第36届国际物理奥林匹克竞赛实验试题及解答(英文)

第36届国际物理奥林匹克竞赛实验试题及解答(英文)
第36届国际物理奥林匹克竞赛实验试题及解答(英文)

PLANCK’S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP

In 1900 Planck introduced the hypothesis that light is emitted by matter in the form of quanta of energy h ν. In 1905 Einstein extended this idea proposing that once emitted, the energy quantum remains intact as a quantum of light (that later received the name photon). Ordinary light is composed of an enormous number of photons on each wave front. They remain masked in the wave, just as individual atoms are in bulk matter, but h – the Planck’s constant – reveals their presence. The purpose of this experiment is to measure Planck's constant.

A body not only emits, it can also absorb radiation arriving from outside. Black body is the name given to a body that can absorb all radiation incident upon it, for any wavelength. It is a full radiator. Referring to electromagnetic radiation, black bodies absorb everything, reflect nothing, and emit everything. Real bodies are not completely black; the ratio between the energy emitted by a body and the one that would be emitted by a black body at the same temperature, is called emissivity, ε, usually depending on the wavelength.

Planck found that the power density radiated by a body at absolute temperature T in the form of electromagnetic radiation of wavelength λ can be written as

(

)

1

/5

1

2?=T

c e

c u λλλε

(1)

where c 1 and c 2 are constants. In this question we ask you to determine c 2 experimentally, which is proportional to h .

For emission at small λ, far at left of the maxima in Figure F-1, it is permissible to drop the -1 from the denominator of Eq. (1), that reduces to

/51

2T c e

c u λλλε= (2)

The basic elements of this experimental question are sketched in Fig.

F-2.

? The emitter body is the tungsten filament of an incandescent lamp A that emits a wide range of λ’s, and whose luminosity can be varied. ? The test tube B contains a liquid filter that only transmits a thin band of the visible spectrum around a value λ0 (see Fig. F-3). More information on the filter properties will be found in page 5. ? Finally, the transmitted radiation falls upon a photo resistor C (also known as LDR, the acronym of Light Dependent Resistor). Some properties of the LDR will be described in page 6.

The LDR resistance R depends on its illumination, E, which is proportional to the filament power energy density

00

E u R u R E λγ

λγ??∝???∝?∝??

where the dimensionless parameter γ is a property of the LDR that will be determined in the experiment. For this setup we finally obtain a relation between the LDR resistance R and the filament temperature T

T c e c R 02/3λγ= (3)

that we will use in page 6. In this relation c 3 is an unknown proportionality constant. By measuring R as a function on T one can obtain c , the objective of this experimental question.

DESCRIPTION OF THE APPARATUS

The components of the apparatus are shown in Fig. F-4, which also includes some indications for its setup. Check now that all the components are available, but refrain for making any manipulation on them until reading the instructions in the next page.

EQUIPMENT:

1.Platform. It has a disk on the top that holds a support for the LDR, a support for the tube and a support for an

electric lamp of 12 V, 0.1 A.

2.Protecting cover.

3.10 turns and 1 k? potentiometer.

4.12 V battery.

5.Red and black wires with plugs at both ends to connect platform to potentiometer.

6.Red and black wires with plugs at one end and sockets for the battery at the other end.

7.Multimeter to work as ohmmeter.

8.Multimeter to work as voltmeter.

9.Multimeter to work as ammeter.

10.Test tube with liquid filter.

11.Stand for the test tube.

12.Grey filter.

13.Ruler.

An abridged set of instructions for the use of multimeters, along with information on the least squares method, is

SETTING UP THE EQUIPMENT

Follow these instructions:

?Carefully make the electric connections as indicated in Fig. F-4, but do not plug the wires 6 to the potentiometer.

?By looking at Fig. F-5, follow the steps indicated below:

1.Turn the potentiometer knob anticlockwise until reaching the end.

2.Turn slowly the support for the test tube so that one of the lateral holes is in front of the lamp and the other in

front of the LDR.

3.Bring the LDR nearer to the test tube support until making a light touch with its lateral hole. It is advisable to

orient the LDR surface as indicated in Fig. F-5.

4.Insert the test tube into its support.

5.Put the cover onto the platform to protect from the outside light. Be sure to keep the LDR in total darkness for

at least 10 minutes before starting the measurements of its resistance. This is a cautionary step, as the

resistance value at darkness is not reached instantaneously.

Task 1

Draw in Answer Sheet 1 the complete electric circuits in the boxes and between the boxes, when the circuit is fully connected. Please, take into account the indications contained in Fig. F-4 to make the drawings.

Measurement of the filament temperature

The electric resistance R B of a conducting filament can be given as

S

l

R B ρ= (4)

where ρ is the resistivity of the conductor, l is the length and S the cross section of the filament.

This resistance depends on the temperature due to different causes such as:

? Metal resistivity increases with temperature. For tungsten and for temperatures in the range 300 K to 3655 K, it

can be given by the empirical expression, valid in SI units,

83.081005.3ρ?=T (5)

? Thermal dilatation modifies the filament’s length and section. However, its effects on the filament resistance will

be negligible small in this experiment.

From (4) and (5) and neglecting dilatations one gets

83

.0B R a T =

(6)

?

Therefore, to get T it is necessary to determine a . This can be achieved by measuring the filament resistance R B,0 at ambient temperature T 0.

Task 2

a) Measure with the multimeter the ambient temperature T 0.

b) It is not a good idea to use the ohmmeter to measure the filament resistance R B,0 at T 0 because it introduces a small unknown current that increases the filament temperature. Instead, to find R B,0 connect the battery to the potentiometer and make a sufficient number of current readings for voltages from the lowest values attainable up to 1 V. (It will prove useful to make at least 15 readings below 100 mV.) At the end, leave the potentiometer in the initial position and disconnect one of the cables from battery to potentiometer.

Find R B for each pair of values of V and I , translate these values into the Table for Task 2,b) in the Answer Sheets. Indicate there the lowest voltage that you can experimentally attain. Draw a graph and represent R B in the vertical axis against I .

c) After inspecting the graphics obtained at b), select an appropriate range of values to make a linear fit to the data suitable for extrapolating to the ordinate at the origin, R B,0. Write the selected values in the Table for Task 2, c) in the Answer Sheets. Finally, obtain R B,0 and ?R B,0.

d) Compute the numerical values of a and ?a for R B,0 in ? and T 0 in K using (6).

OPTICAL PROPERTIES OF THE FILTER

The liquid filter in the test tube is an aqueous solution of copper sulphate (II) and Orange (II) aniline dye. The purpose of the salt is to absorb the infrared radiation emitted by the filament.

The filter transmittance (transmitted intensity/incident intensity) is shown in Figure F-6 versus the wavelength.

Task 3

Determine λ0 and ?λ from Fig. F-6.

Note: 2 ?λ is the total width at half height and λ0 the wavelength at the maximum.

PROPERTIES OF THE LDR

The material which composes the LDR is non conducting in darkness conditions. By illuminating it some charge carriers are activated allowing some flow of electric current through it. In terms of the resistance of the LDR one can write the following relation

γ?=bE R (7)

where b is a constant that depends on the composition and geometry of the LDR and γ is a dimensionless parameter that measures the variation of the resistance with the illumination E produced by the incident radiation. Theoretically, an ideal LDR would have γ = 1, however many factors intervene, so that in the real case γ < 1.

It is necessary to determine γ. This is achieved by measuring a pair R and E (Fig. F-7) and then introducing between the lamp and the tube the grey filter F (Fig. F-8) whose transmittance is known to be 51.2 %, and we consider free of error. This produces an illumination E’ = 0.51 E. After measuring the resistance R’ corresponding to this illumination, we have

()γγ??==E b R bE R 251.0' ;

From this

512.0ln '

ln

γ=R R

(8)

Do not carry out this procedure until arriving at part b) of task 4 below.

Task 4

a) Check that the LDR remained in complete darkness for at least 10 minutes before starting this part. Connect the battery to the potentiometer and, rotating the knob very slowly, increase the lamp voltage. Read the pairs of values of V and I for V in the range between 9.50 V and 11.50 V, and obtain the corresponding LDR resistances R . (It will be useful to make at least 12 readings). Translate all these values to a table in the Answer Sheet. To deal with the delay in the LDR response, we recommend the following procedure: Once arrived at V > 9.5 V, wait 10 min approximately before making the first reading. Then wait 5 min for the second one, and so on. Before doing any further calculation go to next step.

b) Once obtained the lowest value of the resistance R , open the protecting cover, put the grey filter as indicated in F-9, cover again - as soon as possible - the platform and record the new LDR resistance R’. Using these data in (8) compute γ and ?γ.

c) Modify Eq. (3) to display a linear dependence of ln R on 0.83

B R ?. Write down that equation there and label it as (9).

d) Using now the data from a), work out a table that will serve to plot Eq. (9).

e) Make the graphics plot and, knowing that c 2 = hc /k, compute h and ?h by any method (you are allowed to use statistical functions of the calculators provided by the organization).

(Speed of light, c = 2.998 ·108 m s -1 ; Boltzmann constant, k = 1.381·10-23 J K -1)

36th International Physics Olympiad. Salamanca. Spain. Experimental Competition, 7 July 2005 COUNTRY NUMBER COUNTRY CODE STUDENT NUMBER PAGE NUMBER TOTAL No OF PAGES

Answer sheet 1

TASK 1 (2.0 points)

Draw the electric connections in the boxes and between boxes below.

Pm

B P

PROPERTIES OF THE LDR

The material which composes the LDR is non conducting in darkness conditions. By illuminating it some charge carriers are activated allowing some flow of electric current through it. In terms of the resistance of the LDR one can write the following relation

γ?=bE R (7)

where b is a constant that depends on the composition and geometry of the LDR and γ is a dimensionless parameter that measures the variation of the resistance with the illumination E produced by the incident radiation. Theoretically, an ideal LDR would have γ = 1, however many factors intervene, so that in the real case γ < 1.

It is necessary to determine γ. This is achieved by measuring a pair R and E (Fig. F-7) and then introducing between the lamp and the tube the grey filter F (Fig. F-8) whose transmittance is known to be 51.2 %, and we consider free of error. This produces an illumination E’ = 0.51 E. After measuring the resistance R’ corresponding to this illumination, we have

()γγ??==E b R bE R 251.0' ;

From this

512.0ln '

ln

γ=R R

(8)

Do not carry out this procedure until arriving at part b) of task 4 below.

Task 4

a) Check that the LDR remained in complete darkness for at least 10 minutes before starting this part. Connect the battery to the potentiometer and, rotating the knob very slowly, increase the lamp voltage. Read the pairs of values of V and I for V in the range between 9.50 V and 11.50 V, and obtain the corresponding LDR resistances R . (It will be useful to make at least 12 readings). Translate all these values to a table in the Answer Sheet. To deal with the delay in the LDR response, we recommend the following procedure: Once arrived at V > 9.5 V, wait 10 min approximately before making the first reading. Then wait 5 min for the second one, and so on. Before doing any further calculation go to next step.

b) Once obtained the lowest value of the resistance R , open the protecting cover, put the grey filter as indicated in F-9, cover again - as soon as possible - the platform and record the new LDR resistance R’. Using these data in (8) compute γ and ?γ.

c) Modify Eq. (3) to display a linear dependence of ln R on 0.83

B R ?. Write down that equation there and label it as (9).

d) Using now the data from a), work out a table that will serve to plot Eq. (9).

e) Make the graphics plot and, knowing that c 2 = hc /k, compute h and ?h by any method (you are allowed to use statistical functions of the calculators provided by the organization).

(Speed of light, c = 2.998 ·108 m s -1 ; Boltzmann constant, k = 1.381·10-23 J K -1)

36th International Physics Olympiad. Salamanca. Spain. Experimental Competition, 7 July 2005 COUNTRY NUMBER COUNTRY CODE STUDENT NUMBER PAGE NUMBER TOTAL No OF PAGES

Answer sheet 3

TASK 2

c) (2.5 points)

V I R B

R B0= ? R B0=

d) (1.0 points)

a = ?a =

TASK 3 (1.0 points)

λ0 = ?λ =

36th International Physics Olympiad. Salamanca. Spain. Experimental Competition, 7 July 2005 COUNTRY NUMBER COUNTRY CODE STUDENT NUMBER PAGE NUMBER TOTAL No OF PAGES

Answer sheet 4

TASK 4

a) (2.0 points)

V I R

b) (1.5 points)

R = γ =

R’ = ?γ =

c) (1.0 points)

Eq. (9)

36th International Physics Olympiad. Salamanca. Spain. Experimental Competition, 7 July 2005 COUNTRY NUMBER COUNTRY CODE STUDENT NUMBER PAGE NUMBER TOTAL No OF PAGES

Answer sheet 5

TASK 4

d) (3.0 points)

V I R

e) (3.0 points)

h = ? h =

PLANCK’S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP

SOLUTION

TASK 1

Draw the electric connections in the boxes and between boxes below.

TASK 2

a)

t0 = 24 oC T0 = 297 K ?T0 = 1 K b)

V /mV I / mA R B /?

21.9 30.5 34.9 37.0 40.1 43.0 47.6 51.1 55.3 58.3 61.3 65.5 67.5 73.0 80.9 85.6 89.0 95.1 111.9 130.2 181.8 220 307 447 590 730 860 960 1.87

2.58

2.95

3.12

3.37

3.60

3.97

4.24

4.56

4.79

5.02

5.33

5.47

5.88

6.42

6.73

6.96

7.36

8.38

9.37

11.67

13.04

15.29

17.68

19.8

21.5

23.2

24.4

11.7

11.8

11.8

11.9

11.9

11.9

12.0

12.1

12.1

12.2

12.2

12.3

12.3

12.4

12.6

12.7

12.8

12.9

13.4

13.9

15.6

16.9

20.1

25.1

29.8

33.9

37.1

39.3

V min = 9.2 mV *

* This is a characteristic of your apparatus. You can′t go below it. We represent R B in the vertical axis against I.

In order to work out R B0 , we choose the first ten readings.

TASK 2

c)

V /mV I / mA R B /?

21.9 ± 0.1 30.5 ± 0.1 34.9 ± 0.1 37.0 ± 0.1 40.1 ± 0.1 43.0 ± 0.1 47.6 ± 0.1 51.1 ± 0.1 55.3 ± 0.1 58.3 ± 0.1 1.87 ± 0.01

2.58 ± 0.01

2.95 ± 0.01

3.12 ± 0.01

3.37 ± 0.01

3.60 ± 0.01

3.97 ± 0.01

4.24 ± 0.01

4.56 ± 0.01

4.79 ± 0.01

11.7 ± 0.1

11.8 ± 0.1

11.8 ± 0.1

11.9 ± 0.1

11.9 ± 0.1

11.9 ± 0.1

12.0 ± 0.1

12.1 ± 0.1

12.1 ± 0.1

12.2 ± 0.1

Error for R B (We work out the error for first value, as example).

1.087.101.09.211.071.112

22

2=

+ =

?+ ?=?I I V V R R B B

We have worked out R B0 by the least squares.

()

13.005

.3538.1301038.1301.01

.001.0167.01.0047

.0: axis For 01.0: axis For 10

05

.3538.130167

.0 slope 4.112

22

22

2

02222

222

2

20=??×=

?=

?=?+=

+==?=

=?=======∑∑∑∑∑∑∑I I n I R m n

R Y n

I X n I I m R B I R B

R I B B

B σσσσσσ

R B0 = 11,4 ?

? R B0 = 0.1 ?

d) 40.394

.11297 ; ; 83

.083.00

83.0==

=

=a R T a aR T

Working out the error for two methods:

Method A

4.0419.040.111.083.02971

40.39 ; 83.0 ; ln 83.0ln ln 00

000== +=?

?+?=??=a R R T T a a R T a B B B Method B

Higher value of a : ()

()

8255.391.04.111

29783

.083

.0000

0max =?+=???+=R R T T a Smaller value of a : ()

()

9863.381.04.111

29783

.083

.000

00min =+?=

?+??=R R T T a

4.0419.02

9863

.388255.392min max ==?=?=

?a a a

a = 39.4

?a = 0.4

TASK 3

Because of 2?λ = 620 – 565 ; ?λ = 28 nm

λ0 = 590 nm ?λ = 28 nm

TASK 4

a)

V /V

I / mA

R /k ?

9.48 9.73 9.83 100.1 10.25 10.41 10.61 10.72 10.82 10.97 11.03 11.27 11.42 11.50

85.5 86.8 87.3 88.2 89.4 90.2 91.2 91.8 92.2 93.0 93.3 94.5 95.1 95.5

8.77 8.11 7.90 7.49 7.00 6.67 6.35 6.16 6.01 5.77 5.69 5.35 5.17 5.07

b)

Because of 702.0512.0ln 11

.807.5ln 251.0ln 'ln ; 512.0ln 'ln

====R R R R γγ

For working out ?γ we know that:

R ± ?R = 5.07 ± 0.01 k ? R’ ± ?R’ = 8.11 ± 0.01 k ? Transmittance, t = 51.2 %

Working out the error for two methods:

Method A

0.005 ; 00479.011.801.007.501.0512.0ln 1''ln 1 ; ln 'ln =?=

+= ?+?==

γγR R R

R t ?γt R R

Method B

Higher value of γ : 70654.0512.0ln 01

.011.801

.007.5ln ln ''ln max =+?=?+??=γγR R R R

Smaller value of γ: 69696.0512.0ln 01.011.801

.007.5ln ln ''ln max =?+=???+=γγR R R R

0.005 ; 00479.02

69696

.070654.02

min

max =?=?=

?=

?γγγγ

R = 5.07 k ?

γ = 0.702

R ’ = 8.11 k ?

?γ = 0.005

c)

ln ln ly consequent

(6) of Because ln ln then (3)

that know We 83.002383

.002

3302?+==+==B B T

c R a

c c R aR T T c c R e

c R λγλγ

λγ

d)

V /V

I / mA R B / ? T / K R B -0.83 (S.I.) R / k ?

ln R

9.48 ± 0.01 85.5 ± 0.1 110.9 ± 0.2 1962 ± 18(2.008 ± 0.004)10-2

8.77 ± 0.01

2.171 ± 0.001 9.73± 0.01 86.8 ± 0.1 112.1 ± 0.2 1980 ± 18(1.990± 0.004)10-2

8.11 ± 0.01

2.093 ± 0.001 9.83± 0.01 87.3 ± 0.1 112.6 ± 0.2 1987 ± 18(1.983± 0.004)10-2

7.90 ± 0.01

2.067 ± 0.001 10.01± 0.01 88.2 ± 0.1 11

3.5 ± 0.2 2000 ± 18(1.970± 0.004)10-2

7.49 ± 0.01

2.014 ± 0.001 10.25± 0.01 89.4 ± 0.1 114.7 ± 0.2 2018 ± 18(1.952± 0.003)10-2

7.00 ± 0.01

1.946 ± 0.001 10.41± 0.01 90.2 ± 0.1 115.4 ± 0.2 2028 ± 18(1.943± 0.003)10-2

6.67 ± 0.01

1.894 ± 0.002 10.61± 0.01 91.2 ± 0.1 116.3 ± 0.2 2041 ± 18(1.930± 0.003)10-2

6.35 ± 0.01 1.849 ± 0.002 10.72± 0.01 91.8 ± 0.1 116.8 ± 0.2 2049 ± 19(1.923± 0.003)10-2 6.16 ± 0.01

1.818 ± 0.002 10.82± 0.01 9

2.2 ± 0.1 117.4 ± 0.2 2057 ± 19(1.915± 0.003)10-2

6.01 ± 0.01

1.793 ± 0.002 10.97± 0.01 93.0 ± 0.1 118.0 ± 0.2 2066 ± 19(1.907± 0.003)10-2

5.77 ± 0.01

1.753 ± 0.002 11.03± 0.01 93.3 ± 0.1 118.2 ± 0.2 2069 ± 19(1.904± 0.003)10-2

5.69 ± 0.01

1.739 ± 0.002 11.27± 0.01 94.5 ± 0.1 119.3 ± 0.2 2085 ± 19(1.890± 0.003)10-2

5.35 ± 0.01

1.677 ± 0.002 11.42± 0.01 95.1 ± 0.1 120.1 ± 0.2 2096 ± 19(1.880± 0.003)10-2

5.15 ± 0.01

1.639 ± 0.002 11.50± 0.01

95.5 ± 0.1

120.4 ± 0.2 2101 ± 19(1.875± 0.003)10-2

5.07 ± 0.01

1.623 ± 0.002

unnecessary

We work out the errors for all the first row, as example.

Error for R B : ?=

+ =

?+ ?=? 2.05.851.048.901.09.1102

22

2

I I V V R R B B

Error for T : K 189.1102

.083.04.393

.01962 ; 83.0= +=?

?+?=?T R R a a T T B B

Error for R B -0.83 :

()

()

2

83.083.083.083

.010004.09

.1102.0020077.0 ;83

.0 ; ln 83.0ln ; ?????×≈=??=???=??==B B B

B B

B

B B B R R R R R R R x x R x R x

Error for ln R : 001.077

.801.0ln ; ln ==??=

?R R R R

e)

We plot ln R versus R B -0.83 .

()()(

)

()()

()()

()295

.827068.01023559.5140126,0140126

.010

003.0672.414002.0002

.0ln : axis For 10003.0 : axis For 1427068

.01023559.56717

,414 Slope squares least By the 2

32

283.02

83.02

2

2

22222ln 2

ln 2

2

83.083.03

283.083.083.0=?×??=

?=

?=×?+=+==?=

×=?=

==×===?????????∑∑∑∑∑∑??B

B

R R R B

R B

B R

R

n

n m m n

R Y n

R X n R

R m B

B

σσσσσσ

Because of

a c m 02λγ

= and

k

hc c =2

then

γ

λc a

mk h 0=

34

2

2

2

2

34

2

2

2

002

234

89231034.070.001.004.393.05902804153.810

34.61033.6702

.010998.24

.3910590·10381.167.414?????×=

++ + ++ ×=? ?+ ?+

?+

?+ ?=?×=?×?××?=

h a a k k m m h h h γγλλ

h = 6.3 × 10-34 J · s

? h = 0.3 × 10-34 J · s

2013国际物理奥林匹克竞赛理论试卷(2)

Introduction In this problem we study an efficient process of steam production that has been demonstrated to work experimentally. An aqueous solution of spherical nanometer-sized silver spheres (nanoparticles) with only about particles per liter is illuminated by a focused light beam. A fraction of the light is absorbed by the nanoparticles, which are heated up and generate steam locally around them without heating up the entire water solution. The steam is released from the system in the form of escaping steam bubbles. Not all details of the process are well understood at present, but the core process is known to be absorption of light through the so-called collective electron oscillations of the metallic nanoparticles. The device is known as a plasmonic steam generator. Figure 2.1(a)A spherical charge-neutral nanoparticle of radius R placed at the center of the coordinate system. (b) A sphere with a positive homogeneous charge density (red), and containing a smaller spherical charge-neutral region (0, yellow) of radius , with its center displaced by. (c) The sphere with positive charge density of the nanoparticle silver ions is fixed in the center of the coordinate system. The center of the spherical region with negative spherical charge density –(blue) of the electron cloud is displaced by , where . (d)An external homogeneous electric field . For time-dependent , the electron cloud moves with velocity . (e) The rectangular vessel () containing the aqueous solution of nanoparticles illuminated by monochromatic light propagating along the -axis with angular frequency and intensity . A single spherical silver nanoparticle Throughout this problem we consider a spherical silver nanoparticle of radius and with its center fixed at the origin of the coordinate system, see Fig. 2.1(a). All motions, forces and driving fields are parallel to the horizontal -axis (with unit vector ). The nanoparticle contains free (conduction) electrons moving within the whole nanoparticle volume without being bound to any silver atom. Each silver atom is a positive ion that has donated one such free electron.

高中会考物理实验操作考查试题(供学生使用)

高中会考物理实验操作考查试题(一)(供学生使用) 长度的测量 学校会考证号班级座号考生姓名 总评成绩(合格或不合格) 实验器材:刻度尺、游标卡尺、金属管 考查要求满分值得分 1写出桌面上:刻度尺的准确度__________________ 游标卡尺的准确度_____________ 2 2 用刻度尺测量金属管的长度:L=_________________ L 1=______________ L 2=_______________ L 3=_____________ 2 3 用游标卡尺测量金属管的内径:d = ________________ d1 =______________ d2 =____________ d3 = _______________ 2 4 用游标卡尺测量金属管的外径:D=__________________ D1=_____________D2 = _________D3 = __________________ 2 5实验素养:态度认真、尊重事实、器材布置合理、 操作有序、整理复原等 2 监考人签字总分

高中会考物理实验操作考查试题(一)(供教师使用) 长度的测量评分标准 考评得分班级 满分值 座号 评分点 姓名 1 1 正确写出刻度尺和游标卡尺的 准确度(含单位) 2 2A 用刻度尺在不同方位测 量管的长度,并求其平均值。 1 B 记录数据时符合有效数字 要求 1 3 A 会使用内测量爪测量金属 管内径 1 B 分别在管两端测出两个 互为垂直方向的内径,求出平 均值。 1 44A 会使用外测量爪测量金属 管外径 1B 分别在管两端测出两个 互为垂直方向的外径,求出平 均值。 1 5 实验素养:态度认真、尊重事实、器 材布置合理、操作有序、整理复原等。 2考评总得分 总评成绩(合格或不合格)

全国高中物理奥林匹克竞赛试卷及答案

高中物理竞赛试卷 .一、选择题.本题共5小题,每小题6分.在每小题给出的4 个项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分. 1.(6分)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于 A.αB.α1/3C.α3D.3α 2.(6分)按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为1 cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平衡,如图所示.当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是 A.密度秤的零点刻度在Q点 B.秤杆上密度读数较大的刻度在较小的刻度的左边 C.密度秤的刻度都在Q点的右侧 D.密度秤的刻度都在Q点的左侧 3.(6分)一列简谐横波在均匀的介质中沿x轴正向传播,两质点P1和 p2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24m/s,则该波的频率可能为 A.50Hz B.60Hz C.400Hz D.410Hz 4.(6分)电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动 方式.电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于 线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用铜、铝和硅制成的 形状、大小和横截面积均相同的三种环,当电流突然接通时,它们所受到的推力分 别为F1、F2和F3。若环的重力可忽略,下列说法正确的是 A. F1> F2> F3 B. F2> F3> F1 C. F3> F2> F1 D. F1 = F2 = F3 5.(6分)质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰,假设B球的质量m B可选取为不同的值,则 A.当m B=m A时,碰后B球的速度最大 B.当m B=m A时,碰后B球的动能最大 C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大 D.在保持m B

物理实验报告正式版

For the things that have been done in a certain period, the general inspection of the system is also a specific general analysis to find out the shortcomings and deficiencies 物理实验报告正式版

物理实验报告正式版 下载提示:此报告资料适用于某一时期已经做过的事情,进行一次全面系统的总检查、总评价,同时也是一次具体的总分析、总研究,找出成绩、缺点和不足,并找出可提升点和教训记录成文,为以后遇到同类事项提供借鉴的经验。文档可以直接使用,也可根据实际需要修订后使用。 物理实验报告指导教师 同组者实验日期 2003 年9月21日 实验名称实验一测量物质的密度 一、实验目的: 掌握用流体静力称衡法测密度的原理。 了解比重瓶法测密度的特点。 掌握比重瓶的用法。 掌握物理天平的使用方法。 二、实验原理: 物体的密度,为物体质量,为物体体积。通常情况下,测量物体密度有以下三

种方法: 1、对于形状规则物体 根据,可通过物理天平直接测量出来,可用长度测量仪器测量相关长度,然后计算出体积。再将、带入密度公式,求得密度。 2、对于形状不规则的物体用流体静力称衡法测定密度。 测固体(铜环)密度 根据阿基米德原理,浸在液体中的物体要受到液体向上的浮力,浮力大小为。如果将固体(铜环)分别放在空气中和浸没在水中称衡,得到的质量分别为、,则·物理实验报告·化学实验报告·生物实验报告·实验报告格式·实

验报告模板 ② 测液体(盐水)的密度 将物体(铜环)分别放在空气、水和待测液体(盐水)中,测出其质量分别为、和,同理可得 ③ 测石蜡的密度 石蜡密度 ---------石蜡在空气中的质量 --------石蜡和铜环都放在水中时称得的二者质量 --------石蜡在空气中,铜环放在水中时称得二者质量 3、用比重瓶法测定液体和不溶于液体的固体小颗粒的密度 ①测液体的密度

高中物理实验汇总情况

新课标高中物理 实验教学教案资料汇总 隆回一中物理组周宝

物理实验的目的与要求 1、实验目的 (1)教会学生用实验研究物理现象与规律,包括: A.正确选择实验方法与实验器材。 B.学会控制实验条件。 C.知道如何实验、判断结果的可靠程度。 (2)帮助学生理解和掌握有关课程容和重要的物理概念,以形成物理思想, 培养解决物理问题的能力 (3)通过实验培养掌握基本物理量的测量方法,以培养实验技能。 (4)培养学生严谨的实验态度、科学的实验方法及良好的实验习惯。 2、做好实验的基本要求 (1)实验前必须做好如下准备: ①明确实验目的,弄懂实验原理 ②了解仪器性能,熟悉操作步骤 ③设计记录表格,掌握注意事项 (2)实验中必须手脑并用,做到心到、眼到、手到。 ①仔细调整实验装置,正确使用实验仪器 ②保证满足实验条件,注意规实验操作 ③认真观察实验现象,客观记录实验数据 (3)实验后必须对数据进行处理: ①尊重实验客观事实,正确分析记录数据 ②合理做出实验结论,独立完成实验报告 常用基本仪器的使用与读数 物理《考试说明》中要求学生熟练掌握的基本仪器有13种,除打点计时器和滑动变阻器不需要读数外,其余11种都涉及到读数问题。 (一)测量仪器使用常规 对于测量仪器的使用,首先要了解测量仪器的量程、精度、使用注意事项和读数方法。 1.关于量程问题:这是保护测量仪器的一项重要参数,特别是天平、弹簧秤、温度计、电流表、电压表和多用电表等,超量程使用会损坏仪器,所以实验时要根据实验的具体情况选择量程适当的仪器。在使用电流表、电压表时,选用量程过大的仪器,采集的实验数据过小,会造成相对误差较大,应选择使测量值位于电表量程的1/3以

历届国际物理奥林匹克竞赛试题及解答

历届国际物理奥林匹克竞赛试题与解答 第1届 (1967年于波兰的华沙) 【题1】质量M=0.2kg 的小球静置于垂直柱上,柱高h=5m 。一粒质量m=0.01kg 、以速度0=500m/s 飞行的子弹水平地穿过球心。球落在 距离柱s =20m 的地面上。问子弹落在地面何处?子弹动能中有多少转换为热能? 解:在所有碰撞情况下,系统的总动量均保持不变: MV mv mv +=0 其中v 和V 分别是碰撞后子弹的速度和小球的速 度. 两者的飞行时间都是01.12== g h t s 球在这段时间沿水平方向走过20m 的距离,故它在水平方向的速度为: 8.1901 .120 == V (m/s ) 由方程0.01×500=0.01v +0.2×19.8 可求出子弹在碰撞后的速度为:v =104m/s 子弹也在1.01s 后落地,故它落在与柱的水平距离为S =vt =104×1.01=105m 的地面上。 碰撞前子弹的初始动能为=2 02 1mv 1250 J 球在刚碰撞后的动能为 =22 1 MV 39.2 J 子弹在刚碰撞后的动能为=2 2 1mv 54 J 与初始动能相比,两者之差为1250 J -93.2 J =1156.8 J 这表明原来动能的92.5%被系统吸收而变为热能。这种碰撞不是完全非弹性碰撞。在完全弹性碰撞的情形下,动能是守恒的。而如果是完全非弹性碰撞,子弹将留在球内。 【题2】右图(甲)为无限的电阻网络,其中每个电阻均为r ,求A、B两点 间的总电阻。 解:如图(乙)所示 A、B两点间的总电阻应等于C、D 两点间的总电阻与电阻r的并联,再与r串联 图(甲) 后的等效电阻。 如果网络是无限的,则A、B 两点间的总电阻应等于C、D 两点间的总电阻,设为Rx 。 根据它们的串并联关系有: m M h S s υ A B r r r r r r r r A B r r r r r r r r C D

(完整版)初中物理实验报告单完整版.docx

初中物理实验报告单 年级:八年级姓名:日期:地点:物理实验室 实验名称:探究平面镜成像的特点 一、实验目的 观察平面镜成像的情况,找出成像的特点。 二、实验仪器和器材. 同样大小的蜡烛一对,平板玻璃一块,方座支架(或玻璃板支架),白纸一张,三角板 一对,刻度尺一把。 三、实验原理: 光的反射规律 四、实验步骤或内容: (1)检查器材。 (2)在桌上铺上白纸,在白纸上竖直的放上平板玻璃,在纸上记录玻璃板的位置。 (3)把点燃的蜡烛放在玻璃板前。 (4)移动未点燃的蜡烛,在玻璃板后让它跟点燃的蜡烛的像重合。 (5)观察两根蜡烛的位置、像与物的大小并记录。 (6)移动点燃的蜡烛,重复实验步骤(4)、( 5)两次。 (6)找出平面镜成像的特点及像的位置跟物体和平面镜的位置的关系。 (7)整理器材、摆放整齐。 五、实验记录与结论 1.记录数据 实验次数蜡烛到玻璃板的距离像到玻璃板的距离像的大小与物的大小155相等 288相等 377相等 2. 实验结论 ( 1)平面镜成像的大小与物体的大小相等。 ( 2)像到平面镜的距离与物体到平面镜的距离相等。

初中物理实验报告单 年级:八年级姓名:日期:11、15地点:物理实验室 实验名称:探究凸透镜成像的特点 一、实验目的 探究凸透镜成放大和缩小实像的条件。 二、实验仪器和器材. 光具座,标明焦距的凸透镜,光屏,蜡烛,火柴,废物缸。 三、实验原理: 凸透镜成像的规律 四、实验步骤或内容: (1)检查器材,了解凸透镜焦距,并记录。 (2)把凸透镜、光屏安装在光具座上,位置基本正确。将点燃的蜡烛,安装在光具 座上,通过调节,使透镜、光屏和烛焰中心大致在同一高度。 (3)找出 2 倍焦距点,移动物体到 2 倍焦距以外某处,再移动光屏直到屏幕上成倒立、缩小的、清晰的实像时为止,记下此时对应的物距 u1。 (4)找出 2 倍焦距点,移动物体到 2 倍焦距以内且大于 1 倍焦距某处,再移动光屏直到屏幕上成倒立、放大的、清晰的实像时为止,记下此时对应的物距u2。 (5)熄灭蜡烛,将蜡烛、凸透镜、光屏取下放回原处。 五、实验记录与结论 1.凸透镜的焦距= 10。 2.记录数据: 物距 u 的大小成像情况 u1=30倒立的缩小的实像 u =15倒立的放大的实像 2

(完整word版)上海市高中学业水平考试之物理实验操作考试(完整版)

2012年学业水平考试 物理实验操作考试 一、操作实验 二:分组:

连接线。 注:若实验需要将位移传感 器放置在小车上,则小车质量中应 包含位移传感器质量。 实验二: 研究感应电 流的产生条 件 灵敏电流计1个,1号碱性干电池 2节(装在电池盒内组成串联电池 组),线圈A(附铁芯)1个,线圈 B 1个,滑动变阻器1个,电键1 个,条形磁铁1根,导线6根。 (1)灵敏电流计与线圈B连接成串联电路, 其他元件、导线等均不连接; (2)电键处于闭合状态,滑动变阻器滑片 居中。 实验一:研究共点力的合成 实验目的: 研究合力与两个分力的关系 实验器材: 图板、图钉、白纸、带绳套的橡皮筋、弹簧测力计(2个)、刻度尺、量角器 实验步骤: 1.固定:如图a所示,根据给定的器材,现在图板上固定一张白纸,将橡皮筋的一端固定在纸边,将带有两个绳套的另一端放在纸面上,测力计可以拉住绳套使橡皮筋 伸长。 2.第一次拉:如图b所示,先用一个弹簧秤拉住绳套将橡皮筋拉长至某位置,标记此时橡皮筋末端位置为O点,记下此时弹簧秤的读数和拉力的方向F(即合力的大小 和方向) 3.第二次拉:如图c所示,再用两个弹簧秤分别同时拉住两个绳套将橡皮筋拉长至O 点,记下此时两个弹簧秤的读数和拉力方向F1、F2(即两个分离的大小和方向)。 4.作图:取下白纸,用力的图示法分别画出表示分力F1、F2和合力F矢量的有向线段,以分力F1、F2的有向线段为邻边作出平行四边形以及它的对角线F’,如图d所示。 最后比较F’和F。 实验结论: 通过实验得出,如果用表示两个共点力F1和F2的线段为邻边做平行四边形,那么合力F的大小和方向就可以用F1和F2所夹的对角线表示。 注意事项: 1.弹簧使用前要调零,明确量程和最小分度。 2.弹簧秤在拉力时,弹簧秤、橡皮筋、细绳应在与纸面平行的平面内。 3.拉力应适当的大些,当不要超过量程。

大学物理实验报告范例简易版

The Short-Term Results Report By Individuals Or Institutions At Regular Or Irregular Times, Including Analysis, Synthesis, Innovation, Etc., Will Eventually Achieve Good Planning For The Future. 编订:XXXXXXXX 20XX年XX月XX日 大学物理实验报告范例简 易版

大学物理实验报告范例简易版 温馨提示:本报告文件应用在个人或机构组织在定时或不定时情况下进行的近期成果汇报,表达方式以叙述、说明为主,内容包含分析,综合,新意,重点等,最终实现对未来的良好规划。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 摘要:热敏电阻是阻值对温度变化非常敏 感的一种半导体电阻,具有许多独特的优点和 用途,在自动控制、无线电子技术、遥控技术 及测温技术等方面有着广泛的应用。本实验通 过用电桥法来研究热敏电阻的电阻温度特性, 加深对热敏电阻的电阻温度特性的了解。 关键词:热敏电阻、非平衡直流电桥、电 阻温度特性 1、引言 热敏电阻是根据半导体材料的电导率与温 度有很强的依赖关系而制成的一种器件,其电 阻温度系数一般为(-0.003~+0.6)℃-1。因

此,热敏电阻一般可以分为: Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件 常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。

物理竞赛之国际物理奥林匹克竞赛赛事流程

国际物理奥林匹克竞赛赛事流程 每一代表队包括5名年龄在20岁以下的中学生、1名领队和1名副领队,国际间旅费自负,东道国负责竞赛期间各队的食宿和旅游费用。各国可自派观察员参加,费用由派出国自筹。 赛期一般为9天。第1天报到后,队员和领队分开居住,住地一般相距几公里以上。东道国为每一参赛队学生配备1名翻译兼导游,这对东道国来说是一种很大的负担,有些国家难以承办IPhO活动,其部分原因也在于此。因华裔子弟遍布世界各地,东道国为我们代表队配备的翻译几乎都是在该国读研究生的华人学子。 第2天上午是开幕式,常在大学礼堂举行,气氛淡雅肃穆,学术气氛浓厚。开幕式后领队与队员暂不往来,且自觉地互不通电话联系,有事均通过翻译转达。第2天下午学生由主办者组织旅游或参观,领队们则参加本届国际委员会正式会议并集体讨论、修改和通过理论赛题,再由各国领队将题文翻译成本国文字,交由组委会复印。会议开始时,各国领队与观察员分别就座,组委会执行主席及其助手们的座位安排在正前方。东道国将3道理论题的题文和题解,以及评分标准的4种文本(英、俄、德、法)之一发给各国领队。大约一小时后,命题者代表用英语向大家介绍该题的命题思想及解题思路等,然后大会讨论,提出修改意见,最后通过这道理论题。3道题逐题进行,若其中某道题被否决,组委会便公开备用的第4道题。 3道题通过后常已近深夜,这期间除晚餐外,还供应饮料和点心。中国领队们而后所做的翻译工作,一般都会持续到次日清晨6点左右,真可谓"通宵达旦"。

第3天上午8点开始,学生们进行5小时的理论考试,其间有饮料和点心供应,学生们用本国文字答卷。组委会为领队们安排旅游或参观活动;尽管大多数人已经非常疲乏,也许因为身临异国他乡,仍是游兴十足。第3天下午东道国安排的休息性活动常能使领队与学生有机会见面,然而师生间很少谈及上午的考试,为的是不在情绪上影响后面的实验考试。 第4天讨论、修改、通过及翻译实验赛题。实验赛题为1-2道,2道居多。 第5天学生分为两组,分别在上、下午进行5小时的实验考试。若有2道题,则每题2。5小时。实验考试后学生们的紧张情绪骤然间消失,队与队之间频繁交往,学生们"挨门串户"地互赠小礼品,最受欢迎的当数各国硬币。此时,领队们开始悉心研究由组委会送来的本队队员的试卷复印件,上面有评分结果。分数由东道国专设的阅卷小组评定,在评定我国学生试卷时,常请另一位懂中文的研究生协助阅读试卷上的中文内容。 东道国通常在第6、7天安排各国领队与阅卷小组成员面谈,商讨和解决评分中可能出现的差错和意见分歧。第7天的下午或晚上举行最后一次国际委员会会议,多数领队借此机会互赠小礼品。会议最重要的议程是通过学生的获奖名单。理论题每题10分,满分30分;实验题若有2道,则每题10分,满分20分。按现在的章程规定,前三名选手的平均积分计为100%,积分达90%者,授予一等奖(金牌);积分低于90%而达78%者,授予二等奖(银牌);积分低于78%而达65%者,授予三等奖(铜牌);积分低于65%而达50%者,授予表扬奖;积分低于50%者,发给参赛证书。上述评奖积分界限均舍尾取整。例如第24届IPhO前三名平均积分为40。53分,其90%为36。48,取整为36分,即成金牌分数线。通常得奖人数占参赛人数的一半。金牌第1名被授予特别奖。此外,还可由东道国自设各种特别奖,例如女生最佳奖、

高中物理实验手册

首届北京市中小学教职工实验技能比赛 培训手册 (中学物理单项) 目录 第一章基本物理实验仪器使用规范 (1) 第一节力学实验仪器得使用规范 (1) 一、托盘天平得使用规范 (1) 二、刻度尺得使用规范 (1) 三、游标卡尺得使用规范 (2) 四、螺旋测微计得使用规范 (2) 五、弹簧秤得使用规范 (3) 六、打点计时器得使用规范 (3) 七、气垫导轨得使用规范 (4) 八、量筒得使用规范 (4) 第二节热学实验仪器使用规范 (5) 一、温度计得使用规范 (5) 二、酒精灯得使用规范 (5) 第三节光学实验仪器使用规范 (6) 一、透镜得使用规范 (6) 二、干涉仪得使用规范 (6) 第四节电学实验仪器使用规范 (7) 一、学生电源得使用规范 (7) 二、电流表得使用规范 (7) 三、电压表得使用规范 (8) 四、滑动变阻器得使用规范 (8) 第二章中学物理实验操作规范 (11) 第一节零位调整 (11) 第二节水平、铅直调整 (11) 第三节消除读数装置得空程误差 (11) 第四节仪器得初态与安全位置 (12) 第五节逐次逼近调整 (12) 第六节消视差调节 (12)

第三章中学物理实验数据处理规范 (13) 第一节误差分析 (13) 一、偶然误差处理 (13) 二、系统误差处理 (14) 第二节有效数字及其运算规则 (14) 一、仪器正确测读得原则 (14) 二、关于“0”得问题 (14) 三、数值表示得标准形式 (15) 第三节数据处理方法 (15) 一、列表法 (15) 二、作图法 (15) 三、逐差法 (16) 四、最小二乘法 (17) 附录1:中学物理典型实验(初中物理部分) (17) 一、二力平衡 (17) 二、做功过程就就是能量转化或转移得过程 (18) 三、阿基米德定律 (19) 四、不同物质得比热容不同 (20) 五、探究焦耳定律 (21) 六、滑动变阻器得构造及使用 (21) 七、探究电流与电压、电阻得关系 (22) 八、平面镜成像特点 (24) 九、反射定律 (25) 十、研究凸透镜成像规律 (26) 附录2:中学物理典型实验(高中物理部分) (27) 一、验证力得合成得平行四边形定则 (27) 二、牛顿第二定律 (28) 三、验证机械能守恒定律 (29) 四、光得折射定律 (30) 五、描绘小灯泡得伏安特性曲线 (32) 六、用电流表与电压表测电池得电动势与内电阻 (33) 七、用单摆测定重力加速度 (35) 八、研究自由落体运动得规律 (37) 九、变压器电压与匝数关系 (38) 十、传感器得简单使用 (40)

第16届国际物理奥林匹克竞赛试题及答案汇总

第十六届国际中学生物理奥林匹克竞赛试题(理论部分) (1985 南斯拉夫波尔托罗日) 题1 一位年青的业余无线电爱好者用无线电与住在两个镇上的两位女孩保持联系。他放置两根竖直的天线棒,使得当住在A镇的女孩接收到最大信号时,住在B镇的女孩接收不到信号,反之也一样。这个天线阵由两根竖直的天线棒构成,它们在水平面内均匀地向各个方向发射同等强度的信号。 (a)求此天线阵的参数,即两棒间距离及它们的方位和馈入两棒电信号之间的位相差,使得 两棒间距离为最小。 (b)求上述数值解。如果男孩的无线电台发射27MH Z的电磁波,该天线阵位于波尔托罗日, 利用地图,他发现正北方与A方向(科佩尔)和B方向(位于伊斯特拉半岛上的小镇布热)的夹角分别为158°和72°。 〔解〕a)如图16-1所示,设A方向和B方向的夹角为φ,两棒间距为r,棒间连线与A方向夹角为a。 A方向最小位相差为: ΔA=2πcosα+Δφ B方向的最小位相差为: ΔB=2πcos(ψ-α)+Δφ Δφ为两根天线之间的相位差。当A方向强度最小,B方向强度最大时, ΔA=(2n+1)π,ΔB=2κπ。 则 ΔB-ΔA=(2(κ-n)-1)π=2π。〔cos(ψ-α)-cosα〕 得到 r. 当ψ一定时,只有k=n,α-=-时,r为最小,或者k=n+1, α-=时,r也为最小。 此时,

r最小= 把上述结果代入含有Δφ的方程中,可得 Δφ=π/2(k=n时),或Δφ=-时,(k=n+1时) 当Δφ从变为-时,产生的效应正好相反,即A方向强度最大,B方向强度为0。 b)如图16-2所示,A方向和B方向夹角为 ψ=157°-72°=85° 则棒间距最小为 r最小== ==4.1(米) 两棒连线与A方向夹角为 α=+90°=132.5° 题2一根边长为a、b、c(a>>b>>c)的矩形截面长棒,是由半导体锑化铟制成的。棒中有平行于a边的电流I流过。该棒放在平行于c边的外磁场B中,电流I所产生的磁场可以忽略。该电流的载流子为电子。在只有电场存在时,电子在半导体中的平均速度是v=μE,其中μ为迁移率。如果磁场也存在的话,则总电场不再与电流平行,这个现象叫做霍尔效应。 (a)确定在棒中产生上述电流的总电场的大小和方向。 (b)计算夹b边两表面上相对两点间的电势差。 (c)如果电流和磁场都是交变的,且分别为I=I0sinωt,B=B0sin(ωt+φ)。写出b)情形中电势差的直流分量解析表达式。 (d)利用c)的结果,设计一个电子线路,使其能测量连接于交流电网的电子设备所消耗的功率,并给出解释。 利用下列数据: 锑化铟中的电子迁移率为7.8m2/V·s 锑化铟中的电子密度为2.5×1022m-3 I=1.0A B=1.0T b=1.0cm c=1.0mm e=1.6×10-19C 〔解〕a)

Lab-report-物理实验报告(英文)

Introduction Capacitor is widely used in a variety of fields as it can store electric energy, such as Filtering, resonant circuit and moving phase. Different capacitors have different abilities to store energy, which is due to the difference of capacitance. Capacitance is the ability of a capacitor to store charge in an electric field, it is also a measure of the amount of electric potential energy stored (or separated) for a given electric potential. This report is going to investigate the capacitance of a capacitor made from the experiment by using different DC methods. Before the capacitor made from the experiment is measured, three DC methods will be tested to verify whether these methods are efficient by measuring the capacitance of the known capacitor. In addition, after measuring the unknown capacitor, the whole capacitors will be connected in parallel and the total size of capacitance will be measured. Theory Capacitance can be found by using:d A C r ??=εε0. This is for two flat plates. As for the formula, C is the capacitance of a capacitor, A is the area of flat plates, d is the distance between the two flat plates, 0ε is the permittivity of vacuum, r ε is the relative permittivity. Permittivity is constant of proportionality that relates the electric field in a material to the electric displacement in that material and relative permittivity is the ratio of the permittivity of a substance to

高中物理选修3-4实验操作及试题

物理选修3-4实验 实验1.测得玻璃的折射率 【知识要点】 一、实验目的 1.测定玻璃的折射率.2.学会用插针法确定光路. 二、实验原理 如图所示,当光线AO 1以一定的入射角θ1穿过两面平行的玻璃砖时,通过插针法 找出跟入射光线AO 1对应的出射光线O 2B ,从而求出折射光线O 1O 2 和折射角θ2,再根 据n =sin θ1sin θ2或 n =PN QN ′ 算出玻璃的折射率. 三、实验器材玻璃砖、白纸、木板、大头针、图钉、量角器(或圆规)、三角板、铅笔. 四、实验步骤 1.如图所示,把白纸铺在木板上. 2.在白纸上画一直线aa ′作为界面,过aa ′上的一点O 画出界面的法线NN ′,并画一条线段AO 作为入射光线. 3.把长方形玻璃砖放在白纸上,并使其长边与aa ′重合,再用直尺画出玻璃砖的另一边bb ′. 4.在线段AO 上竖直地插上两枚大头针P 1、P 2. 5.从玻璃砖bb ′一侧透过玻璃砖观察大头针P 1、P 2的像,调整视线的方向直到P 1的像被P 2的像挡住.再在bb ′一侧插上两枚大头针P 3、P 4,使P 3能挡住P 1、P 2的像,P 4能挡住P 3本身及P 1、P 2的像. 6.移去玻璃砖,在拔掉P 1、P 2、P 3、P 4的同时分别记下它们 的位置,过P 3、P 4作直线O ′B 交bb ′于O ′.连接O 、O ′,OO ′就是玻璃砖内折射光线的方向.∠AON 为入射角,∠O ′ON ′ 为折射角. 7.改变入射角,重复实验. 五、数据处理 1.计算法:用量角器测量入射角θ1和折射角θ2,并查出其正弦值sin θ1 和sin θ2.算出不同入射角时的sin θ1 sin θ2 ,并取平均值. 2.作sin θ1-sin θ2图象:改变不同的入射角θ1,测出不同的折射角θ2,作 sin θ1- sin θ2图象,由n =sin θ1 sin θ2 可知图象应为直线, 如图实-13-3所示,其斜率为折射率. 图实-13-3 3.“单位圆法”确定sin θ1、sin θ2,计算折射率n .以入射点O 为圆心,以一定长度R 为半径画圆,交入射光线OA 于E 点,交折射光线OO ′于E ′点,过E 作NN ′的垂线EH ,过E ′作NN ′的垂线E ′H ′.如图实-13-4所示,sin θ1= EH OE ,sin θ2 =E ′H ′OE ′ ,OE =OE ′=R , 则n =sin θ1sin θ2=EH E ′H ′ .只要用刻度尺测出EH 、E ′H ′的长度就可以求出n . 4.实验过程中,玻璃砖与白纸的相对位置不能改变. 5.玻璃砖应选用宽度较大的,宜在5 cm 以上,若宽度太小,则测量误差较大. 七、误差分析 1.入射光线、出射光线确定的准确性造成误差,故入射侧、出射侧所插两枚大头针间距应大一些. 2.入射角和折射角的测量造成误差,故入射角应适当大些,以减小测量的相对误差. 八、实验改进 本实验可用半圆形玻璃砖代替长方形玻璃砖,做法如下:

中学生物理奥林匹克竞赛第试卷及答案

2008年第25届全国中学生物理竞赛复赛试卷 本卷共八题,满分160分 一、(15分) 1、(5分)蟹状星云脉冲星的辐射脉冲周期是0.033s 。假设它是由均匀分布的物质构成的球体,脉冲周期是它的旋转周期,万有引力是唯一能阻止它离心分解的力,已知万有引力常量 113126.6710G m kg s ---=???,由于脉冲星表面的物质未分离,故可估算出此脉冲星密度的 下限是 3 kg m -?。 2、(5分)在国际单位制中,库仑定律写成12 2 q q F k r =,式中静电力常量9228.9810k N m C -=???,电荷量q 1和q 2的单位都是库仑,距离r 的单位是米,作用力F 的单位是牛顿。若把库仑定律写成更简洁的形式12 2q q F r = ,式中距离r 的单位是米,作用力F 的单位是牛顿。若把库仑定律写成更简洁的形式122q q F r =,式中距离r 的单位是米,作用 力F 的单位是牛顿,由此式可这义一种电荷量q 的新单位。当用米、千克、秒表示此新单位时,电荷新单位= ;新单位与库仑的关系为1新单位= C 。 3、(5分)电子感应加速器(betatron )的基本原理如下:一个圆环真空 室处于分布在圆柱形体积内的磁场中,磁场方向沿圆柱的轴线,圆柱的轴线过圆环的圆心并与环面垂直。圆中两个同心的实线圆代表圆环的边界,与实线圆同心的虚线圆为电子在加速过程中运行的轨道。已知磁场的磁感应强度B 随时间t 的变化规律为0cos(2/)B B t T π=,其中T 为 磁场变化的周期。B 0为大于0的常量。当B 为正时,磁场的方向垂直 于纸面指向纸外。若持续地将初速度为v 0的电子沿虚线圆的切线方向注入到环内(如图),则电子在该磁场变化的一个周期内可能被加速的时间是从t= 到t= 。

大学物理实验报告英文版

大学物理实验报告 Ferroelectric Control of Spin Polarization Controlling the spin degree of freedom by purely electrical means is currently an important challenge in spintronics (1, 2). Approaches based on spin-transfer torque (3) have proven very successful in controlling the direction of magnetization in a ferromagnetic layer, but they require the injection of high current densities. An ideal solution would rely on the application of an electric field across an insulator, as in existing nanoelectronics. Early experiments have demonstrated the volatile modulation of spin-based properties with a gate voltage applied through a dielectric. Notable examples include the gate control of the spin-orbit interaction in III-V quantum wells (4), the Curie temperature T C(5), or the magnetic anisotropy (6) in magnetic semiconductors with carrier-mediated exchange interactions; for example, (Ga,Mn)As or (In,Mn)As. Electric field–induced modifications of magnetic anisotropy at room temperature have also been reported recently in ultrathin Fe-based layers (7, 8). A nonvolatile extension of this approach involves replacing the gate dielectric by a ferroelectric and taking advantage of the hysteretic response of its order parameter (polarization) with an electric field. When combined with (Ga,Mn)As channels, for instance, a remanent control of T C over a few kelvin was achieved through

第31届国际物理奥林匹克竞赛试题

第31届国际物理奥林匹克竞赛试题 理论试题 英国莱斯特2000年7月10日时间5小时 题1 A 某蹦迪运动员系在一根长弹性绳子的一端,绳的另一端固定在一座高桥上,他自静止高桥向下面的河流下落,末与水面相触,他的质量为m,绳子的自然长度为L,绳子的力常数(使绳子伸长lm所需的力)为k,重力场强度为g。求出下面各量的表达式。 (a)运动员在第一次达到瞬时静止前所落下的距离y。 (b)他在下落过程中所达到的最大速率v。 (c)他在第一次达到瞬时静止前的下落过程所经历的时间t。 设运动员可以视为系于绳子一端的质点,与m相比绳子的质量可忽略不计,当绳子在伸长时服从胡克定律,在整个下落过程中空气的阻力可忽略不计。 B 一热机工作于两个相同材料的物体之间,两物体的温度分别为T A和T B(T A>T B),每个物体的质量均为m,比热恒定,均为s。设两个物体的压强保持不变,且不发生相变。 (a)假定热机能从系统获得理论上允许的最大机械能,求出两物体A和B最终达到的温度T?的表达式,给出解题全部过程。 (b)由此得出允许获得的最大功的表达式。 (c)假定热机工作于两箱水之间,每箱水的体积为2.50m3,一箱水的温度为350K,另一箱水的温度为300K。计算可获得的最大机械能。 已知水的比热容= 4.19×103kg-1K-1,水的密度=1.00 x 103kgm.-3 C 假定地球形成时同位素238U和235U已经存在,但不存在它们的衰变产物。238U和235U的衰变被用来确定地球的年龄T。 (a)同位素238U以4.50×109年为半衰期衰变,衰变过程中其余放射性衰变产物的半衰期比这都短得多,作为一级近似,可忽略这些衰变产物的存在,衰变过程终止于铅的同位素206Ph。用238U的半衰期、现在238U的数目238N表示出由放射衰变产生的206Pb原子的数目206n。(运算中以109年为单位为宜) (b)类似地,235U在通过一系列较短半衰期产物后,以0.710×109年为半衰期衰变,终止于稳定的同位素207Pb。写出207n与235N和235U半衰期的关系式。 (c)一种铅和铀的混合矿石,用质谱仪对它进行分析,测得这种矿石中铅同位素204Pb,206Pb和207Pb的相对浓度比为1.00:29.6:22.6。由于同位系204Pb不是放射性的,可以用作分析时的参考。分析一种纯铝矿石,给出这三种同位素的相对浓度之比为1.00:17.9:15.5。已知比值238N:235N为137:1,试导出包含T的关系式。 (d)假定地球的年龄T比这两种钢的半衰期都大得多,由此求出T的近似值。 (e)显然上述近似值并不明显大于同位素中较长的半衰期,但用这个近似值可以获得精确度更高的T值。由此在精度2%以内估算地球的年龄T。 D真空中电荷Q均匀分布在半径为R的球体内。 (a)对r≤R和r>R两种情况导出距球心r处的电场强度。 (b)导出与这一电荷分布相联系的总电能表示式。 E 用细铜线构成的园环在地磁场中绕其竖直直径转动,铜坏处的地磁场的磁感应强度为44.5μT,其方向与水平方向向下成60°角。已知铜的密度为8.90×103kgm-3,电阻率为1.70×10-8Ωm,计算其角速度从初始值降到其一半所需的时间。写出演算步骤,此时间比转动一次的时间长得多。没空气和轴承处的摩擦忽略不计,并忽略自感效应(尽管这些效应本不应忽略)。 题2

相关主题
文本预览
相关文档 最新文档