当前位置:文档之家› 国际和区域卫星通信系统的发展近况.doc

国际和区域卫星通信系统的发展近况.doc

国际和区域卫星通信系统的发展近况.doc
国际和区域卫星通信系统的发展近况.doc

国际/区域卫星通信系统的发展近况

摘要在光纤通信、全光网和地面峰窝移动通信迅猛发展的新世纪里,人们正关心着卫星通信的现状和发展。本文将对国际上二个最大的通信系统INTELSAT与INMARSAT新的发展情况和亚太地区二个先进的区域卫星ACES与THURAYA系统的技术特点作比较详细的介绍。对低轨卫星LEO/小卫星的应用和宽带卫星系统的发展作重点描述,然后对卫星通信发展的技术热点和新业务开发的趋向,作一些讨论与预测。

关键词卫星通信通信卫星低轨卫星宽带多媒体VSAT

1.国际卫星系统

1.1 INTELSAT的新一代卫星系统

1.1.1 系统的新部署

国际通信卫星(INTELSAT)系统已经发展到第Ⅷ代卫星,目前正开发Ⅸ代卫星和Ⅹ代卫星。按2000年10月统计,在轨卫星共19颗,其中,大西洋区(AOR)10颗,印度洋区(IOR)4颗,太平洋区(POR)3颗和亚太地区(APR)2颗。到2003年将增加4个轨道位置,计划在全球配置24颗卫星。

到2003年,Ⅸ代卫星将替代Ⅵ代星,Ⅹ代星将替代Ⅶ代星。在此期间,INTETSAT将发射9颗新的卫星,其中7颗Ⅸ代星布置在AOR与IOR洋区,2颗Ⅹ代星布置在AOR洋区,卫星的部署作了较大的变动。

卫星系统部署的主要内容有:

(1)开发新一代卫星

新一代卫星的下行e、i、r、p和上行G/T值均比上一代有很大的提高和改善,业务种类增多,通信容量也增大。在INTELSAT的卫星系列中,Ⅸ代星是通信容量最大功能最全的卫星。

·Ⅸ代星工作于C及Ku频段,C频段有48个转发器,最多可同时开通44个。Ku频段有16个转发器,可同时开通12个,通过7次频率复用,工作有效可用带宽达3456MHz(C频段为2736MHz,Ku频段为720MHz)能同时传输3200条(在使用DCME数字线路倍增器后达160000条)话路及3路广播电视。

·Ⅸ代卫星的功率增大。C频段的E、I、R、P比Ⅵ代星高出4.5—7.9dBw,Ku频段高出2.3—3.2dBw,减轻了地面的负担,可用小天线开通业务,传输质量可与光纤信道媲美。

·增加区域波束,调整了复盖区。将Ⅵ代星四个区域波束中的东南波束分离成二个,成为五个区域波束的配置。扩大了东中区域波束及西半球波束的复盖面积共有全球波束1个、半球波束2个,区域波束5个。

(2)增添新的轨道位置

INTELSAT组织近年来,逐步实现2°间隔的轨道位置,注册新添的轨道位置有5个,其中64°E已有卫星在用,还有4个位置(340°E°、33°E、157°E、178°E)将部署卫星,运行业务。

(3)开发Ka频段的卫星系统

—9 —

INTELSAT在2000年申请注册了8个轨道位置,运行Ka频段的卫星业务,现正研究星体结构及网络组成,拟在2004年后,部署Ka频段卫星提供业务。

1.1.2 卫星业务的新发展

(1)发展宽带高速业务

中速数据IDR业务是INTELSAT传输公用交换网业务的主要方式,它一直采用的是QPSK/FDMA制式,传输速率为64kbps—44.736Mbps。近年来,INTELSAT组织开发了高效的8PSK TCM格状编码MODEM,来提高频带利用率,8PSK 2/3TCM MODEM,加上RS纠误外码后,用于IDR业务的传输时,比特误码率BER大大优于10-10,不但质量比过去好,并且等约了20%的频带资源。目前已有50多家用户采用这种TCM/IDR技术。

INTELSAT计划在10年内推广应用,TCM/IDR技术,来逐步替代QPSK/IDR技术。并将进一步开发16QAM、64QAM的MODEM用于更高速率的数据业务。

(2)电视业务数字化及卫星新闻采集业务(SNG)

INTELSAT卫星组织于1994年8月批准了IESS-503“数字电视传输工作特性”标准,它规定了数字电视(DTV)载波的工作性能要求。DTV编译码器的速率从64kb/s可视电话开始到140Mb/s的高清晰度电视(HDTV),规定采用H.261和MPEG等压缩传输标准。对DTV 进行业务分类将演播室直接到户(DTH)、卫星新闻采集业务(SNG)和HDTV业务的速率进行分级。

INTELSAT卫星组织已公布,到2003年1月偶用电视业务将完全实现数字化传输。数字卫星新闻采集业务(DSNG)将利用Ⅸ代卫星功率大,组网灵活的优异性能,大力推行DSNG 业务,预计到2001年底,将有120多国家和地区约500个地球站投入运行。

(3)宽带VSAT(BVSAT)业务[1]

INTELSAT卫星组织订出了IESS-313标准,计划在2000年到2001年开展BVSAT新业务。在AOR 328.5°E(IS-801)、APR 110.5°E(APR-2)、IOR 64°E(IS-804)、IOR 62°E(IS-901)和IOR 60°E(IS-902)卫星上建立五条BVSAT网络。IS-801和IS-804卫星的BVSAT已经于2000年7月和12月相继开通。效果很好。

BVSAT业务是一个先进的带宽按需分配(BOD)系统,能为各国的用户很快地调配网络和ISP的连接,支持用户宽带应用的急需,其中包括Intranet/Internet、VPN、WAN/LAN的互连、视频会议、IP电话、FR电话远程教学和远程医疗。它的设计是基于面向分组交换的平台,支持地面IP、FR、以太网、ISDN和ATM协议,支持非对称连接、组播(Multicasting)和广播,支持多转发器运行和适时多重连接。线路速率从64kb/s到4Mb/s。

1.2 INMARSAT的新业务和新标准

INMARSAT系统已经从第一代INMARSAT-1发展到第三代INMARSAT-3。相继推出了A、B/M、C、Mini-M、D及AERO等适合各种用户终端的标准。现在运行的是INMARSAT-3第三代卫星,它在大西洋配置2颗、太平洋1颗,印度洋1颗,卫星工作频段,固定岸站用C 频段(6/4GHz)全球波束覆盖,移动站用L频段,全球波束和5个点波束覆盖,通过卫星转发器将L转为C,C转为L完成岸站与移动站之间的通信。另外,还有C转C,L转L的专用链路。

INMARSAT能提供全球陆、海、空移动用户的电话、传真和数据业务。在A标准用的是FM模拟电话,但在B标准、M标准、Mini-M标准,话音都已经数字化,传输速率从16kb/s、6.4kb/s降到4.8kb/s。终端尺寸逐步缩小,数据业务迅速发展,通信效率不断提高。近年来,

—10 —

INMARSAT在Mini-M的基础上,提出M4新业务,制定了新的F站标准。并且正开展第四代宽带卫星系统INMARSAT I-4,实现新型宽带全球区域网(B-GAN)。

1.2.1 M4业务及F标准站

INMARSAT第三代卫星L频段除全球波束外,还有点波束覆盖,利用点波束就可用笔记本PC那样小的Mini-M终端进行通信,其功能与M标准一样,但体积减小,费用降低,为大量陆地用户提供了更好的移动通信条件。随着信息技术的发展INTERNET的无线接入以及电子商务等业务的市场需求,INMARSAT在Mini-M基础上开发了M4新业务[2]。

M4就是Multi-Media Mini-M的意思,是一种多媒体新业务,M4不但能提供Mini-M的话音(4.8kbps AMBE)、2.4kbps的低速数据和传真业务,还采用16QAM调制方式及TURBO 纠误码,来支持电路交换的64 kbps的ISDN业务。下一步M4将利用64 kbps共享信道,来支持开通INMARSAT分组数据业务(IPDS)。

IPDS是一种分布式的平台,用来高效地提供数据业务。设法让多个MES(移动站)合成一个“移动接点”(MAN)共享一个64 kbps的SCPC信道,通过卫星与地面网络相连。它首先着眼支持IP网络,为移动用户开通各种新业务。

M4多媒体新业务为INTERNET、PSTN、ISDN开辟了广阔的应用空间,为企业和个人形成一个简练、实用的移动办公室。

M4系统业务的运行成功,导致F标准的建立。INMARSAT在1999年9月通过推行F标准的决议。F系统将是在M4系统的基础上进行全面改造,加上海上遇险安全功能(GMDSS 系统),形成业务标准,并将逐步代替A系统,以满足21世纪海上安全通信高速数据多媒体通信和INTERNET网络数据传输的要求。

1.2.2 INMARSAT I-4卫星和B-GAN[3]

INMARSAT与欧洲ASTRIUM卫星公司签订了生产三颗第4代宽带卫星INMARSAT I-4,这个新系列的卫星将把B-GAN变为现实。INMARSAT-I-4将采用功率最大的同步轨道移动通信卫星,将于2003年发射2颗,2004年投入工作,定位于54°W和64°E,卫星重5吨多,使用可展开的大天线,每颗星大约有200个点波点,射向地面,采用频率复用技术,扩大通信容量满足和扩大移动用户全球业务的需求。2004年投入运行时,它将使第三代蜂窝电话用户扩大成视频通道,并使广大乡村和偏远地区能高速接入INTERNET。一个轻巧的终端就可获得432 kbps的数据服务。B-GAN可使用户的LAN扩展为移动的全球区域网GAN,既提供高质量全移动的ISDN接入,又提供移动IP业务的接入,并且还支持导航业务,扩大和增强导航信号的应用,它是将IT基础设施扩展成IT Network的重要举措。

2.区域卫星系统

2.1 Aces亚洲蜂窝卫星系统[4]

Aces亚洲蜂窝卫星系统是第一个用同步卫星实现手持机蜂窝移动通信的系统。是一个很成功的个人卫星通信系统。它的设想是由印尼PSN公司提出来,它和美国马丁公司、菲律宾长途电话公司(PLDT)和泰国Jasmine海外公司合股,于1994年组建了Aces公司,2000年2月发射第一颗卫星GARUDA-1,定位于123°E覆盖西到印度、巴基斯坦,东到菲律宾、巴布亚、新几内亚,南到印尼、北到中国、日本。卫星重4.5吨,是马丁公司最大的卫星A2100AXX 系列,卫星装有2个12米口径的天线(一收一发),对关口站通信用C频段,对用户通信用L频段,在L频段可提供73dBW的AEIRP,15.3dB/K的G/T值,能为200万用户开通11000

—11 —

个电话信道。

Aces系统的地面段包括卫星控制设施(SCF),网络控制中心(NCC)、关口站和用户终端。SCF和NCC都设在印尼巴坦岛共用15米天线的地面站,SCF监视控制GARUDA卫星,NCC管理控制系统资源。关口站提供ACES与公用网PSTN、PLMN的接口,使用户能与世界任何地方的任何人通信。各关口站能提供Aces网与GSM网漫游至本关口站的连接,在初期,在印尼、菲律宾、泰国设立关口站,随后印度和台湾也将建立Aces关口站,向亚洲的8个国家和地区提供Aces业务。另外Aces公司已向28个国家和地区签订了GSM国际漫游协议。Aces用户终端有手持机、移动式和固定式三种,均为Aces/GSM双模终端,手持机使用爱立信R-190双模手机,重量200克,体积为130×50×32mm。用卫星工作时终端的话音业务速率为3.6kbps,数据业务为2.4kbps(用GSM网工作时数据速率为9.6kbps)。

根据最近的报道,为了增强Aces系统的竞争力,拟用50MHz带宽,利用先进的信道编码Tubro码,高效的64QAM调制方式,实现128kbps的高速数据传输,配置多媒体网关(MGS)和多媒体终端建立一个完整的多媒体系统(AMS)提供INTERNET/INTRANET业务及ISDN 业务。

2.2. Thuraya卫星系统[5]

有影响的区域卫星系统,除上述的Aces系统外,还有阿联酋的Thuraya卫星系统,它是阿拉伯国家的区域卫星系统。其覆盖区域包括欧洲、北非、中非、中东、中亚及印度等99个国家和地区。此系统由美国休斯公司承包,第一颗卫星(Thuraya-1)已于2000年10月21日发射升空定点在44°E的同步轨道位置。第二颗卫星(Thuraya-2)将定点于25°E位置。该系统所用的工作频段与Aces系统一样,用户链路用L频段,上行为1626.5—1660.5MHz,下行为1525—1559 MHz,占34 MHz、带宽。馈送链路用C频段,上行为6425—6725 MHz,下行为3400—3625,占300 MHz带宽。卫星重量为5.25吨,天线直径为12.25M形成250—300个点波束,通过30次频率复用,达到很高的频谱利用率。能支持13750条信道,可支持175万用户的通信业务。

Thuraya系统的终端也采用双模式工作,支持GSM标准业务,提供话音、传真和数据业务,传输速率为2.4—9.6Kbps另外,系统能借助GPS系统提供定位服务。

总之,用GEO卫星实现个人通信比LEO卫星系统的话费要低得多,一般在1美元/分以下,在市场上很有竞争力。

3.低轨卫星系统(LEO)

自从铱系统宣布破产后,Globalstar和ICO的发展也比较缓慢,窄带LEO/MEO卫星系统的发展,令人关注,发人深思。如何处理好技术驱动和市场驱动的关系,是值得思考的战略定位问题,铱系统破产了但铱系统应用的技术应当说是成功的。最近传出的消息,铱星公司已被一家私人公司收购,成立新铱星公司,重新定位它的目标用户,宣布于3月30日重新开始新的通信业务。

我们从发展眼光看小的LEO卫星的应用应当有它的发展前途。在这里介绍一下小卫星Orbcomm系统的开发情况。Orbcomm是第一个投入商用的小LEO系统,Orbcomm轨道卫星系统[6]是一个广域、分组交换、双向数据通信系统。用户终端(SC)是通过卫星到关口站,再由关口站接入地面公用网与其他用户通信。Orbcomm系统包括空间段、地面段和用户段。

空间段由36个小卫星组成,主星座为4个轨道平面(A、B、C、D平面)每平面有8

—12 —

颗卫星。A、B、C三个平面对赤道倾斜45°,D平面为O°,卫星高度为825km,4个轨道平面互成45°。2个辅助平面F和G,每平面有2颗卫星互相错开180°,卫星高度为780 km,F平面倾斜70°,G平面倾斜108°。每颗卫星的地面覆盖区大约有直径为5400 km的地区。每颗小卫星仅重43kg,在太阳能板和天线未展开时,是直径为1m,厚度为16cm的园盘体,一旦全部展开,其长度约为4m,太阳能板的总宽度约2.2m。

Orbcomm系统中,卫星到用户终端的下行频率为VHF的137—138MHz对用户有12个下行信道,每个卫星用12个下行信道中的一个,向用户发射,采用频率共享,4次复用,数据速率为4.8kbps。卫星对关口站有一个下行通道,每个关口站分享这一信道采用的是TDMA 方式,数据速率为57.6 kbps。用户终端到卫星的上行频率使用148—150.5MHz频段,卫星接收部分有6个上行用户接收机,1个对关口站的接收机和1个DCASS接收机,DCASS是动态信道指配系统的意思,DCASS接收机是一个扫描接收机,可以在全频段内扫描测试干扰,在5秒钟内选出可用信道。所有卫星都能发射400.1MHz信标。卫星的天线分系统是由关口站、用户,UHF信标三个相互分开的园极化四线螺旋天线单元组成,可在同一轴向展开。

地面段包括关口站(GES)和控制中心(GCC),GCC则包括信关消息交换系统(GMSS),和网络管理系统(NMS)。它为用户提供卫星通信信道以及与地面公用网、专用网的连接。

用户段用户通信终端(SC)是一个VHF的天线Modem,上行发射频率148—150MHz,下行接收频率137—138MHz,用SDPSK调制方式,数据速率为2.4kbps,RS232接口,重量为720克。

4.宽带卫星系统的发展

随着信息业务需求的不断增长,话音、传真和低速数据业务已经不能满足需要,目前的趋势正朝着按用户和企业的要求,随时随地提供多媒体信息的全球信息网络的方向发展,其业务包括快速Internet接入、视频点播、交互视频、远程教育、远程医疗和大型文件传输等。这个支持宽带多媒体业务的要求对卫星系统提出了新的挑战。如何迎着这个机会,发展宽带卫星系统呢,下面列出了近期将开发运行的几个宽带卫星系统。

(1)Astrolink系统

Astrolink卫星系统星座是由4—9颗GEO同步卫星构成,工作在Ka频段,上行为28.35—28.8GHz,下行为29.25—30GHz,它采用星上处理(OBP)和卫上交换(OBS),每颗卫星都是通信网的一个组成部分。系统支持多媒体业务,数据速率为16kbps—9.0Mbps,90cm口径天线的小终端可支持的数据速率为384kbps。它是一个大型的移动通信平台。

(2)Cyberstar系统

Cyberstar卫星系统星座是由3颗GEO同步卫星构成,工作在Ka频段,可为Internet业务提供者(ISP)以及其他商业组织和多媒体信息提供者提供IP/及IP多点广播业务,它的容量为9.6Gbps,采用的是帧中继和A TM技术基础。

(3)Spaceway系统

Spaceway卫星系统是体斯公司开发的,系统采用GEO与MEO的混合结构。整个系统由4颗GEO卫星和20颗MEO卫星组成,工作在Ka频段。系统使用4颗GEO在轨卫星满足高速传输。高度为10352公里的4轨道面,每平面5颗的20颗中轨卫星,支持交互式的宽带多媒体业务。它的超小型VSAT终端天线口径为66cm。系统的传输速率为16Kbps—6Mbps。

(4)Skybridge系统

—13 —

Skybridge卫星系统是一个卫星宽带接入系统,它由80颗1469km高的LEO卫星组成,分10轨道平面,每平面8颗卫星,轨道平面倾角为53°。每颗卫星有45个波束,每个波束能覆盖直径为700km的地面小区。工作频段为Ku频段,上行频率为12.75—14.5GHz,下行频率为10.7—12.75GHz,卫星系统的设计基于弯管中继,支持高速数据,Internet接入及交互多媒体业务,数据率为16Kbps—60Mbps,Spaceway网关站通过ATM交换与地面网连接,整个系统可以容纳2000万个用户。

(5)Teledesic系统

Teledesic卫星系统的卫星星座是由12个轨道平面上的288颗卫星组成,每平面为24颗卫星,卫星高度为1375km、最小倾斜角为40.25°。卫星系统工作在Ka频段,上行频率为28.6—29.1GHz,下行频率为18.8—9.3GHz,每个轨道平面上相邻卫星的星间链路工作频率为60GHz。

Teledesic系统采用完全的星上处理(OBP)和星上交换(OBS),设计成“空中Internet”,提供高质量话音、数据和多媒体信息业务。多址接入方式,上行是多频时分多址(MF—TDMA),下行为异步时分多址(A TDMA)。网络容量,计划为10Gbps。用户连接的上行速率为2Mbps,下行速率为64Mb/s。可用率可达99.9%。

5.卫星系统发展中的热点

通过对上述卫星系统的了解,可以看出卫星系统的业务发展和技术热点。

(1)G EO FSS与GEO MSS

国际/区域GEO卫星不论是INTELSAT的Ⅸ代星,或是INMARSAT的4代星,都是用提高卫星发射功率,改善接收G/T优值,利用点波束、区域波束覆盖来改善链路增益。采用高效调制、优质信道纠误、带宽授控(BOD)和星上处理(OBP)等新技术来高质量高效率地传输信息,从而开发高速数据、Internet接入、宽带交互视频多媒体业务。

在GEO FSS业务中,INTELSAT的BSAT业务的发展比较突出。在国际上新成立了一个“Global VSAT Forum”——全球VSAT论坛,研究VSAT的发展前景,经过调查研究认为VSAT 是解决全球通信最后一公里的有效方案,有着广泛的应用空间,INTELSAT的BVSAT已经开通,各国厂商已经开发出很多新一代的VSAT产品,提供用户使用,例如Hughes公司的Direc PC 和Direc Way Multimedia VSAT系统以及Gilat、NSI等公司的VSAT设备,使用效果都很好。

在GEO MSS业务中,INMARSAT M4和B-GAN的走向同BVSAT的走向相似,MSS业务和FSS 业务都向小终端多媒体业务发展,不同的就是工作频段不一样,管理系统不一样。因此,两者在技术走向有一致性,在业务市场上有竞争性。

(2)GEO MSS和LEO MSS

GEO卫星覆盖范围大,系统简炼,但传输频径长时迟大,在开展适时通信如话音业务时就不太理想,如果要开通移动业务(MSS)就要求很大的卫星发射功率。LEO卫星系统虽然弥补了GEO系统的不足,但是卫星成群,频繁的频率切换及众多的卫星链路,使系统的结构变得复杂庞大。

由于技术的进步,大功率的卫星、12米口径的星上多波束天线系统研制成功,并进入了应用阶段,这使Aces、Thuraya及俄罗斯的镜面—KD等蜂窝卫星系统得到了发展。这些系统的造价在10亿美元以下,话费不到1美元/分。因此从经济上看GEO MSS的Ces蜂窝卫星系统比LEO MSS更有吸引力。

—14 —

(3)LEO MSS中的大LEO与小LEO

英国Surrey大学移动通信研究组,通信系统研究纬中心,对第一代三个移动通信卫星系统ICO、Globalstar和Iridiam在0°—70°韦度内的业务可用性(Service Avaliability)进了摹拟测试,认为MSS质量,最重要的因素是信号遮挡(Shadowing)概率。提高卫星星座的平均仰角,使信号遮挡降低,会明显提高业务可用性。另一方面采用双星或多星分集接收,也能提高服务质量,但是这种系统的设计,是有一个上限的。

第一代LEO MSS用的LEO卫星,造价高,卫星高度低,系统的平均仰角低,可用性不理想。移动通信卫星系统用什么样的星座结构、GEO卫星还是LEO、MEO卫星,或是GEO和LEO/MEO 混合结构,值得深入探讨。看来必须从市场需求,频率/轨道资源、性能、造价等因素来综合考虑。

随着技术的进步,小卫星(小LEO)的应用是一个发展方向,用小LEO组成特定的星座结构,构成全球数据通信系统是比较实用的。Orbcomm系统就是一个例子。

(4)未来宽带卫星系统的特点

它的特点有:

·多媒体通信要可靠的质量(QoS),宽带卫星网络传输系统均采用IP/ATM方式。

·宽带卫星系统为了获得支持多媒体通信的带宽,减轻用户终端的重量和体积,趋向使用Ka频段。

·在网络处理上从弯管中继开始走向星上交换处理。

·宽带卫星系统有用同步卫星(GEO),有的用低轨卫星(LEO),也有用GEO/LEO联合组成的,各有千秋没有定论。

结语

人们说,进入新世纪,卫星通信三大重要方向是“VSAT、移动通信和直播卫星”。从卫星系统近期发展的情况来看,固定卫星业务FSS发展的是BVSAT;移动卫星业务MSS发展的是多波束蜂窝移动通信;广播卫星业务BSS发展的是直播卫星。这个结语应该是正确的。

参考文献

[1] <国际电联2000年亚州电信展(ITU Telcom Asia 2000)>2000年12月

[2] <卫星通信广播电视2000年11月总第24期>

[3] 杂志2000年7—9月

[4] 杂志2000年1252页

[5] 俄刊<网络>NO.7,2000年

[6]

—15 —

中国vsat卫星通信市场发展现状与趋势(三).doc

中国VSAT卫星通信市场发展现状与趋势(三) ——2003年中国VSAT卫星通信市场发展状况及经营状况分析 一、2003年中国VSAT小站用户发展状况 截至2003年底,全国35家VSAT经营企业共计拥有小站用户34540个,比2002年的37872个减少了3332个,降幅为8.8%。其中单向数据小站26285个,比2002年28711个减少了8.4%;双向数据小站8151个,比2002年8922减少了8.6%;语音小站仅有104个,比2002年减少了一半以上。 2003年VSAT小站用户数有所减少的主要原因有以下几方面: (1)VSAT经营企业数量比2002年减少了5个,导致小站用户总数的减少; (2)VSAT经营企业受“SARS”疫情严重影响,致使企业的业务发展计划不能如期完成; (3)无线寻呼市场进一步萎缩,一些原来主要为无线寻呼提供服务的VSAT经营企业市场规模缩小,此类小站数量明显减少; (4)由于地面光网络的快速发展,使用价格大幅度下降,在激烈的市场竞争中,VSAT败下阵来,只好退出部分市场,导致VSAT双向数据小站数量的减少; (5)另外,有一些较老的经营企业因系统设备已趋陈旧,传输带宽和传输速率已不能满足用户的通信需求,致使用户退租。 2003年,单向数据业务依然是VSAT卫星通信的应用亮点,双向数据小站所占比例与上一年基本持平,而语音小站减少一半以上,市场所占比例仅为O.3%。 近年来,VSAT单向数据小站所占比例逐年提高,2003年单向数据小站的比例已经达到76.1%,预计未来两年,单向数据小站比例还将进一步提高;双向数据小站也会有一定的发展,但所占比例不会增长语音小站比例只占O.3%,无论从规模上还是所占比例上都在逐年减少,未来两年仍将保持这样趋势。 截至2003年底,单向数据小站用户数量为26285个,占到小站用户总数的76.1%,也是目前VSAT用户小站增长的主要来源。单向数据业务(如信息广播和远程应用服务等)已经成为了VSAT卫星通信业务的

卫星通信系统中的MIMO传输技术研究

卫星通信系统中的MIMO传输技术研究 卫星通信在提供全球信息服务方面发挥着非常重要的作用,具有覆盖范围广、构建成本低等多种优点。随着用户数量持续增长,加之社会发展十分迅速,人们对通信服务质量的要求也在不断提高,在星上有限的资源限制下如何为更多的用户提供可靠的服务,是目前卫星通信行业的主要问题之一。MIMO技术的主要优势在于空间分集和空间复用,利用不相关的多天线信道并行传输多路数据从而增强无线传输的性能。 因此将MIMO技术应用到卫星通信系统中可以进一步提高卫星通信系统的性能,提高传输效率。目前,如何将MIMO传输技术应用到卫星通信系统中已成为国内外研究热点之一。论文在研究了卫星MIMO传输构建和预编码与多用户选择方案原理的基础上,为了解决星上资源有限,需要利用空间分集和空间复用技术增 强卫星通信系统性能的问题,对卫星MIMO的传输构建方案进行设计,研究预编码和功率分配算法联合优化并对用户选择算法进行基于QoS的改进。 论文的主要研究工作如下:(1)对MIMO卫星通信系统模型进行研究。针对MIMO卫星通信系统架构进行研究与设计,并对卫星传输信道特性进行分析,参考 恶劣天气下信道的情况对传统卫星传输信道模型进行进一步的完善并进行仿真 分析,最后根据仿真结果构建卫星MIMO的自适应传输模式切换方案。(2)对卫星MIMO多用户通信系统下作为基础的SLNR最大化预编码算法和功率分配部分进行研究,针对该方案没有考虑不同用户之间的信道质量差异性,使得用户之间的通 信资源分配不公平进一步加剧的问题,提出了基于严格信漏噪比系数的预编码和功率分配联合优化方案并进行仿真与分析。 (3)对卫星MIMO多用户通信系统下的多用户调度技术进行研究,重点讨论针

应急指挥车卫星通信系统方案

一、项目概述 当前,突发安全生产事件发生地点不确定,部分地区通信不便,特别是发生安全生产事件时,交通通信极易中断,因此执行应急监测时,为及时发送调查、监测信息,必须配备卫星通讯设备,保证应急信息传输通畅。本项目卫星通信系统建设主要包括卫星地面中心站通信系统、静中通应急指挥车卫星通信系统两大部分。 二、项目建设目标与原则 2.1 建设目标 1、建设安监局卫星地面中心站通信系统、一台静中通应急指挥车,实现两者之间的卫星通信。并依托卫星网络,借助音视频编码设备,实现双向视频、音频、数据的实时通信。 2.2 建设原则 系统总体设计遵循“安全保密、技术先进、功能完善、实用可靠、投资合理、运行方便、扩展容易”的原则,具体如下: 1、规范性: 各类设备、通信和控制软件及协议必须符合国内外相关标准。 2、先进性: 系统设计和设备规格完全符合行业技术规范和技术发展潮流,适应主流技术发展的要求。采用当今成熟、先进的技术及设备,在功能和性能方面体现出技术发展的先进性。 3、可靠性: 系统应具有在各种情况下的高可靠运行能力。 4、安全性: 系统对于信息、设备和人身的安全上具有较高的保障。 5、电磁兼容性: 系统整体设计方案严格按照电磁兼容分析结论实施,保证整个系统的各个部分无相互干扰的协同工作。 7、可扩展性: 在技术发展和业务增加时系统具有较大的扩展能力。

8、经济性: 按照需求合理配置系统,确保系统中每一个环节的投入比例达到最高的性能价格比,最大限度地有效利用资金。 三、项目总体技术要求 ?卫星通信:采用卫星Ku波段转发器,实现中心站到任意现场的实时的视频、图像、话音及数据的传输和显示,保障省中心站对现场信息的实时掌控,为领导的指挥决策提供有效及时的现场资料和依据。 ?3G公网通信:利用中国电信或联通3G公网通信系统,实现图像、话音、数据的双向通信。 1、卫星地面中心站通信系统要求 卫星地面中心站通信系统应具有卫星音视频传输及数据通信功能,实现与应急指挥车的互联互通,实现将中心站的各种信息传输到应急指挥车。 ▲中心地面站采用三轴控制(方位、俯仰、极化)天线系统具有一键通信标自动跟踪功能。 2、静中通应急指挥车要求 1)指挥调度功能 利用专用卫星通信系统,及时接收中心站的实时信息,监视现场情况,实现语音、图像、文字数据的双向通信,确保对安全生产现场实施指挥调度。 2)现场信息采集和处理功能 适用于各种复杂环境,能够采集安全生产现场图像、声音等信息。系统具有声音(包括通信话音)、图像、数据等各种信息处理存储能力,具有编辑、发送指挥信息能力。 3)通信保障功能 系统具有电话、音视频、计算机网络等有线接口,无线宽带图像传输等多种通信设备,具有安全生产现场指挥调度和远程通信的能力。 4)辅助决策功能 为领导及时了解灾情,提供生产现场情报,为抗灾指挥决策提供依据。辅助领导分析判断情况;辅助拟制各种保障方案和预案。 5)公网通信 利用中国电信或联通3G公网通信系统,实现图像、话音、数据的双向通信。

卫星通信现状、问题、未来

重庆邮电大学移通学院 我国的卫星通信 —现状、问题与发展 班级:09工程管理1班 学号:0314090133 姓名:刘勋

卫星通信业务是指经过通信卫星和地球站组成的卫星通信网提供的话音、数据、视频图像等业务。通信卫星的种类分为地球同步卫星(静止卫星)、地球中轨道卫星和低轨道卫星(非静止卫星)。地球站通常是固定地球站,也可以是可搬运地球站、移动地球站或移动用户终端。 根据管理的需要,卫星通信业务分为两类。第一类卫星通信业务包括:卫星移动通信业务、卫星国际专线业务。 我国卫星通信业务的现状 我国独资和中外合资经营卫星的公司有4家,内地2家,香港2家。4家公司现有8颗通信卫星在轨运行提供业务。把卫星通信业务市场按照应用领域分为公众通信应用领域、专用及增值业务应用领域、广播电视应用领域及应急通信应用领域。 据不完全统计,截止到2003年底,全国批准建立的卫星通信网有179个,各类双向通信地球站1万多座,单收站4万多个。整个广播电视传输系统现有广播电视地球上行站34个,全国卫星电视接收站约有60多万个。40余家VSAT业务提供商的VSAT小站达3万多个。 近年来随着光纤技术的发展,各个运营公司投入大量的资金铺设陆地和海底光缆,其容量之大和价格之低廉,卫星通信面临巨大的挑战。卫星通信必须利用自身优势寻找新的发展机会。 我国卫星通信业务存在的问题 我国卫星通信业务发展虽然取得了显著的成绩,但与发达国家相比无论在技术还是应用规模上都还有较大的差距。主要问题有: 1.卫星转发器:目前我国的民用卫星资源相当有限。在规模、性能、容 量上都与境外商业卫星资源有较大的差距。对地禁止轨道的位置资源 有限,这限制了我国通过发射更多的禁止轨道通讯卫星来增加卫星转 发器的可能。 2.卫星移动通讯:国内尚无自建的卫星移动通信系统,目前正在使用或 正准备使用的卫星移动通信系统都是国外的。 3.市场开发:卫星通信市场潜力巨大,但尚未充分、有限的开发,如电 视直播、电力传输等等。但至今未能得到广泛的应用,一方面是广大 用户对卫星通信缺乏了解,另一方面是卫星通信的成本高于地面通讯。 我国卫星通信的未来发展 我国卫星通信事业已取得了长足发展,但仍不能满足经济发展的需要,我国卫星通信 的前景广阔,任务也十分艰巨。 1.卫星移动通信业务 我国幅员辽阔,要实现真正的“全球个人通信”,更需要大力发展卫星移动通信,特别是中低轨卫星通信。我国具有巨大的卫星移动通信市场,建立我国自主

宽带卫星通信系统发展现状与展望_忻向军

1 发展现状 宽带卫星通信系统概述 未来宽带卫星网络带宽由极高频(E H F)频段提供,如K a频段(20~30G H z),Q-V频段(40~50GHz)和W频段(76~110GHz)。20世纪90年代提出了各种宽带极高频卫星通信系统,表明了宽带卫星通信系统向高速率、极高频、双向和因特网接入发展的趋势。 宽带极高频卫星通信系统由一颗或多颗卫星组成。在宽带极高频卫星通信系统中,星上路由和星上交换技术的应用非常重要。典型例子是低地球轨道卫星通信系统中的“泰勒戴斯克”(Teledesic)系统,此系统于19世纪90年代提出并于2002年应用,其星座图由288颗低地球轨道卫星组成,实现“空间因特网”,向全球用户提供类似光纤网络服务质量(QoS)性能[误码率(BER)<10-10]的高质量语音、数据和多媒体信息服务。尽管此系统复杂、昂贵并最终作废,但仍然是宽带卫星因特网系统的一个好例子。 近10年,“高适应”(Hylas)卫星、“太空之路”(Spaceway)、“电星”(Telestar)、“双向”(Tooway)、“狂蓝”(WildBlue)和“O3b”等系统表明了宽带极高频卫星通信系统的发展趋势。所有这些系统不仅支持宽带通信应用与服务,如:高速、双向因特网接入(如视频下载、 宽带卫星通信系统 发展现状与展望 忻向军 张琦 王厚天(北京邮电大学) 随着全球信息高速公路因特网的飞速发展和普及,以及交互式多媒体业务的迅速增加,各行各业对宽带的需求越来越紧迫。宽带卫星通信将以其灵活、大范围的覆盖能力,成为无地面网络覆盖地区宽带接入的最佳解决方案。宽带通信卫星正引领着卫星通信的重大变革。Ku等商用频段能够提供的总容量已经无法满足与日俱增的用户带宽需求。Ka频段新型卫星宽带通信系统由于其较宽的可用频段、远端设备小巧、点波束增益高、安装便捷等特点,代表了当代商用民用通信卫星的最高水平,目前美国、加拿大、欧洲、阿联酋等国均发展了Ka 频段宽带卫星,成为宽带卫星系统的主流发展方向。根据欧洲咨询公司预测,未来卫星宽带市场还将进一步扩大,到2019年卫星宽带接入用户数量预计可达约1190万人,主要来自于北美和欧洲,此外,南美约有130万,中国地区约有90万,南亚越有80万等,各地区将主要通过Ka频段多点波束卫星来满足用户快速增长的需求。Ka 频段宽带卫星将成为世界各地未来卫星通信产业重要的发展趋势,将带来显著的社会经济价值。

移动卫星通信站系统设计方案

卫星通信系统建设招标文件 技 术 规 范 书 2013年4月

目录 1概述 (1) 1.1总体需求 (1) 1.2技术要求 (1) 1.3设计原则 (2) 2系统组成 (4) 3卫星通信设计 (5) 3.1卫星通信体制选择 (5) 3.2卫星链路计算 (5) 4X移动卫星通信站系统设计方案 (6) 4.1X移动卫星通信站功能 (7) 4.2卫星通信子系统 (7) 4.2.1x天线伺服控制系统 (7) 4.2.1.1x天线组成 (8) 4.2.1.2x天线系统设计要求 (8) 4.2.1.3x天线系统功能要求 (9) 4.2.1.4x天线系统技术指标 (9) 4.2.2卫星功放 (11) 4.2.3卫星调制解调器 (12) 4.2.3.1卫星调制解调器(网管) (12) 4.2.3.2卫星调制解调器(业务) (13) 4.2.4频谱仪 (14) 4.2.4.1便携式频谱仪 (14) 4.2.4.2机架式频谱仪 (15) 4.3视音频处理子系统 (17) 4.3.1图像采集 (18) 4.3.1.1单兵无线图像传输设备 (18) 4.3.1.2便携式摄像机 (20) 4.3.1.3装载平台室外云台摄像机 (21) 4.3.1.4装载平台室内云台摄像机 (23) 4.3.1.5装载平台两侧及后部摄像机 (24) 4.3.2图像处理与显示 (25) 4.3.2.1视频编解码器 (25) 4.3.2.2高清视频矩阵 (26) 4.3.2.3高标清转换器 (27) 4.3.2.4四联监视器技术要求: (28) 4.3.2.59寸头枕监视器技术要求: (29) 4.3.3音频系统 (30) 4.3.3.1数字调音台 (30) 4.3.3.2无线话筒 (30) 4.3.4VOIP语音网关 (33)

中国VSAT卫星通信市场发展现状与趋势

中国VSAT卫星通信市场发展现状与趋势 ——2003年中国VSAT卫星通信市场进展状况及经营状况分析 一、2003年中国VSAT小站用户进展状况 截至2003年底,全国35家VSAT经营企业共计拥有小站用户34540个,比2002年的37872个减少了3332个,降幅为8.8%。其中单向数据小站26285个,比2002年28711个减少了8.4%;双向数据小站8151个,比2002年8922减少了8.6%;语音小站仅有104个,比2002年减少了一半以上。 2003年VSAT小站用户数有所减少的要紧缘故有以下几方面: (1)VSAT经营企业数量比2002年减少了5个,导致小站用户总数的减少; (2)VSAT经营企业受“SARS”疫情严峻阻碍,致使企业的业务进展打算不能如期完成; (3)无线寻呼市场进一步萎缩,一些原先要紧为无线寻呼提供服务的VSAT经营企业市场规模缩小,此类小站数量明显减少; (4)由于地面光网络的快速进展,使用价格大幅度下降,在猛烈的市场竞争中,VSAT败下阵来,只好退出部分市场,导致VSAT双向数据小站数量的减少; (5)另外,有一些较老的经营企业因系统设备已趋陈旧,传输带宽和传输速率已不能满足用户的通信需求,致使用户退租。 2003年,单向数据业务依旧是VSAT卫星通信的应用亮点,双向数据小站所占比例与上一年差不多持平,而语音小站减少一半以上,市场所占比例仅为O.3%。 近年来,VSAT单向数据小站所占比例逐年提高,2003年单向数据小站的比例差不多达到76.1%,估量以后两年,单向数据小站比例还将进一步提高;双向数据小站也会有一定的进展,但所占比例可不能增长语音小站比例只占O.3%,不管从规模上依旧所占比例上都在逐年减少,以后两年仍将保持如此趋势。 截至2003年底,单向数据小站用户数量为26285个,占到小站用户总数的76.1%,也是目前VSAT用户小站增长的要紧来源。单向数据业务(如信息广播和远程应用服务等)差不多成为了VSAT卫星通信业务

军事卫星通信系统的现状

军事卫星通信系统的现状 及未来发展趋向 7’ 卫星通信在军事应用方面具有一系列的优点,例如:覆盖区域广,建设成本不随距离增 加而变化,快速延伸到新的定位点,高度灵活的网络功能,犬容量;可靠而大范围地对移动 体(舰船、飞机、车辆等)的通信服务j在战时可实现对指令和控制信息的转换和传输。军 用卫星通信不同于商业网络,它要受许多非常规性因素的影响,要具有在敌方威胁下生存的 能力。它可能遇到电子干扰,截获,通信信道/卫星控制链路的电子诱骗,空间或地面系统的实际破坏和来自于核战争的一些其他效应军用卫星通信系统应具备以下几个特性: ①在一个大范围的网络结构下提供有效的服务灵活性; ②具有为不同容量和不同终端尺寸的各种用户提供服务的能力j ⑨能适应大量低占空度(1ow-duty—cy cl e)移动用户需求的便利性; ④具有和其他网络或通信媒体的兼容性; @在不同管辖区域的卫星通信终端问的相互可操作性; @ 成本效益高和改善频谱的利用率。 2 战术卫星通信的增长 迄今为止,军事卫星通信系统还主要是有限制的固定终端,用大的天线和宽频带传输 高数据速率。战术军事通信的需求则要求发展可空中运输的终端,它可在狭小的道路上被很快运抵到一个新的位置上,并在短时问内开通,完成安全和可靠的通信。这些终端可随着部 队移动,运送到边远地区,并且敌方环境和恶劣气候条件下通信设备可短时间内建立起通 路。 由于高速移动的部件设备和运动平台(如舰船、飞机)指挥和控制的需要,卫星系统的 建造围绕较低的频段(UHF)发展,以满足关键战术通信的要求。UHF系统使用具有宽波 束的小型天线,它不需要高精度的点波束指向机构,且容易适合于移动平台。虽然,uHF 终端可以做得较小并相对价廉,但它可利用的带宽和扰干扰能力有限。需要改进的卫星通信 服务既来自于战术上的也来自战略上的用户需求,这样就导致了向更高频段的应用。随着卫 星通信系统应用的增长,一系列新的需求正在促进军事应用向更稳固和更灵活的系统发展。 3 抗威胁的对策 为了具备在不同情况威胁下能提供通信生存的能力,军事卫星通信系统与商用系统的要 1 https://www.doczj.com/doc/ca1352459.html, 论文网论文大全https://www.doczj.com/doc/ca1352459.html, 论文网论文大全 求是不同的。卫星通信具有固有的致命弱点:易受电子干扰和被非法截获。对卫星转发器的 干扰是一种严重的威胁;来自飞机或类似的这类平台有可能对下行链路进行干扰。因此,对 卫星或对地面,或对两者兼而有之,采取了一些对付威胁的手段。最为普遍采用的是频谱扩 展技术和天线调零技术。在军事卫星通信系统里,还采用了低截获概率技术(LPI)和复杂 的编码方法。 5.] 频谱扩展技术 频谱的扩展是一项取决于用户的抗干扰技术,即用户使用一种扩展功能来扩展其信号而 又不为敌方复制。接收机收到信号后则完成反方向的消去扩展功能。所需的信号超过干扰信

卫星通信系统设计讲解

卫星通信系统 设计方案 班级:011241 学号:01 姓名:

一、背景及研究目标 1.1卫星通信 卫星通信简单地说就是地球上(包括地面和低层大气中)的无线电通信站间利用卫星作为中继而进行的通信"卫星通信系统由卫星和地球站两部分组成。卫星通信的特点是:通信范围大,只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信,不易受陆地灾害的影响(可靠性高);只要设置地球站电路即可开通(开通电路迅速),同时可在多处接收,能经济地实现广播!多址通信(多址特点);电路设置非常灵活,可随时分散过于集中的话务量,同一信道可用于不同方向或不同区间(多址联接)。 卫星在空中起中继站的作用,即把地球站发上来的电磁波放大后再反送回另一地球站"地球站则是卫星系统形成的链路"由于静止卫星在赤道上空3.6万千米,它绕地球一周时间恰好与地球自转一周(23小时56分4秒)一致,从地面看上去如同静止不动一样"三颗相距120度的卫星就能覆盖整个赤道圆周"故卫星通信易于实现越洋和洲际通信"。 通信卫星的最大特点就是可以为移动用户之间提供通信服务,具有覆盖区域更广,不受地理障碍约束和用户运动限制等优势,从移动通信卫星的轨道看,目前移动通信卫星的轨道主要有三种: GEO卫星位于地球赤道上空高度为35 786 km的轨道上,其角速度与地球表面旋转的角速度相同,因此相对地面静止,单颗GEO卫星覆盖范围较广约占地球总面积的1/3),最大可覆盖纬度±70°以内的区域[1]。在三种卫星中,GEO卫星距离地球最远,导致其与地面终端之间的通信延时最大,约为250 ms,链路损耗也较大。对于GEO轨道,利用三颗卫星可构成覆盖除地球南、北极区的卫星移动通信系统。 MEO卫星通常位于距离地面高度为10 000 km~20 000 km之间的圆形轨道上,其与地面终端之间的通信延时约为120 ms,链路损耗也相对较小。 LEO星座系统中的LEO卫星通常位于距离地面高度为500 km~2 000 km之间的圆形轨道上,其与地面终端之间的通信延时最短,约为25 ms,链路损耗也最小。 1.2目标 本文中所设计的卫星移动通信系统覆盖目标区域为中国大陆和沿海地区,为便于讨论,将目标区域抽象成圆心在东经105°、北纬30°、地心角为26°的一个圆内,其范围基本包括了中国大陆、领海以及部分周边地区。 通信卫星为GEO 同步轨道卫星,采用QPSK调制方式,上行链路为卫星交换的FDMA 每载波单路信号的FDMA(SDMA-SCPC-FDMA),下行链路为卫星交换的TDMA每载波单路信号的FDMA(SDMA-FDMA-MCPC-TDMA)。.LTE 随机接入策略为ALOHA协议。信道分配为按需分配(DA)方式。传输协议为IP协议。 该系统设计思路为:用户终端→信息编码→调制器→上变频器→功率放大器→卫星接收、下变频→解调、路由→上变频、发射→接收机与解调器→用户终端。

推荐-便携式卫星通信系统方案 精品

便携式卫星通信系统

目录

1需求分析 根据应急通信及现场新闻采访的需求,建设1套卫星机动通信系统以满足应急通信及现场新闻采访的需求,包括1套通信固定站和1套卫星通信便携站及现场图像采集传输系统,固定站和卫星通信便携站之间的通信采用现有卫星通信ku资源实现。卫星通信便携站将通过现场图像采集传输系统采集到的话音、数据及视频传送到卫星通信便携站,再经卫星通信便携站通过卫星传输到固定站和指挥中心的大屏幕上。 根据通信系统实际情况,卫星通信系统建设规模如下: (1)指挥中心建固定卫星通信地球站; (2)建设1套机动通信机动平台。 本建议书对用户需求分析要点如下: 1.1技术需求 根据通信系统需求,工程系统配置包括固定和机动两大系统: 1、位于指挥中心的固定站通信系统:包括 ●天线系统:Ku频段天线系统一套; ●主站室外单元设备:包括低噪声放大器系统一套,SSPA系统(内置 BUC)一套,安装在天线基座架上; ●室内单元设备:包括调制解调器系统一套;视频编码器和解码器一套;语音 网关一套;网管、监控设备一套; 2、应急通信机动平台:包括 ●卫星通信便携站一套; 自动卫星便携天伺馈系统、一体化卫星信道设备、BUC ●单兵图传设备一套; 1.2设计思路 我们的设计原则是建立在满足用户当前需求和今后的扩展要求之上,采用以下设计思路: ●系统设计采用成熟技术,尽量减少技术风险,采用模块化、通用化设计原

则。设备故障部件或单元的替换、检查和修理应该很容易进行。硬件和软件 预留扩容能力,可方便的实现系统扩容。 ●设备布局充分考虑电磁干扰、散热及便于维护。 ●天线分系统技术指标满足IESS-207所规定的E标准地球站的性能要求,安 装设备满足IESS-308/310中有关的性能要求。 ●地球站系统所选用的设备均为技术先进、质量可靠的在用设备。设计寿命应 大于15年。在设计寿命内,地球站系统总的可用度应优于99.9%,满足每 天24小时有人/无人值守下连续运行的要求。 1.3设计依据 (1)遵循IESS-207 E-3标准地球站的性能要求和IESS-308和IESS-310最新版本中规定的中速、高速数据速率的电视业务、话音业务、数据业务设备技术参数要求。 (2)中华人民共和国通信行业相关标准: ●YD 5050-20XX 《国内卫星通信地球站工程设计规范》 ●YD/T 5017-20XX《国内卫星通信地球站设备安装工程验收规范》 ●YD 5059-20XX《电信设备安装抗震设计规范》 ●YD 5098-20XX《通信局(站)防雷与接地工程设计规范》

现代通信系统的发展现状

1.简要概述现代通信系统的发展现状和发展方向。 人类对通信的需求自古以来从未间断过,从古代的烽火台,旌旗,到近代的灯光信号,再到现代的电话,电报,电视以及互联网等,通信的形式与工具在不断地发生变化,不断地进步,逐渐变得越来越方便与人性化。而在现在的信息时代下的网络则正是集成了通信技术的众多功能,故而通信技术的发展对网络的发展起着至关重要的作用。简而言之即,通信系统的发展必将推动网络的优化,网络的优化与发展必将对我们信息时代的社会经济以及人民生活产生巨大的影响。在这个移动互联网的时代,人民对多媒体技术以及手机等新科技产品的需求越来越大,这使得现代通信系统的发展必然会呈现出多样性的趋势,而企业也开始重视客户的使用感受,产品越来越人性化、轻薄化以及高效化。 随着人民对网络的需求进一步加大,现代通信系统技术也在我国得到快速发展,而光纤通信技术在我国的广泛应用,使得我国的通信系统发生了重大变化。而我国的现代通信系统也逐渐向无线通信系统方向发展,并且已经取得了重大的进步,宽带 IP 技术在电信接入网技术中的运用、数据通信与数据网在光纤通讯技术中的广泛使用、ISDN 与 ATM 技术在互联网通信技术中的运用等都是我国现代通讯技术得以不断发展的具体表现。 目前我国的现代通信系统中常用到的现代通信技术一般包括多媒体技术,接入网技术,光通信技术,移动网络通信技术,无线通信技术以及蓝牙技术等,其中无线通信技术相对应用还不是特别的宽泛。 其中多媒体技术就是通过计算机可以实现对文字、图片、声音、动画的编辑,使之可以在计算机用户之间相互交流。多媒体技术是一种为用户和计算机之间建立的逻辑处理关系,可以为网络通信技术的发展提供声音和图像的处理技术,常常实现声音、数据和视频三者融合的技术支持。接入网技术作为现代通信网系统的核心能够实现用户与终端设备通讯信息的有效连接。而其中的蓝牙技术则在在无线网络技术中占据重要的地位,其主要作用是实现不同设备之间的互联。 而现代通信系统的发展前景可谓是不可限量的。 1.其中无线通信系统无疑是发展最快、应用最广、使用者最多的技术。无线通信技 术是对传统通信技术的革新和突破,打破了对传播介质的限制,使使用者可以方 便的通过网络进行信息的传递。无线通信技术在传播上稳定、抗干扰能力强、兼 容性好,使无线通信技术在未来的应用中具有良好的应用前景,是通信技术和网 络的未来主要发展趋势,具有良好的应用前景。

宽带卫星通信技术的现状与发展

宽带卫星通信技术的现状与 发展 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

宽带卫星通信技术的现状与发展 本文综述了宽带卫星通信技术的现状,介绍已解决的关键技术问题,包括卫星数据传输技术和关键器件,以及星上处理、交换技术等。在文章的中间部分,详细阐述困扰宽带卫星系统发展的一些新的技术问题。最后,展望未来宽带卫星技术的发展趋势。 1、宽带卫星通信技术的现状 发展宽带卫星系统已成为当前通信的新热点之一。但要满足未来的需要,必须解决卫星网与服务质量(QOS)有关的系统设计问题。面对各种系统的竞争,如何在技术上保证提供业务肥价优质,以及占领市场,是宽带多媒体卫星通信系统得以生存和发展的关键。 前期的卫星宽带系统被称为卫星宽带接入系统。1996年,美国NASA的ACTS 卫星(Advaned CommuniCations TechnologySatellite)进行了155.54Mbit/s的ATM试验。目前,已经进入商用化的典型系统,如Direct PC和Direct TV都是根据大多数多媒体业务用户的业务特点(下载大量视频、音频和数据信息,但上载信息很小)而设计的。它们使用非对称传输方式来降低用户终端费用,并在北美获得较大的市场。欧洲也在积极发展这样的非对称系统。但是这些早期的应用离未来对宽带卫星系统的要求还有一些距离,在市场定位上还处于探索阶段。目前,宽带卫星通信系统的研究,如欧洲先进通信技术和业务(ACTS,the European advanced Communications technologies and services)计划的若干项目——SECOMS(satelliteEHF communications for mbile multimedia services)、ASSET(ACTS satellite switching end-to-end trials)、WISDOM(wideband satellite demonstration of multimedia)和ACCORD(ACTS broad communicationjoint trials and demonstration等,都集中在可提供2Mbit/s速率的新系统设计上。同时,以支持宽带业务为目的的一些同步和非同步卫星通信系统相继出现,1999年5月11日欧洲发射了ASTRA卫星,组成宽带、面向大众的“空中因特网”卫星系统。 现代宽带卫星系统的特点是工作在更高的频段、采用基于ATM的传输技术和主要提供多媒体和因特网业务。其市场由三个基本部分组成:在线个人客户、多媒体业务提供商和在线企业集团。 目前,宽带卫星系统已采用Ka波段,而Ka波段传播特性受降雨衰耗的影响较大,这一点为人们所普遍关注。但是从实验和实际应用的结果来看,采用自适应功率调整和自适应数字编码可以解决这个问题。 地面光纤网采用ATM技术来提供宽带综合业务。而误码率较高的卫星定带系统在采用ATM技术提供多媒体业务时,需考虑保证QOS的问题。一些国家,如美国、欧洲、日本、澳大利亚对卫星ATM层和物理层性能测试的结果表明,ATM的性能可以满足ITU-TG.826和I.356的目标要求。如果系统采用RS块状编码、交织、FEC技术,卫星链路可达到准光纤链路质量,ATM可以作为卫星系统的数据传输技术。而具有星上交换处理的卫星ATM系统却有着光纤网络所不及的如下优点: ·卫星可以在广阔的地理范围内(包括偏远地区、农村、城市和无人区)提供ATM业务。

卫星通信系统的研究

课程论文(设计) ( 2009 级) 论文(设计)题目卫星通信系统的研究作者 分院、专业 班级 指导教师(职称) 字数 5千字 成果完成时间

卫星通信系统的研究 通信技术 Xxx专业xxx班 xxx 指导教师 xxx 摘要:本文所论述的移动卫星通信系统由卫星和地面基站两大部分组成,是基于人造地球卫星作为中继基站放大或处理无线电信号后进行转发,在两个或多个地面基站之间进行的通信过程或方式。地面基站实际上是卫星系统与地面公众通信网的接口,地面用户通过地面基站接入卫星系统形成通信电路。 关键词:卫星通信;地面基站;中继基站;公众通信网 Study of Communication System Based On Satellite Communications technology Xiong Huafeng Instructor: An kang Abstract: This paper presents the satellite communication system by satellite and ground station two major components, is based on the artificial earth satellite as a relay base station radio signal amplification or processing carried forward, in pair or more of the ground station communication process between or manner. In actually a satellite system ground station and ground public communication network interface, on the ground through the ground station users access to satellite communications system formed the circuit. Key words: Satellite Communications; Ground station; Relay station; Public communication network

船载卫星通信系统解决方案

船载卫星通信系统解决方案 2010年5月12日 摘要:本文阐述了船载卫星通信系统在海事搜救中的解决方案和实际应用。 关键词:船载动中通天线;卫星通信技术 我国是国际航运大国,拥有辽阔的海域。1985年我国加入《1979年国际海上搜寻救助公约》。交通运输部在构筑和谐社会的新形势下,提出了将海事搜救建成“全方位覆盖、全天候运行、快速反应的水上安全保障体系,对发生在我国搜救责任区内的海上险情实施快速有效救助”的总体目标。 实现海上搜救的信息化、可视化、自动化已经是大势所趋,现代卫星移动通信技术的发展和应用,为实现这一目标提供了可靠技术保障。船载卫星通信系统的应用有效地保障了海上搜救中信息的传输。 文中详细阐述了海事搜救中对船载卫星通信系统的需求、解决方案和实际应用。通过最新的移动卫星通信技术,从根本上解决海事搜救通信中实时图像、语音、数据的传输问题。 根据海事搜救的特点,将海事搜救实时通信指挥系统的需求归纳如下:实时图像传输,即将搜救船上摄像机采集的现场图像实时传回指挥中心;建立搜救船与指挥中心的视频会议系统;建立搜救船与指挥中心的语音通话系统,实现电话、传真等功能;建立搜救船上局域网与指挥中心局域网互联,实现移动办公和现场指挥;建立搜救船上Internet接入,便于搜救时收发邮件和查找资料。 根据以上需求,提出采用基于全网IP的LinkStar高速卫星通信网络的船载卫星通信系统解决方案。 一、船载卫星通信系统链路解决方案 船载卫星通信系统链路包含以下几个部分:船载卫星动中通天线、卫星通信系统、卫星

地面站、指挥中心的通信专线或指挥中心远端卫星接收站等,其卫星通信系统链路原理如图1所示。 船载卫星动中通天线与通信卫星进行通信,通信卫星与卫星地面站进行通信,卫星地面站与指挥中心的专线,或通过与指挥中心远端卫星端站进行通信,从而实现搜救船与指挥中心的卫星通信。 船载卫星动中通天线是实现船岸通信的最重要组成部件,需要保证船在航行过程中克服船的横摇、纵摇以及上下起伏,保持与通信卫星的稳定通信。 因此,船载卫星动中通天线的选择首先要保证的是在复杂的航行条件下天线能稳定地跟踪通信卫星。其次是它的通信能力,天线的通信设备要能支持较高通信带宽。第三,安装方便。对于海事局60米巡逻船而言,船上能提供的船载天线安装空间有限,因此安装方便非常重要。 在本文所述的解决方案中,选择的是以色列Orbit Orsat(AL-7103MKⅡ)船载动中通卫星天线,如图2所示:

卫星通信系统基础知识

卫星通信系统基础知识 卫星通信简单地说就是地球上(包括地面和低层大气中)的无线电通信站间利用卫星作为中继而进行的通信。卫星通信系统由卫星和地球站两部分组成。卫星通信的特点是:通信围大;只要在卫星发射的电波所覆盖的围,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高);只要设置地球站电路即可开通(开通电路迅速);同时可在多处接收,能经济地实现广播、多址通信(多址特点);电路设置非常灵活,可随时分散过于集中的话务量;同一信道可用于不同方向或不同区间(多址联接)。 1、卫星通信系统基本概念 1.1系统组成 卫星通信系统由卫星端、地面端、用户端三部分组成。卫星端在空中起中继站的作用,即把地面站发上来的电磁波放大后再返送回另一地面站,卫星星体又包括两大子系统:星载设备和卫星母体。地面站则是卫星系统与地面公众网的接口,地面用户也可以通过地面站出入卫星系统形成链路,地面站还包括地面卫星控制中心,及其跟踪、遥测和指令站。用户段即是各种用户终端。

1.2卫星通信网络的结构 ●点对点:两个卫星站之间互通;小站间信息的传输无需中央站转接;组网方式简单。 ●星状网:外围各边远站仅与中心站直接发生联系,各边远站之间不能通过卫星直接 相互通信(必要时,经中心站转接才能建立联系)。 ●网状网:网络中的各站,彼此可经卫星直接沟通。 ●混合网:星状网和网状网的混合形式 1.3卫星通信的应用围 ●长途、传真 ●电视广播、娱乐 ●计算机联网 ●电视会议、会议 ●交互型远程教育 ●医疗数据 ●应急业务、新闻广播 ●交通信息、船舶、飞机的航行数据及军事通信等

1.4卫星通信使用频率 ●电波应能穿过电离层,传输损耗和外部附加噪声应尽可能小 ●有较宽的可用频带,尽可能增大通信容量 ●较合理的使用无线电频谱,防止各宇宙通信业务之间及与其它地面通信业务之间产 生相互干扰 ●通信采用微波频段(300MHz-300GHz) 注:由于空间通信是超越国界的,频谱分配是在ITU主管下进行的,1979年世界无线电行政大会(WRAC)分配给卫星通信的频带包含17个业务分类,并将全球分为三个地理区域:Ⅰ区、Ⅱ区、Ⅲ区,我国位于第Ⅲ区。详细的频率分配可查阅到。 常用工作频段 C波段与Ku波段的比较 1.5多址方式 在微波频带,整个通信卫星的工作频带约有500MHz宽度,为了便于放大和发射及减少变调干扰,一般在星上设置若干个转发器。每个转发器被分配一定的工作频带。目前的卫星通信多采用频分多址技术,不同的地球站占用不同的频率,即采用不同的载波。比较适用于点对点大容量的通信。近年来,时分多址技术也在卫星通信中得到了较多的应用,即多个地球站占用同一频带,但占用不同的时隙。与频分多址方式相比,时分多址技术不会产生互调干扰、不需用上下变频把各地球站信号

卫星通信的SATCOM系统设计解决方案

卫星通信的SATCOM系统设计解决方案 过去二十年来,商用航空领域一直依赖卫星通信协调民用航空乘客出行。随着数据流量和物联网(loT)应用的增长,对卫星通信系统的需求已达到顶峰。 对于商用喷气机和大型客机而言,商用飞机的高带宽数据访问需求也增长显著。我们发射了支持更高频率的新卫星,以实现这种带宽增长。本文将考察这些技术趋势,以及可通过市场上提供的可定制架构实现所需性能并缩短上市时间的解决方案。 SATCOM介绍和历史 不断提高数据速率的需求正在推动SATCOM领域中的许多新发展。SATCOM链路的数据速率将从kbps提高至Mbps,这将实现更高效的数据和视频传输。无人机的大幅增加为SATCOM链路创造了一个新的舞台。而且,商业航空航天市场中对数据和互联网接入不断增长的需求正在推动Ku频段和Ka频段不断发展,以支持最高达1000 Mbps的数据速率。同时,支持传统数据链路、最大限度减小尺寸、重量和功耗(SWaP)和减少系统开发投入也正在推动对开发灵活架构和最大限度提高系统重用率的需求。 SATCOM系统通常利用对地静止轨道(GEO)卫星—相对于地球表面静止的卫星。要实现对地静止轨道,卫星必须具有非常高的海拔高度—与地球表面的距离超过30 km。这样的高轨道的好处在于,覆盖大面积的地面只需要很少的卫星,而且由于知道其固定坐标,因此将数据传输至卫星较为简单。由于这些系统的发射成本较高,因此它们专为长使用寿命而设计,非常稳定,但有时也会有点过时。 由于海拔高度较高且存在辐射,因此往往需要采用额外的设备屏蔽或卫星屏蔽措施。而且,由于卫星离得太远,地面上的用户可能会有重大信号损失,同时还会影响信号链设计和元件选择。地面到卫星的距离较长还会造成用户和卫星之间的高延迟,这会影响部分数据和通信链路。 最近,人们提出了许多GEO卫星的替代方案或补充系统,无人飞行器和低地轨道(LEO)卫星也正在考虑当中。借助低轨道,这些系统可减小基于GEO的系统方面的挑战,但会影响覆盖范围,需要更多的卫星或无人飞行器才能实现类似的全球覆盖。

中国卫星通信现状和展望

中国卫星通信现状和展望 闵士权 一、卫星通信基本情况 我国卫星通信21世纪初发展基本情况如下: (1)卫星固定通信:空间段建设大发展;相应的卫星公用通信网、卫星专用通信网和卫星广播电视传输网得到较好的发展。 (2)卫星移动通信:静止轨道的便携式用户终端的全球卫星移动通信系统运营良好;中低轨道的手持式用户终端的各种全球卫星移动通信系统运营不佳。 (3)卫星直接广播:国外卫星声音直播系统正在进入中国市场;国内卫星电视直播系统已纳入国家重点建设项目,前期建设准备工作已开始。 (4)卫星宽带通信:积极发展卫星宽带通信业务;密切跟踪新型卫星宽带通信系统动态。 二、卫星固定通信情况 1. 空间段 中国独资或中外合资经营卫星的公司有5家:中国通信广播卫星公司、亚 洲通信卫星有限公司、亚太通信卫星有限公司、鑫诺卫星通信有限公司和中国 东方通信卫星有限责任公司。5家公司现有9颗静止通信卫星在轨运行提供业务,这些卫星是中星-6(东三)、亚洲-1、亚洲-2、亚洲-3S、亚太-1、 亚太-1A、亚太-2R、中卫-1和鑫诺-1。以上卫星共有346个转发器单元, 其中C频段213个,Ku频段133个。它们共覆盖了中国本土及其周边国家以及亚、太、非等部分地区。此外还有待发射的中星-8卫星,其转发器单元C频 段38个,Ku频段22个。以上卫星主要为中国国内用户服务,也为覆盖区内其 它国家和地区的用户服务。 为了开展国际业务需要,有关单位还租用了国外多颗通信卫星的转发器。 这些卫星有国际通信卫星和泛美卫星,还有银河-3R和热鸟-3通信卫星。 2.地面段 (1)公用通信国内业务:主要由中国电信、联通、网通和吉通诸公司经营。其中中国电信为最早和最大经营者。中国电信公网共用中星-6和中卫-1卫星

现代通信技术发展现状及其趋势

现代通信技术发展现状及其趋势 2008-12-25 19:48 【摘要】本文概述了现代通信技术的发展现状,并讲述了移动、卫星、光纤等通信方式。 关键词: 通信技术发展移动通信卫星通信光纤通信 一、引言 21世纪是一个信息社会,信息交流已经成为人们生活的基本需要。通信作为传输和交换信息的重要手段,是推动人类社会文明、进步与发展的巨大动力。电话技术的演变日新月异,传输媒介、交换设备、传输设备、终端设备和通信方式的改变都是影响电信通信的因素。 二、社会的需求,市场的需求 社会和市场的需求是刺激技术发展的原动力,对于信息技术的发展,市场同样起着举足轻重的推动作用。随着社会的发展,特别是近年来全球经济的发展,信息在社会生活中的地位越来越重要。以往那种单一、低效的信息传输方式已难以满足社会的需求,人们不仅要求所获取的信息数量更多、质量更好,还要求获得信息的手段更加方便、快捷,并能对信息系统实现实时、交互控制。社会与市场的这种需求再加上现代计算机技术的发展,对现代通信技术的发展起到了举足轻重的促进和导向作用。。 三、移动通信 为了实现客户对通信业务种类及数量的需求,移动电话通信系统在经历了模拟、GSM数字系统变革后,,又提供了一种能够全球漫游、支持多媒体等数据业务且有足够容量的第三代移动通信技术,既是码分多址技术(CDMA )——数字蜂窝移动通信系统。码分多址无线电通信技术是第三代无线电通信技术, 目前已在北美、东南亚和韩国被大规模投入商用。以前的模拟手机只能在模拟网覆盖地区使用, GSM 手机只能在GSM 网覆盖区使用, 两大系统互不兼容, 造成频率资源的浪费。采用CDMA 技术的新型手机由于实行的是双模式, 所以无论是数字网, 还是模拟网覆盖的地区, 都能自动转换工作方式, 不但可以提高频率资源利用率10~20倍,而且给用户带来方便;二是通话质量高,接近市话效果;三是发射功率在0.1~2000毫瓦之间所以对,人体辐射小。四是断话率低,保密能力强,因此,倍受用户的青睐。另外, 低地球轨道卫星开辟了移动通信的新领域, 掀起了卫星全球移动通信的新浪潮。将多个卫星链接在一起, 把地球天衣无缝地覆盖起来, 由多个蜂窝交换机网, 可连通地球上任何一点, 从而实现全球卫星移动通信,实现“电子地球村”的目标。 四、卫星通信 卫星通信是在空间技术和微波通信技术的基础上发展起来的一种通信方式。其利用人造地球卫星作为中继站来转发无线电信号,可实现两个或多个地球站之间的通信。全球卫星通信产业正在飞速发展, 卫星通信技术和电子技术取得了突破性进展,包括中、低轨道全球卫星移动通信系统在内的新系统不断涌现出来, 归纳起来,分为非同步(含低轨道L EO、中轨道M EO ) 和同步(同步轨道GEO ) 两大类。以低轨道卫星为基础的系统, 具有时延短、路径损耗小、能有效地频率复用、

相关主题
文本预览
相关文档 最新文档