当前位置:文档之家› 经典弦长公式【过双曲线焦点】(原创珍藏版)

经典弦长公式【过双曲线焦点】(原创珍藏版)

经典弦长公式【过双曲线焦点】(原创珍藏版)
经典弦长公式【过双曲线焦点】(原创珍藏版)

★双曲线的焦点弦长公式:

1.如图所示,中心为坐标原点,焦点在x 轴的双曲线1b y a x 22

22=-

如图所示,1F 、2F 为双曲线1b

y a x 22

22=-中的两个焦点。

直线AB 过左焦点1F ,则焦点弦长为线段AB 。

①在△21F AF 中,1F 2F =2c ,设∠21F AF =θ,A 1F =t ,A 2F =t –2a 。

θcos =tc

42a)-(t )c 2(t 2

22-+

?4tc θcos =at 4a 4t c 4t 2222+--+

?4tc θcos =at 4a 4c 422+-

?4tc θcos =2b 4at 4-

?at-tc θcos =2b

?t =θ

cos a b 2

c -

∴A 1F =θ

cos a b 2

c -

②在△21F BF 中,1F 2F =2c ,∠21F BF =(π–θ),设B 1F =s,,则B 2F =s –2a 。

)-cos(θπ=sc

42a)-(s )c 2(s 2

22-+=–θcos

?–4sc θcos =as 4a 4s c 4s 2222+--+

?–4sc θcos =as 4a 4c 422+-

?–4sc θcos =2b 4as 4-

?as+c θcos =2b

?s =θ

cos a b 2

c +

∴BF1=θ

cos a b 2

c + ∴AB = A 1F +B 1F = θcos a b 2c -+θcos a b 2c += θ2222

cos a ab 2c - 即AB = θ

2222

cos a ab 2c -

高中数学-圆锥曲线有关焦点弦的几个公式及应用.

圆锥曲线有关焦点弦的几个公式及应用 如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。 证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在 直线上的射影为。由圆锥曲线的统一定义得,,又,所以。 (1)当焦点内分弦时。 如图1,,所以 。

图1 (2)当焦点外分弦时(此时曲线为双曲线)。 如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。若,则的离心率为()

解这里,所以,又,代入公式得,所 以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心 率为。过右焦点且斜率为的直线于相交于两点,若,则() 解这里,,设直线的倾斜角为,代入公式得,所以 ,所以,故选。 例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为 的直线,与抛物线交于两点(点在轴左侧),则有____ 图3

圆锥曲线的焦点弦公式及应用(难)

圆锥曲线有关焦点弦的几个公式及应用如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。 证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。由圆锥曲线的统一定义得,,又,所以。 (1)当焦点内分弦时。 如图1,,所以。 图1

(2)当焦点外分弦时(此时曲线为双曲线)。 如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。若,则的离心率为() 解这里,所以,又,代入公式得,所以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心 率为。过右焦点且斜率为的直线于相交于两点,若,则()

解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。 例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为 的直线,与抛物线交于两点(点在轴左侧),则有____ 图3 解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时, 设,又,代入公式得,解得,所以。 例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。 例5(自编题)已知双曲线的离心率为,过左焦点 且斜率为的直线交的两支于两点。若,则___解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。

二次曲线中的万能弦长公式

二次曲线中的万能弦长公式 王忠全 我们把圆、椭圆、双曲线、抛物线称为二次曲线,用设而不求的方法,可得到其弦长公式。 设直线方程为:y=kx+b (特殊情况要讨论k 的存在性),二次曲线为f (x ,y )=0,把直线方程代入二次曲线方程,可化为ax 2+by 2+c=0,(或ay 2+by+c=0),设直线和二次曲线的两交点为A (x 1,y ),B (x ,y ) 那么:x 1,x 2是方程ax +by +c=0的两个解,有 x 1+x 2=-a b ,x 1x 2=a c , ()()||k 1x x 4)(k 1))(k (1)()(||2 21221222122212212 21221a x x x x b kx b kx x x y y x x AB ? +=-+?+=-+=--++-=-+-= 同理:若化为关于y 的方程ay 2+by+c=0,则|AB|= | |112a k ?+. 例、已知过点M (-3,-3)的直线m 被圆x 2+y 2+4y-21=0所截得的弦长为45,求直线m 的方程。 解析:设直线方程m:y+3=k(x+3), 即y=kx+3k-3,代入x 2+y 2+4y-21=0,得x 2+k 2x 2+9k 2+9+6k 2x-6kx-18k-21+4kx+12k-12=0, 即(1+k 2)x 2+(6k 2-2k)x+9k 2-6k-24=0,那么 032,092,2,210 232016162416808096246454196246454|1|96246024364243612122222222342342=+-=++=-==--=--+=+-=++-=++-++-+-+y x y x k k k k ,k k ,k k k ,,k k k k k k k k k k k k 或所求直线方程为得两边平方即

高考数学竞赛圆锥曲线中与焦点弦相关的问题

与焦点弦相关的问题 8.椭圆、双曲线、抛物线的焦点弦性质(定值1) 问题探究8 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=?恒成立.并由此求∣AB ∣的最小值.(借用柯西不等式) 实验成果 动态课件 椭圆的焦点弦的两个焦半径倒数之和为常数 11112 ||||AF BF ep += 备用课件 双曲线的焦点弦的两个焦半径倒数之和为常数 AB 在同支 11112 ||||AF BF ep += AB 在异支 11112 | |||||AF BF ep -= 备用课件 抛物线的焦点弦的两个焦半径倒数之和为常数 112 ||||AF BF ep += 备用课件

9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2) 问题探究9 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=?恒成立.并由此求 四边形ABCD 面积的最小值和最大值. 实验成果 动态课件 椭圆互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件 双曲线互相垂直的焦点弦倒数之和为常数 ep e CD AB 2| 2|||1||12-=+ 备用课件 抛物线互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件

10.椭圆、双曲线、抛物线的焦点弦与其中垂线性质(定值 3) 问题探究10 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,AB 中垂线交x 轴于点D ,是否存在实常数λ,使1AB F D λ=恒成立? 实验成果 动态课件 设椭圆焦点弦AB 的中垂线交长轴于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设双曲线焦点弦AB 的中垂线交焦点所在直线于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设抛物线焦点弦AB 的中垂线与对称轴交于点D ,则∣DF ∣与 ∣AB ∣之比为离心率的一半(F 为焦点) 备用课件

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学 薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F 为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P 为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PQ e PF =,∴)cos (p PF e PF +=θ,其中FH p =,=θ〈x 轴,FP 〉 ∴焦半径θ cos 1e ep PF -=. 当P 在双曲线的左支上时,θcos 1e ep PF +- =. 推论:若圆锥曲线的弦MN 经过焦点F ,则有 ep NF MF 211=+.

三、圆锥曲线的焦点弦长 若圆锥曲线的弦MN 经过焦点F , 1、椭圆中,c b c c a p 2 2=-=,θ θπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=. 2、双曲线中, 若M 、N 在双曲线同一支上,θ θπθ2222 cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2 222 cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ. 3、抛物线中,θ θπθ2sin 2)cos(1cos 1p p p MN =--+-=. 四、直角坐标系中的焦半径公式 设P (x,y )是圆锥曲线上的点, 1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF -=2; 2、若1F 、2F 分别是双曲线的左、右焦点, 当点P 在双曲线右支上时,a ex PF +=1,a ex PF -=2; 当点P 在双曲线左支上时,ex a PF --=1,ex a PF -=2; 3、若F 是抛物线的焦点,2p x PF + =.

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F作相应准线的垂线,垂足为K,以FK的反向延长线为极轴建立极坐标系. ep 椭圆、双曲线、抛物线统一的极坐标方程为:. 1ecos 其中p是定点F到定直线的距离,p>0. 当0<e<1时,方程表示椭圆; 当e>1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PF e PQ,∴PF e(PF cos p),其中p FH,〈x轴,FP〉∴焦半径PF ep . 1ecos 当P在双曲线的左支上时,PF ep 1ecos . 推论:若圆锥曲线的弦MN经过焦点F,则有 112 . MF NF ep

2 cos 2 . c 2 2 2 三、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 经过焦点 F , a 2 b 2 ep ep 2ab 2 1、椭圆中, p , MN c c 1 ecos 1 ecos( ) a 2 c 2、双曲线中, ep ep 2ab 2 若 M 、N 在双曲线同一支上, MN ; 1 ecos 1 ecos( ) a 2 c 2 cos ep ep 2ab 2 若 M 、N 在双曲线不同支上, MN . 1 ecos 1 ecos c 2 cos a 2 3、抛物线中, MN p p 2p . 1 cos 1 cos( ) sin 四、直角坐标系中的焦半径公式 设 P (x,y )是圆锥曲线上的点, 1、若 F 、F 分别是椭圆的左、右焦点,则 PF 1 2 1 a ex ,PF 2 a ex ; 2、若 F 、 F 分别是双曲线的左、右焦点, 1 2 当点 P 在双曲线右支上时, PF 1 ex a , PF 2 ex a ; 当点 P 在双曲线左支上时, PF 1 a ex , PF 2 a ex ; 3、若 F 是抛物线的焦点, PF x p . 2

圆锥曲线焦点弦问题

圆锥曲线焦点弦问题

θ2222 sin 2c a ab - 高考题:1.过抛物线)0(22 >=p py x 的焦点F 作倾斜角为300的直线与抛物线交于A 、B 两点(点A 在y 轴左侧),则 =FB AF 解:由公式:11cos +-= λλθe 得:11-21+=λλ,解得λ=3,∴=FB AF 3 1 2.双曲线122 22=-b y a x ,AB 过右焦点F 交双曲线与A 、B ,若直线AB 的斜率为3, 4=则双曲线的离心率e= 解:∵由已知tan θ=3∴θ=600, 由公式:11cos +-= λλθe 得:e 11-21+=λλ=1 41 -4+ ∴ e= 5 6 3.(2010高考全国卷)已知椭圆C :12222=+b y a x (a>b>0),离心率23 =e ,过右焦点且 斜率为k (k>0)的直线与C 相交于A 、B 两点,若3=,则k=( B )

A 、1 B 、2 C 、3 D 、2 解:由公式:11 cos +-= λλθe 得cos θ=3 1∴ k=tan θ=2;故选B 。 4.2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为 ,过 且斜率为的直线交 于 两点。若 ,则 的离心率为( ) 解 这里,所以,又,代入公式得,所 以 ,故选。 5.(08高考江西)过抛物线的焦点作倾斜角为的直线,与抛物 线交于 两点(点在轴左侧),则有____ 图3 解 如图3,由题意知直线 与抛物线的地称轴的夹角 ,当点 在 轴左侧时, 设,又,代入公式得,解得,所以。

6.(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。 7.已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。若,则___ 解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。8.(2009年高考福建)过抛物线的焦点作倾斜角为的直线,交抛物线于两点,若线段的长为8,则___ 解由抛物线焦点弦的弦长公式为得,,解得。 11.(2007年重庆卷第16题)过双曲线的右焦点作倾斜角为的直线,交双曲线于两点,则的值为___ 解易知均在右支上,因为,离心率,点准距 ,因倾斜角为,所以。由焦半径公式得, 。

双曲线弦长公式例题

类型三:综合练习 1.已知中心在原点的双曲线C 的右焦点为,右顶点为 (Ⅰ)求双曲线C 的方程; (Ⅱ)若直线 A 和 B 且(其中为原点),求k 的取值范围。 2.已知直线1+=ax y 与双曲线1322=-y x 交于A 、B 点。 (1)求a 的取值范围;(2)若以A B 为直径的圆过坐标原点,求实数a 的值; 3.(1)椭圆C:122 22=+b y a x (a >b >0)上的点A ),(231到两焦点的距离之和为4,求椭圆的方程; (2)设K 是(1)中椭圆上的动点,F 1是左焦点,求线段F 1K 的中点的轨迹方程; 对接高考(圆锥曲线) 1 、【2015高考新课标1,文5】已知椭圆E 的中心为坐标原点,离心率为 12 ,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( ) (A ) 3 (B )6 (C )9 (D )12 2、【2015高考四川,文7】过双曲线2 2 13y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB |=( ) ()2,0) :=l y kx 2?> OA OB O

(A (B (C )6 (D 3、【2015高考陕西,文3】已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 4、【2015高考湖南,文6】若双曲线22 221x y a b -=的一条渐近线经过点(3,-4),则此双曲线的离心率为( ) A B 、54 C 、43 D 、53 5、设是椭圆22 22:1(0)x y E a b a b +=>>的左、右焦点,P 为直线上一点,12PF F ?是底角为的等腰三角形,则E 的离心率为() ()A 12()B 23()C 34 ()D 45 6、 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =C 的实轴长为() () A () B () C 4() D 8 7、【2015高考北京,文20】(本小题满分14分)已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭 圆C 交于A , B 两点,直线AE 与直线3x =交于点M . (I )求椭圆C 的离心率; (II )若AB 垂直于x 轴,求直线BM 的斜率; 8、【2015高考陕西,文20】如图,椭圆2222:1(0)x y E a b a b +=>>经过点(0,1)A - . (I)求椭圆E 的方程; 12F F 32a x =30

焦点弦公式及其应用

焦点弦公式及其应用 焦点弦公式及其应用论文关键词:焦点弦公式,应用 在近年来的高考数学试题中,经常出现圆锥曲线焦点弦问题.用常规方法解决这类问题时,由于解题过程复杂,运算量较大,所以很容易出现差错. 为了准确而迅速地解决圆锥曲线焦点弦问题.我们可以利用下面介绍的焦点弦公式. 设圆锥曲线的离心率为,焦准距为,过焦点的弦AB与主轴(即椭圆长轴、双曲线实轴、抛物线对称轴)的夹角为θ,则可以推导出弦AB的长度公式,简称焦点弦公式.特别当离心率时,焦点弦公式还可以化简. 1、当时,圆锥曲线为椭圆, ; 2、当时,圆锥曲线为抛物线, . 图1 下面对焦点弦公式进行证明. 证法一如图1,设椭圆C:焦点为,过焦点F的弦AB的倾斜角为,当时,弦AB在直线L:上.由直线L和椭圆C的方程可得 .

设点A、B的坐标分为和,则.由焦半径公式得弦AB的长度为 ∵焦准距为,∵.当时,公式也成立. 对于双曲线和抛物线用同样的方法可以证明. 证法二设圆锥曲线的离心率为,焦准距为,则极坐标方程为,过焦点的弦AB与x轴的夹角为θ.当时,如图2.∵,. ∵ .即. 当时,同理可以推得. 利用焦点弦公式,可以巧妙地解决与圆锥曲线焦点弦有关的各种问题.现在分别举例如下. 一、在椭圆中的应用 例1 (2008年高考安徽卷文科22题) 已知椭圆,其相应于焦点F(2,0)的准线方程为x=4. (∵)求椭圆C的方程; (∵)已知过点F1(-2,0)倾斜角为的直线交椭圆C于A,B两点.,求证: (∵)过点F1(-2,0)作两条互相垂直的直线分别交椭圆C于点A、B和D、E,求的最小值. 解:(∵)由已知得,又,所以. 故所求椭圆C的方程为. (∵)因为直线AB倾斜角为,,,,。 由焦点弦,可得=得证.

圆锥曲线的极坐标方程焦半径公式焦点弦公式

圆锥曲线的极坐标方程 极坐标处理二次曲线问题教案 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线

当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015103383c a c a a b a c c c ???===??????∴????????-===?????? 2225155( )()882 b ∴=-= 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问

高中数学 圆锥曲线焦点弦斜率公式及应用 专题辅导

高中数学 圆锥曲线焦点弦斜率公式及应用 专题辅导 周华生 本文介绍圆锥曲线标准方程的两个用定比λ表示的斜率公式及解题时的巧妙应用。 定理1 若 AB 是椭圆 )0b a (b a y a x b :2222221>>=+Γ或双曲线 2222222b a y a x b :=-Γ或抛物线)0p (px 2y :23>=Γ的焦点弦,F 为焦点且λ=,(A 在B 之上),则弦AB 所在直线斜率k 满足 )1,0(1e ) 1()1(k 2 2 22 ±≠λ≠λ--λ+λ= (1) 证明:设AB 的倾角为α。 (1)当?<α<900时,l 为F 对应的准线,如图1对曲线1Γ: ?? ?α-α=±=+-=+-=+λ-λ== λ) F (cos e ) F (cos e |AB ||)BC |(e |BF ||AF ||)'BB ||'AA (|e | BF ||AF || BF ||AF |11,|'BB || 'AA ||BF ||AF |为右焦点为左焦点 所以2 22 2 )1()1(e sec -λ+λ=α,即1e )1()1(tan 2222--λ+λ=α。 (2)当?<α

双曲线的弦长公式与面积(不过焦点的弦)

第 1 页 共 1 页 双曲线的弦长公式与面积(不过焦点的弦) 双曲线 ()0,01- 2 22 2>>=b a b y a x 与直线m kx y l +=:相交于AB 两点,求AB 的弦长. 设 设()()2211,,,y x B y x A 则()()()2122122 1221241x x x x k y y x x AB -++=-+-= 将 m kx y +=代 入 1 - 2 22 2=b y a x 得: ( ) ??? ????---=?-=+∴=-2222 222212222212 22222222-20-2--a k b b a m a x x a k b km a x x b a m a kmx a x a k b () 2 2 2 2 2222 212 212 2141k a b m a k b ab k x x x x k AB -+-+=-++==∴. 双曲线与直线交点的判别式:() 2222224m a k b b a +-=?用来判断是否有两个交点问题. 面积问题:双曲线与直线m kx y l +=:相交与两点,()00,y x C 为AB 外任意一点,求ABC S ?.设C 到l 的距离为d ,则222222200200-1 21 21a k b m a k b ab m y kx k m y kx AB d AB S ABC -+?+-=++-==△. 直线与双曲线交点问题: (1)直线m kx y +=与双曲线()0,01- 2 2 2 2 >>=b a b y a x 有两个交点时, ( )04222222>+-=?m a k b b a ;() 04222222=+-=?m a k b b a ,有仅有一个交点; ()042 222 2 2<+-=?m a k b b a ,没有交点. (2)过点()00,y x P 的直线与双曲线有一个交点情况需要分类讨论: ①当a b x y ±=00时,点P 在渐近线上,当a x ±=0时,有两条直线(一条切线,一条与另一条 渐近线平行的直线);②当a x ±≠0时,且在双曲线外部,有三条直线(两条切线,一条与另一条渐近线平行的直线); ③当()0,01-220220>>>b a b y a x 时(点P 在双曲线内部),一定有交点,当直线斜率a b k ±=时, 有一交点,当直线斜率a b k ±≠时,有两个交点.

圆锥曲线之焦点弦专题

圆锥曲线之焦点弦专题 一.圆锥曲线常用的几种方法: 1.定义法 2.韦达定理 3.设而不求点差法 4.弦长公式法 5.数形结合法 6.参数法(点参数;K参数:角参数) 7.代入法中的顺序 8.充分利用曲线系方程法 二.圆锥曲线七种常见题型 1.中点弦问题 2.焦点三角形问题 3.直线与圆锥曲线位置关系 4.圆锥曲线的有关最值(范围)问题 5.求曲线的方程问题 6.存在两点关于直线对称问题 7.两线段垂直问题 三.焦点弦题型讲与练 模型:e=√1+k2|?-1/?+1|或|ecos?|=|?-1/?+1 1.已知椭圆c:x2/a2+y2/b2=1的离心率为√3/2,过右焦点F且斜率为k的直线与c交与A.B两点,若向量AF=3FB.求k的值。 2设F1,F2分别是椭圆E:x2+y2/2=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为___ .3.设F1.F2分别为椭圆x2/3+y2=1的左右的焦点,点A,B在椭圆上,若向量F1A =5F2B,则A点的坐标 .

4.椭圆的左右焦点分别为F1F2,A、B是椭圆上的两点,AF1=3F1B,∠BAF=90,椭圆的离心率是() A 1/2 B√2/2 C√3/2 D3/4 5.(本小题满分12分)设F1,F2分别是椭圆E:的左,右焦点, 过F1且斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(I) 求E的离心率; (II) 设点P(0,-1)满足|PA|=|PB|,求E的方程. 6.设F1,F2分别是椭圆C:的左,右焦点,M是C上一点且MF2 与x轴垂直.直线MF1与C的另一交点为N. (Ⅰ)若直线MN的斜率为3/4,求C的离心率; (Ⅱ)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b. 7.设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E. (Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程; (Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.

圆锥曲线三种弦长问题

圆锥曲线三种弦长问题的探究 在高考中,圆锥曲线的综合问题,常以直线与圆锥曲线的性质及其位置关系的有关知识为主体,而直线与圆锥曲线的弦长问题,是在圆锥曲线中常见一个重要方面,下面对圆锥曲线中出现的有关弦长问题作简单的探究: 一、一般弦长计算问题: 例1、已知椭圆()22 22:10x y C a b a b +=>>,直线1:1x y l a b -=被椭圆C 截得的弦长为 且e = ,过椭圆C 2l 被椭圆C 截的弦长AB , ⑴求椭圆的方程;⑵弦AB 的长度. 思路分析:把直线2l 的方程代入椭圆方程,利用韦达定理和弦长公式求解. 解析:⑴由1l 被椭圆C 截得的弦长为2 2 8a b +=,………① 又3 e =,即2223c a =,所以22 3a b =………………………….② 联立①②得2 2 6,2a b ==,所以所求的椭圆的方程为22 162 x y +=. ⑵∴椭圆的右焦点()2,0F ,∴2l 的方程为:)2y x =-, 代入椭圆C 的方程,化简得,2 51860x x -+= 由韦达定理知,1212186 ,55 x x x x +== 从而12x x -= = , 由弦长公式,得1255 AB x =-==, 即弦AB 的长度为 5 点评:本题抓住1l 的特点简便地得出方程①,再根据e 得方程②,从而求得待定系数2 2 ,a b ,得出椭圆的方程,解决直线与圆锥曲线的弦长问题时,常用韦达定理与弦长公式。

二、中点弦长问题: 例2、过点()4,1P 作抛物线28y x =的弦AB ,恰被点P 平分,求AB 的所在直线方程及弦AB 的长度。 思路分析:因为所求弦通过定点P ,所以弦AB 所在直线方程关键是求出斜率k ,有P 是弦 的中点,所以可用作差或韦达定理求得,然后套用弦长公式可求解弦长. 解法1:设以P 为中点的弦AB 端点坐标为()()1122,,,A x y B x y , 则有22 11228,8y x y x ==,两式相减,得()()()1212128y y y y x x -+=- 又12128,2x x y y +=+= 则21 21 4y y k x x -= =-,所以所求直线AB 的方程为()144y x -=-,即4150x y --=. 解法2:设AB 所在的直线方程为()41y k x =-+ 由()2418y k x y x ?=-+??=??,整理得2 83280ky y k --+=. 设()()1122,,,A x y B x y ,由韦达定理得128 y y k +=, 又∵P 是AB 的中点,∴ 1212y y +=,∴8 24k k =?= 所以所求直线AB 的方程为4150x y --=. 由24150 8x y y x --=??=? 整理得,22300y y --=,则12122,30y y y y +==- 有弦长公式得, 12AB y =-== . 点评:解决弦的中点有两种常用方法,一是利用韦达定理及中点坐标公式来构造条件;二是 利用端点在曲线上,坐标满足方程,作差构造中点坐标和斜率的关系求解,然后可套用弦长公式求解弦长. 三、焦点弦长问题: 例3、(同例1、⑵) 另解:⑵∴椭圆的右焦点()2,0F ,∴2 l 的方程为: )2y x =-, 代入椭圆C 的方程) 222162y x x y ?=-??+ =?? ,化简得,2 51860x x -+=

圆锥曲线焦点弦的一个性质

圆锥曲线焦点弦的一个性质 浙江省台州市实验中学 张铭 由于圆锥曲线(椭圆、双曲线、抛物线)有着统一的内在规律,因而它们的一些性质逐渐被人们揭示。本人在研究圆锥曲线焦点弦时,发现了一个统一性质,现叙述如下: 定理1:已知抛物线E:y 2=2px (p>0)的焦点为F ,其准线为L: 2 p x =-,,过焦点F 的直线m 与抛物线交于A 、B 两点.则112||||AF BF p += 证明:若过点F 的直线m 的斜率存在为k(k ≠0),则m 的方程为()2 p y k x =-. 设1122(,),(,)A x y B x y ,将()2p y k x =-代入抛物线方程可得22()22 p k x px -= 即22222 (2)04k p k x p k x -++= 22 12122(2),4p k p x x x x k +∴+=?= 1112||||,||||22 p p AF AA x BF BB x ==+==+又 221222 (2)2(1)||||p k p k AF BF x x p p k k ++∴+=++=+= (1) 2 1212122222222||||()()()2224(2)1424p p p p AF BF x x x x x x p p p k p k p k k ?=++=?+++++=+?+=? (2) (1) 除以(2)得 ||||22||||A F B F A F B F p p +=+=?11 ,即 |AF||BF| 若过F 点的直线m 的斜率不存在,此时直线m 的方程为:2p x = 则A.B 两点坐标为(,)(,)||||22p p p p AF BF p -∴==和 11112||||AF BF p p p ∴+=+= 命题也成立。 综上,定理得证。

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程 关于直线与圆锥曲线相交求弦长,通用方法是将直线b kx y+ =代入曲线方程,化为关于x的一元二次方程,设出交点坐标()(), , , , 2 2 1 1 y x B y x A利用韦达定理及弦长公式 ] 4 ) )[( 1( 2 1 2 2 1 2x x x x k- + +求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷. 一、椭圆的焦点弦长 若椭圆方程为)0 (1 2 2 2 2 > > = +b a b y a x ,半焦距为c>0,焦点)0, ( ), 0, ( 2 1 c F c F-,设过 1 F的直线l的倾斜角为l,α交椭圆于两点()(), , , , 2 2 1 1 y x B y x A求弦长AB. 解:连结B F A F 2 2 ,,设y B F x A F= = 1 1 ,,由椭圆定义得y a B F x a A F- = - =2 , 2 2 2 ,由余弦定理得2 2 2) 2( cos 2 2 ) 2(x a c x c x- = ? ? - +α,整理可得 α cos 2 ? - = c a b x,同理可求 得 α cos 2 ? + = c a b y,则 α α α2 2 2 2 2 2 cos 2 cos cos c a ab c a b c a b y x AB - = ? + + ? - = + =; 同理可求得焦点在y轴上的过焦点弦长为 α2 2 2 2 sin 2 c a ab AB - =(a为长半轴,b为短半轴,c为半焦距). 结论:椭圆过焦点弦长公式: ? ? ? ?? ? ? ? - ? - = ). ( sin 2 ), ( cos 2 2 2 2 2 2 2 2 2 轴上 焦点在 轴上 焦点在 y c a ab x c a ab AB α α

圆锥曲线焦点弦公式及应用

圆锥曲线焦点弦公式及应用 湖北省阳新县高级中学邹生书 焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有 ;(2)当焦点外分弦时(此时曲线为双曲线),有 。 证明设直线是焦点所对应的准线,点在直线上的射影分别为, 点在直线上的射影为。由圆锥曲线的统一定义得,,又 ,所以。 (1)当焦点内分弦时。 如图1,,所以 。 图1 (2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右 焦点为,过且斜率为的直线交于两点。若,则的离心率为() 解这里,所以,又,代入公式得,所 以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的 离心率为。过右焦点且斜率为的直线于相交于两点,若,则() 解这里,,设直线的倾斜角为,代入公式得, 所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜 角为的直线,与抛物线交于两点(点在轴左侧),则有____ 图3 解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴 左侧时,设,又,代入公式得,解得,所以。 例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___ 解设直线与焦点所在的轴的夹角为,则,又,代 入公式得,所以。 例5(自编题)已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。若,则___ 解这里,,因直线与左右两支相交,故应选择公式 ,代入公式得,所以所以,所以。 定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准 距(焦点到对应准线的距离)为。过点的弦与曲线的焦点所在的轴的夹

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线

(3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015103383c a c a a b a c c c ???===??????∴????????-===?????? 2225155( )()882 b ∴=-= 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问题的解决使极坐标处理的优势显的淋漓尽致。 (2)圆锥曲线弦长问题

圆锥曲线焦点弦长公式(极坐标参数方程)

圆锥曲线焦点弦长公式(极坐标方程) 圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!? 定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e ,通径长为H ,则 (1)当焦点在x 轴上时,弦AB 的长| cos 1|||2 2αe H AB -= ; (2)当焦点在y 轴上时,弦AB 的长| sin 1|||22αe H AB -=. 推论: (1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α 22cos 1||e H AB -=; 当A 、B 不在双曲线的一支上时,1 cos ||22-= αe H AB ;当圆锥曲线是抛物线时, α 2 sin ||H AB = . (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α 2 2sin 1||e H AB -=;当A 、B 不在双曲线的一支上时,1 sin ||22-= αe H AB ;当圆锥曲线是抛物线时, α 2 cos ||H AB = .

典题妙解 下面以部分高考题为例说明上述结论在解题中的妙用. 例1(06湖南文第21题)已知椭圆13 4221=+y x C :,抛物线px m y 22 =-)((p >0), 且1C 、2C 的公共弦AB 过椭圆1C 的右焦点. (Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若3 4 =p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程. 2F O A B x y

相关主题
文本预览
相关文档 最新文档