当前位置:文档之家› 细胞周期信号转导通路

细胞周期信号转导通路

细胞周期信号转导通路
细胞周期信号转导通路

Progress in the eukaryotic cell cycle is driven by oscillations(振动) in the activities of CDKs

(Cyclin-Dependent Kinases). CDK activity is controlled by periodic synthesis(周期复合体)and degradation of positive regulatory subunits(调节亚基), Cyclins, as well as by fluctuations in levels of negative regulators, by CKIs (CDK Inhibitors), and by reversible phosphorylation. The mammalian cell cycle consists of four discrete phases: S-phase, in which DNA is replicated; M-phase, in which the chromosomes are separated over two new nuclei in the process of mitosis. These two phases are separated by two so called “Gap” phases, G1 and G2, in which the cell prepares for the upcoming events of S and M, respectively (Ref.1). The different Cyclins, specific for the G1-, S-, or M-phases of the cell cycle, accumulate and activate CDKs at the appropriate times during the cell cycle and then are degraded, causing kinase inactivation. Levels of some CKIs, which specifically inhibit certain Cyclin/CDK complexes, also rise and fall at specific times during the cell cycle (Ref.2). A breakdown in the regulation of this cycle leads to uncontrolled growth and contribute to tumor formation. Defects in many of the molecules that regulate the cell cycle also lead to tumor progression. Key among these are p53, the CKIs (p15 (INK4B), p16 (INK4A), p18 (INK4C), p19 (INK4D), p21, p27 (KIP1)), and Rb (Retinoblastoma Susceptibility Protein), all of which act to keep the cell cycle from progressing until all repairs to damaged DNA have been completed.

In mammalian cells, different Cyclin-CDK complexes are involved in regulating different cell cycle transitions: Cyclin-D -CDK4/6 for G1 progression, Cyclin-E -CDK2 for the G1-S transition, Cyclin-A

-CDK2 for S-phase progression, and Cyclin-A/B-CDC2 for entry into M-phase. Apart from these

well-known roles in the cell cycle, several Cyclins and CDKs are involved in processes not directly related to the cell cycle. Cyclin-D binds and activates the estrogen receptor. (Ref.6). The Cyclin-H -CDK7 complex is a component of both the CDK-activating kinase and the basal transcription factor TFIIH and can phosphorylate CDKs. Other Cyclins and CDKs (Cyclin-C-CDK8, Cyclin-T-CDK9, and Cyclin-K) are also associated with RNA Polymerase-II and phosphorylate the carboxyl-terminal repeat domain.

Cyclin-G, a target of p53, recruits PP2A (Protein Phosphatase 2A) to dephosphorylate MDM2 (Mouse Double Minute 2) (Ref.3).

Cyclins associate with CDKs to regulate their activity and the progression of the cell cycle through specific checkpoints. Disruption of Cyclin action leads to either cell cycle arrest, or to uncontrolled cell cycle proliferation. Mitogenic signals that are received by cell surface receptors communicate to the nuclear cell cycle machinery to induce cell division through growth factor receptors that target Ras, which signals to a number of cytoplasmic signaling cascades such as PI3K (Phosphatidylinositiol–3 Kinase), Raf and Rho. These proteins connect to the nuclear cell cycle machinery to mediate exit from Go into G1 and S-phase of the cell cycle. Activation of Ras leads to transcriptional induction of Cyclin-D1 in early G1 through a Ras-responsive element in the Cyclin-D1 gene promoter. Cyclin-D associates with CDK4 and CDK6 to form active Cyclin-D/CDK4 (or -6) complexes. This complex is responsible for the first phosphorylation of tumor suppressor Rb in G1 (Ref.1). Subsequently, Cyclin-E is synthesized. When Cyclin-E is abundant it interacts with the cell cycle checkpoint kinase CDK2 and allow progression of the cell cycle from G1 to S-phase. One of the key targets of activated CDK2 complexed with Cyclin-E is Rb. When dephosphorylated in G1, Rb complexes with and blocks transcriptional activation by E2F transcription factors. But when CDK2/Cyclin-E phosphorylates Rb, it dissociates from E2F, allowing E2F to activate the transcription of genes required for S-phase. E2F activity consists of a heterodimeric complex of an E2F polypeptide and a DP1 protein (Ref.5). One of the genes activated by E2F is Cyclin-E itself, leading to a positive feedback cycle as Cyclin-E accumulates. In S-phase, Cyclin-A is made, which

in complex with DK2 adds further phosphates to Rb. Cyclin-B is made in G2 and M-phases of the cell

cycle (Ref.4). It combines with CDK1 (also called CDC2 or CDC28) to form the major mitotic kinase MPF (M-phase Promoting Factor). MPF causes entry of cells into mitosis and, after a lag, activates the system that degrades its Cyclin subunit. MPF inactivation, caused by the degradation of Cyclin-B, is required for

exit from mitosis (Ref.2). 14-3-3s bind to the phosphorylated CDC2–Cyclin-B kinase and exports it from

the nucleus. During G2-phase, CDC2 is maintained in an inactive state by the kinases Wee1 and Myt1 (Myelin Transcription Factor 1). As cells approach M-phase, the phosphatase CDC25 is activated by PLK (Polo-Like Kinase). CDC25 then activates CDC2, establishing a feedback amplification loop that

efficiently drives the cell into mitosis.

All Cyclins are degraded by ubiquitin-mediated processes, and the mode by which these systems are connected to the cell-cycle regulatory phosphorylation network, are different for mitotic and G1 Cyclins (Ref.2). The decision by the cell to either remain in G1 or progress into S-phase is the result in part of the balance between Cyclin-E production and proteolytic degradation in the proteosome. Cyclin-E is targeted

for destruction by the proteosome through ubiquitination when associated with a complex of proteins

called the SCF or F box complex. During G1-phase, the Rb-HDACs (Histone Deacetylases) repressor complex binds to the E2F-DP1 transcription factors, inhibiting the downstream transcription. Many

different stimuli exert checkpoint control including TGF-Beta, DNA damage, contact inhibition, replicative senescence and growth factor withdrawal. The first four act by inducing members of the INK4A family or

KIP/CIP families of cell cycle kinase inhibitors. TGF-Beta additionally inhibits the transcription of CDC25A,

a phosphatase that activates the cell cycle kinases. DNA damage activates the DNA-PK/ATM/ATR kinases, initiating cascades that inactivate CDC2–Cyclin-B.

Both synthesis and destruction of Cyclins are important for cell cycle progression. The destruction of Cyclin-B by Anaphase-Promoting Complex/cyclosome is essential for metaphase-anaphase transition, and expression of indestructible Cyclin-B traps cells in mitosis (Ref.3). Cyclins-E and A have been implicated in the DNA replication initiation process in mammalian cells. In embryonic systems, Cyclin-E regulates replication in the absence of Cyclin-A. For centrosome duplication, in somatic cells Cyclin-A is required to induce DNA replication and it has also been implicated in activation of DNA synthesis, because of its appearance time relative to the onset time of DNA synthesis and its localization to sites of nuclear DNA replication. Cyclin-E regulates the transcription of genes that encode the replication machinery but has also been implicated in the initiation process in mammalian cells (Ref.1). Similarly, expression of indestructible Cyclin-A arrests cells in late mitosis. Overexpression of Cyclin-F also causes an accumulation of the G2/M (Ref.3).

细胞信号通路大全

1 PPAR信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇 和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。它们作为脂 肪传感器调节脂肪代谢酶的转录。PPARs由PPARα、PPARβ和PPARγ 3种亚型组成。PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生 长发育等。另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与 凋亡。PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶( ERK-和p38.M APK) ,蛋白激酶A和C( PKA,PKC) ,AM PK和糖原合成酶一3( G SK3) 等调控。调控PPARa生长信号的酶报道有M APK、PKA和G SK3。PPARβ广泛表达于各种组织,而PPAR γ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。PPAR-γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用, 而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。鉴于目前人 们对PPAR—γ信号通路尚不甚清,PPARs通常是通过与9-cis维甲酸受体( RXR)结合实现其转录活性的。 2 MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activated protein kinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等)。 MAPKs家族的亚族 :ERKs(extracellular signal regulated kinase):包括ERK1、ERK2。生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。 JNKs(c-Jun N-terminal kinase)包括JNK1、JNK2、JNK3。此亚族成员能使 Jun转录因子N末端的两个氨基酸磷酸化而失活,因此称为Jun N末端激酶(JNKs)。物理、化学的因素引起的细胞外环境变化以及致炎细胞因子调节此通路。P38 MAPKs:丝氨酸/络氨酸激酶,包括p38 α、p38β、p38γ、p38δ。p38 MAP K参与多种细胞内信息传递过程 ,能对多种细胞外刺激发生反应,可磷酸化其它细胞质蛋白,并能从胞浆移位至细胞核而调节转录因子的活性来改变基因的表达水平 ,从而介导细胞生长、发育、分化及死亡的全过程。 ERK5:是一种非典型的MAPK通路,也叫大MAPK通路,只有一个成员。它可被各种刺激因素激活。不仅可以通过磷酸化作用使底物活化,并且通过C端的物理性结合作用激活底物。 3 ERBB信号途径:ErbB 蛋白属于跨膜酪氨酸激酶的 EGF 受体家族成员。ErbB 的命名来源于在禽红白血病 B( v-Erb-B) 发现的 EGF 受体的突变体,因而 EGF 受体 亦称为“ ErbB1”。人源 ErbB2 称为HER2, 特指人的 EGF 受体。ErbB 家族的

常见的信号通路

1JAK-STAT信号通路 1)JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。(1)酪氨酸激酶相关受体(tyrosinekinaseassociatedreceptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生 长激素)、EGF(表皮生长因子)、PDGF(血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2)酪氨酸激酶JAK(Januskinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosinekinase,RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Januskinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸、JAK1个成员:4蛋白家族共包括JAK结构域的信号分子。SH2化多个含特定

JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAKhomologydomain,JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3)转录因子STAT(signaltransducerandactivatoroftranscription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2)JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传 递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(dockingsite),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位点”。最后,激酶JAK 催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二 聚体的形式进入细胞核内与靶基因结合,调控基因的转录。值得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。例如IL-4激活STAT6,而IL-12 。STAT4却特异性激活

免疫和炎症相关信号通路-精选.pdf

免疫与炎症相关信号通路 一、Jak/Stat Signaling:IL-6 Receptor Family Jak和Stat是许多调节细胞生长、分化、存活和病原体抵抗信号通路中的关 键部分。就有这样一个通路涉及到IL-6(gp130)受体家族,它帮助调节B 细胞的分化,浆细胞生成和急性期反应。细胞因子结合引起受体的二聚化同 时激活受体结合的Jak蛋白,活化的Jak蛋白对受体和自身进行磷酸化。这些磷酸化的位点成为带有SH2结构的Stat蛋白和接头蛋白的结合位臵,接头蛋白将受体和MAP激酶,PI3激酶/Akt还有其他的通路联系在一起。受体结合的Stat蛋白被Jak磷酸化后形成二聚体,转移进入细胞核调节目的基因的 表达。细胞因子信号传导抑制分子(SOCS)家族的成员通过同源或异源的 反馈减弱受体传递的信号。Jak或Stat参与其他受体蛋白的信号传导,在下 面Jak/Stat使用表格中有这方面的列举。研究人员已经发现Stat3和Stat5在一些实体肿瘤中被酪氨酸激酶而不是Jaks组成性激活。 JAK/STAT途径介导细胞因子的效应,如促红细胞生成素,血小板生成素, G-CSF,这些细胞因子分别是用于治疗贫血,血小板减少症和中性粒细胞减 少症的蛋白质类药物。该途径也通过干扰素介导信号通路,干扰素可以用来 作为抗病毒和抗增殖剂。研究人员发现,失调的细胞因子信号有助于癌症的 发生。异常的IL-6的信号或导致自身免疫性疾病,炎症,癌症,如前列腺癌 和多发性骨髓瘤的发生。Jak抑制剂目前正在多发性骨髓瘤模型中进行测试。Stat3具有潜在促癌性(原癌基因),在许多癌症中持续的表达。在一些癌细 胞中,细胞因子信号传导和表皮生长因子受体(EGFR)家族成员之间存在交流。 Jak激活突变是恶性血液病中主要的分子机制。研究人员已经在Jak2假激酶域中发现一个特有的体细胞突变(V617F),这个突变常常发生于真性红细 胞增多症,原发性血小板增多症和骨髓纤维化症患者。这个突变导致Jak2的病理激活,同时激活控制红细胞,巨核细胞和粒细胞增殖分化的促红细胞 生成素(EPO),血小板生成素(TPO)和G-CSF等的受体。而Jak1的功能获得性体细胞突变已发现存在于成人急性淋巴细胞性白血病当中。体细胞激活突变已经证明存在于小儿急性淋巴细胞白血病(ALL)患者中。此外,

干货 细胞信号通路图解之MAPK通路【值得珍藏】

干货细胞信号通路图解之MAPK通路【值得珍藏】 科研小助手原创,转载请注明来源。公众号内回复“Cell Signaling Pathway”获取全套信号通路图本文由百度贴吧nosce吧吧主黄杰投稿一、MAPK信号通路: (1)有丝分裂原激活的蛋白激酶(MAPK)是一族在真核生物中非常保守的丝/苏氨酸蛋白激酶,在许多细胞活动中起作用,如生长增殖,细胞分化,细胞运动或死亡。MAPK级联信号传导由3 个不同层次的分子所组成。MAPK被MAPK的激 酶( MAPKK)磷酸化后激活,MAPKK被MAPKK的激酶(MAPKKK )磷酸化而激活。而MAPKKK通过与小GTPase 和/或其他蛋白酶相互作用而被激活,从而将MAPK和细胞 表面的受体以及胞外的信号联系在一起。 (2)许多参与生长和分化的受体都能够激活MAPK/ERK信号通路,比如说受体酪氨酸激酶(RTK),整合素,和离子通道。响应特定信号所涉及到的具体分子会相差很大,但通路的结构是一致的,那就是接头分子(adaptor,如Shc, GRB2, Crk等)将鸟苷酸交换因子(SOS, C3G 等)和受体连接在一起,然后把信号向小GTP 结合蛋白(Ras, Rap1)传递,后者又激活核心的级联反应,这是由一个MAPKKK( Raf) ,一个MAPKK( MEK1/2)和MAPK( Erk)所构成的。活化的ERK 二聚体能调节胞浆中的目标分子,也可以转移到细胞核中,然

后对一系列转录因子进行磷酸化以调节基因表达。SciRes(3)很多外部的刺激都能够激活G蛋白偶联受体(GPCR)。在受体活化以后,G 蛋白将GDP 转换成GTP ,然后结合了GTP的α和β/γ亚基从受体脱离开,启动信号向胞内的传导。与不同亚型的异质三聚体G 蛋白结合的受体可以采取不同 的手段激活小G 蛋白/MAPK级联反应,至少有三个不同家族的酪氨酸激酶参与其中。Src家族激酶响应活化的PI3Kγ,而后者被β/γ亚基激活。它们还能够响应受体的内化,受体酪氨酸激酶的交叉活化,以及有Pyk2 和/或FAK参与的整 合素途径信号。GPCRs同样可以通过PLCβ去激活PKC 和CaMKII ,对下游的MAPK通路可以有激活或抑制的影响。SciRes(4)压力激活的蛋白激酶(Stress-activated protein kinase, SAPK)或称Jun氨基端激酶(Jun amino-terminal kinase, JNK) 是MAPK的家族成员,能被一系列的环境压力,炎症细胞因子,生长因子和GPCR激动剂所激活。压力信号通过Rho家族的小GTP 酶(small GTPase)向这条级联通路传导,这些小GTP酶包括(Rac, Rho, cdc42) 。和其他的MAPK情况一样,靠近膜的激酶是一个MAPKKK,一般 是MEKK1-4 ,或者是一个混合激酶去磷酸化并激活 MKK4(SEK)或MKK7,它们是SAPK/JNK的激酶。另外,MKK4/7也可以被生发中心激酶(germinal center kinase, GCK)以一种GTPase 依赖的方式激活。活化后的

细胞信号通路大全

1PPAR信号通路:过氧化物酶体增殖物激活受体(PPARs)是与维甲酸、类固醇和甲状腺激素受 体相关的配体激活转录因子超家族核激素受体成员。它们作 为脂肪传感器调节脂肪代谢酶的转录。PPARs由PPARα、PPARβ和PPARγ3种亚型组成。PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。他通过 调控靶基因的表达而调节机体许多生理功能包括能量 代谢、生长发育等。另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与凋亡。PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶(ERK-和 p38.MAPK),蛋白激酶A和C(PKA,PKC),AMPK和糖原合成酶一3(GSK3)等调控。调控PPARa 生长信号的酶报道有MAPK、PKA和GSK3。PPARβ广泛表达于各种组织,而PPARγ主 要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。PPAR-γ在诸如炎症、动 脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面 均有着举足轻重的作用,而其众多生物学效应则是通过启动或参与的复杂信号 通路予以实现。鉴于目前人们对PPAR—γ信号通路尚不甚清,PPARs通常是通过与9-cis维 甲酸受体(RXR)结合实现其转录活性的。 2MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activatedproteinkinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋 白激酶。作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反 应(增殖、分化、凋亡、应激等)。 MAPKs家族的亚族:ERKs(extracellularsignalregulatedkinase) :包括 ERK1、ERK2。生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。 JNKs(c-JunN-terminalkinase)包括JNK1、JNK2、JNK3。此亚族成员能使Jun转录因子N末 端的两个氨基酸磷酸化而失活,因此称为JunN末端激酶(JNKs)。物理、化学的因素引起的 细胞外环境变化以及致炎细胞因子调节此通 路。 P38MAPKs:丝氨酸/络氨酸激酶,包括p38α、p38β、p38γ、p38δ。p38MAPK参与多种细胞内信息传递过程,能对多种细胞外刺激发生反应,可磷酸化 其它细胞质蛋白,并能从胞浆移位至细胞核而调节转录因子的活性来改变基因的表达水平,从而 介导细胞生长、发育、分化及死亡的全过程。 ERK5:是一种非典型的MAPK通路,也叫大MAPK通路,只有一个成员。它可 被各种刺激因素激活。不仅可以通过磷酸化作用使底物活化,并且通过C端的物理性结合作用 激活底物。 3ERBB信号途径:ErbB蛋白属于跨膜酪氨酸激酶的EGF受体家族成员。ErbB的命名来源于在禽 红白血病B(v-Erb-B)发现的EGF受体的突变体,因而EGF

ERK信号转导通路

ERK信号转导通路 在MAPK家族中,ERK是最先被发现并被了解最多的成员。ERK包括了两种异构体ERKl 和ERK2(分别为P44和P42)。两个磷酸化受体位点即酪氨酸和苏氨酸被谷氨酸残基分隔开来,故其磷酸化位点基序是TEY。目前认为,P38和JNK属于“应激诱导”的MAPK,而ERK被认为是与细胞增殖、转化和分化相关的MAPK。 ERK级联反应包括典型的3个层次MAPKs的序贯激活过程。Raf蛋白(MAPKKK)的激活能磷酸化MEKl/2(MAPKK),并使后者激活,从而使随后的ERKl/2(MAPK)发生双重磷酸化而被缉获。ERK的激活对于Ras诱导的细胞反应、转录因子(如Elkl、cEtsl和c—Ets2)的激活以及激酶(如P90rskl、MNKl和MNK2)的激活是至关重要的。 ERK通路的激活包括了以下3种方式:酪氨酸激酶受体对Ras的激活、Ca2+对Ras的激活以及PKC对ERK通路的激活。生长因子与细胞表面的受体酪氨酸激酶(RTK)结合,诱发生长因子受体胞质中的酪氨酸残基自身磷酸化,导致受体二聚体化与活化。细胞表面的生长因子受体具有募集Grb2和SOS复合物的能力。SOS在与生长因子受体结合的过程中移位至胞质,并与Ras相互作用,促进Ras与GTP结合,使Ras活化。此外,Ca2+可通过不同的作用机制激活Ras蛋白:①通过l型电压依赖性的钙离子通道流人细胞内,经由Src家族蛋白激酶的介导,导致表皮生长因子受体(EGFR)酪氨酸磷酸化,进而通过Shc—Grb2—SOS复合物激活Ras;②通过Ca2+敏感性的Ras鸟嘌呤核苷酸释放因子(Ras—GRF)和Ca2+—钙调蛋白复合物与Ras—GRF结合,通过诱导Ras进行GTP交换而激活Ras;③在大鼠嗜铬细胞瘤PCI2细胞中,胞质Ca2+的升高,可诱发酪氨酸磷酸化,激活蛋白酪氨酸激酶(PYK2)。PYK2与Grb2和SOS形成复合物,同时伴随着Shc的激活。活化的PYK2通过直接募集Srb2—SOS复合物,或间接通过Shc而激活Ras。Ras是一种G蛋白,可通过与Grb2—SOS复合物发生相互作用而被激活。在这一过程中,SOS催化鸟嘌吟二磷酸盐发生转位,从而形成Ras—GTP复合体,使Ras激活,成为具有功能活性的Ras蛋白。Ras被激活后将Raf募集于细胞膜,随后Raf 发生磷酸化作用和寡聚化作用。PKC的同工酶也可以磷酸化并激活Raf—1蛋白激酶,使Raf —1发生自身磷酸化。 Raf家族属于MAPKKK,是高度保守的丝氨酸—苏氨酸激酶,通过与Ras蛋白的相互作用而被缉获。Raf家族成员包括A—Raf、B—Raf和Raf—1(即c—Raf或c—Raf—1)。每一异构体包括3个保守区域,称为CRl、CR2和CR3。前面的两个保守区域位于氨基末端,并含有调节Raf催化区域的部分,其激酶区域位于CR3。Raf被激活后使MEKl/2磷酸化,最终使ERKl/2发生磷酸化而被激活。激活的ERKl/2转位至核内,通过使P90RSK、MSK以及转录因子ELK—1、Stat3磷酸化而激活转录,引起细胞生长、增殖与分化。

参与细胞信号转导通路的蛋白简写及全拼

参与细胞信号转导通路的蛋白简写及全拼 4E-BP eIF4E binding protein Abl Ableson protein tyrosine kinase ACTR A histone acetyltransferase AIF Programmed cell death protein 8 ANT Adenine nucleotide translocation channel Apaf-1 Apoptotic protease activating factor 1 APP beta-Amyloid precursor protein APPs Acute phase proteins ASIP Agouti switch protein ASK Apoptosis signal-regulating kinase (e.g., ASK1) ATF-2 Activating transcription factor 2 ATM Ataxia telangiectasia?mutated protein kinase ATR ATM and Rad3?related protein kinase Bam32 B-cell adaptor molecule 32 kDa BCAP B-cell adaptor for PI3K Bcl-10 B-cell leukemia 10 protein Bfl-1 Bcl-2-related protein A1 Bid A BH3 domain?only death agonist protein Bimp1 B-lymphocyte-induced maturation protein 1 BLNK B-cell linker protein BRCA Breast cancer growth suppressor protein Btk Brutonís tyrosine kinase C3G Guanine nucleotide?releasing factor 2 CAD Caspase-activated deoxyribonuclease Cam Calmodulin CaMK Calcium/calmodulin-dependent kinase CAP c-Cbl-associated protein Cas p130CAS, Crk-associated substrate Caspase Cysteine proteases with aspartate specificity CBL Cellular homologue of the v-Cbl oncogene CBP CREB binding protein CD19 B-lymphocyte antigen CD19 CD22 B-cell receptor CD22 CD40 B-cell surface antigen CD40 CD45 Leukocyte common antigen, a phospho-tyrosine phosphatase CD5 Lymphocyte antigen CD5 cdc2 Cell division cycle protein 2, CDK1 cdc34 Cell division cycle protein 34, a ubiquitin conjugating (E2) enzyme cdc42 Cell division cycle protein 42, a G-protein CDK Cyclin-dependent kinase Chk Checkpoint kinase CHOP C/EBP homologous protein 10

肿瘤常见信号通路

1 JAK-STAT 信号通路 1) JAK 与STAT 蛋白 JAK-STAT 信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体( tyrosine kinase associated receptor ) 许多细胞因子和生长因子通过JAK-STAT 信号通路来传导信号,这包括白介素2?7 (IL-2?7 )、GM-CSF (粒细胞/巨噬细胞集落刺激因子)、GH (生长激素)、EGF (表皮生长因子)、PDGF (血小板衍生因子)以及IFN (干扰素)等等。这些细胞 因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK 的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK ( Janus kinase ) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体( receptor tyrosine kinase, RTK ),而JAK 却是一类非跨膜型的酪氨酸激酶。JAK 是英文Janus kinase 的缩写,Janus 在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定 SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH ),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3) 转录因子STAT ( signal transducer and activator of transcription ) STAT 被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性 的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具 有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“ GTFLLRFSS ”。 2) JAK-STAT 信号通路 与其它信号通路相比,JAK-STAT 信号通路的传递过程相对简单。信号传递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残 基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位

第九章 细胞信号转导知识点总结

第九章细胞信号转导 细胞通讯:一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过信号转导产生靶细胞内一系列的生理生化变化,最终表现为靶细胞整体的生物学效应。 信号传导:是指信号分子从合成的细胞中释放出来,然后进行传递。信号传导强调信号的产生、分泌与传送。 信号转导:是指信号的识别、转移与转换,包括配体与受体的结合、第二信使的产生及其后的级联反应等。信号转导强调信号的接收与接收后信号转换的方式与结果。 受体:是一类能够结合细胞外特异性信号分子并启动细胞反应的蛋白质。 第二信使:细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生非蛋白类小分子,这种细胞内信号分子称为第二信使。 分子开关:细胞信号传递级联中,具有关闭和开启信号传递功能的分子。 信号通路:细胞接受外界信号,通过一整套特定机制,将胞外信号转化为胞内信号,最终调节特定基因表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 G蛋白偶联受体:指配体-受体复合物与靶细胞的作用是要通过与G蛋白的偶联,在细胞内产生第二信使,从而将细胞外信号跨膜传递到胞内影响细胞行为的受体。 cAMP信号通路:细胞外信号与细胞相应受体结合,导致细胞内第二信使cAMP 水平的变化而引起细胞反应的信号通路。 (磷脂酰肌醇信号通路)双信使系统:胞外信号分子与细胞表面G蛋白偶联受体结合,激活膜上的磷脂激酶C,使质膜上的PIP2分解成IP3和DAG两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激活两种不同的信号通路,即IP3-Ca2+和DAG-PKC途径,实现对胞外信号的应答,因此将这种信号通路称为“双信使系统”。 钙调蛋白:真核细胞中普遍存在的Ca2+应答蛋白。 Ras蛋白:Ras基因的产物,分布于质膜胞质侧,结合GTP时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。

常见的信号通路

1 JAK-STAT信号通路 1) JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF(表皮生长因子)、PDGF (血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK(Janus kinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosine kinase, RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Janus kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3) 转录因子STAT(signal transducer and activator of transcription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3

细胞信号传导通路

细胞信号传导通路 1. 信息传导通路的基本组成 人体细胞之间的信息转导可通过相邻细胞的直接接触来实现,但更重要的也是更为普遍的则是通过细胞分泌各种化学物质来调节自身和其他细胞的代谢和功能,因此在人体中,信息传导通路通常是由分泌释放信息物质的特定细胞、信息物质(包含细胞间与细胞内的信息物质和运载体、运输路径等)以及靶细胞 (包含特异受体等)等构成。 信号转导通常包括以下步骤: 释放信息物质→信息物质经扩散或血循 环到达靶细胞→与靶细胞的受体特异性 结合→受体对信号进行转换并启动细胞 内信使系统→靶细胞产生生物学效应 【1】。通过这一系列的过程,生物体对外界刺激作出反应。 3. 信息物质及其分类 信息物质可分为细胞间信息物质与细胞内信息分子。 凡由细胞分泌的调节靶细胞生命活动的化学物质统称为细胞间信息物质,即第一信使,按照细胞分泌信息物质的方式又可将细胞间信息物质分为神经递质、内分泌激素、局部化学介质和气体信号分子。在细胞内传递细胞调控信号的化学物质称为细胞内信息物质,其组成多样化。通常将Ca2+、cAMP、cGMP、DAG、IP3、Cer、花生四烯酸及其代谢物等这类在细胞内传递信息的小分子化合物称为第二信使。责细胞核内外信息传递的物质称为第三信使,能与靶基因特异序列结合,发挥着转录因子或转录调节因子的作用。 研究发现一些信息物质能与位于分泌细胞自身的受体结合而起调节作用,称为自分泌信号。如肝癌细胞能分泌多种血管生成因子,其中VEGF是目前发现的刺激肿瘤血管形成最重要的促进因子,研究表示,肿瘤细胞分泌的VEGF除选择性作用于肿瘤血管内皮细胞上的特异性VEGF受体(Flt-1和KDR),通过酪氨酸激酶介导的信号转导,调控内皮细胞分化和血管形成外,肿瘤细胞自身也有VEGF受体的表达,而且针对VEGF及其受体的干预措施可以改变这些肿瘤细胞的体外增殖活性和其他生物学特征,这些研究表示肿瘤中存在VEGF的自分泌机制【2】。自分泌所产生的信息物质也具有其独特而重要的生理功能。4. 受体分类及与受体相关的信息转导途径 受体是细胞膜上或细胞内能识别生物活性分子并与之结合的成分,他能把识别和接受的信号正确无误地放大并传递到细胞内部,进而引起生物学效应。存在于细胞质膜上的受体称为膜受体,化学本质绝大部分是糖镶嵌蛋白;位于胞液和细胞核中的受体称为胞内受体,它们

细胞信号转导练习题 四套题

细胞信号转导 第一套 一、选择题(共10题,每题1分) 1、Ca2+在细胞信号通路中是() A. 胞外信号分子 C. 第二信使 B. 第一信使 D. 第三信使 2、动员细胞内源性Ca2+释放的第二信使分子是()。 A. cAMP C. IP3 B. DAG D. cGMP 3、细胞通讯是通过()进行的。 A. 分泌化学信号分子 C. 间隙连接或胞间连丝 B. 与质膜相结合的信号分子 D. 三种都包括在内 4、Ras蛋白由活化态转变为失活态需要( )的帮助。 A. GTP酶活化蛋白(GAP) C. 生长因子受体结合蛋白2(GRB2) B. 鸟苷酸交换因子(GEF) D. 磷脂酶C-γ(PLCγ) 5、PKC在没有被激活时,游离于细胞质中,一旦被激活就成为膜结合蛋白,这种变化依赖于()。 A. 磷脂和Ca2+ C. DAG和 Ca2+ B. IP3和 Ca2+ D. DAG和磷脂 6、鸟苷酸交换因子(GEF)的作用是()。 A. 抑制Ras蛋白 C. 抑制G蛋白 B. 激活Ras蛋白 D. 激活G蛋白 7、cAMP依赖的蛋白激酶是()。 A. 蛋白激酶G(PKG) C. 蛋白激酶C(PKC) B. 蛋白激酶A(PKA) D. MAPK 8、NO信号分子进行的信号转导通路中的第二信使分子是()。 A. cAMP C. IP3 B. DAG D. cGMP 9、在下列蛋白激酶中,受第二信使DAG激活的是()。 A. PKA C. MAPK B. PKC D. 受体酪氨酸激酶 10、在RTK-Ras蛋白信号通路中,磷酸化的()残基可被细胞内的含有SH2结构域的信号蛋 白所识别并与之结合。 A. Tyr C. Ser B. Thr D. Pro 二、判断题(共10题,每题1分) 11、生成NO的细胞是血管平滑肌细胞。() 12、上皮生长因子(EGF)受体分子具酪氨酸激酶活性位点。() 13、Ras蛋白在cAMP信号通路中起着分子开关的作用。()

主流信号通路大盘点

PI3K/AKT信号通路

介绍 1987年,Staal等发现小鼠的白血病病毒Akt8可以引起水貂上皮细胞系CCL264出现恶性转化灶,随后在这个反转录病毒中找到了一个癌基因,并命名为丝氨酸/苏氨酸蛋白激酶(Akt)。1991年,3个独立的研究小组分别宣布找到了Akt基因,因其与蛋白激酶A(PKA)及蛋白激酶C(PKC)在结构上相似,因此又被命名为蛋白激酶B(PKB)。1995年,Akt作为磷脂酰肌醇-3-激酶(PI3K,phosphatidylinositol-3-kinase)经多种生长因子活化后的下游靶点被发现,同时第一个Akt底物糖原合成激酶3(glycogen synthesis kinase-3,GSK-3)被确认,分别揭示了PI3K/Akt通路在调控细胞新陈代谢中的重要作用。查看更多 在该信号转导通路中往往会涉及以下信号分子: ntegrin,FAK,Paxillin,ILK,PIP3,S6,p70S6K,RTK,Gab1, Gab2,IRS-1,PI3K,PTEN,AKT,PDK1,CytokineReceptor,Jak1,CD19,BCR,Ag,BCAP,Syk,Lyn,GPCR,TSC1,TSC2,Gβγ, GαGTP,PP2A,PHLPP,CTMP,PDCD4,4E-BP1,ATG13, mTORC1,TSC1,TSC2,PRAS40,XIAP,FoxO1,Bim,Bcl-2,Bax,MDM2,p53,Bax,Bad,14-3-3,Wee1,Myt1,p27Kip1, p21Waf1/Cip1,CyclinD1,GSK-3,GS,Bcl-2,mTORC2,LaminA, Tpl2,IKKα,eNOS,GABAAR,Huntingtin,Ataxin-1,PFKFB2,PIP5K,AS160

主要的信号转导途径

第三节主要的信号转导途径 一、膜受体介导的信号传导 (一)cAMP-蛋白激酶A途径 述:该途径以靶细胞内cAMP浓度改变和激活蛋白激酶A(PKA)为主要特征,是激素调节物质代谢的主要途径。 1.cAMP的合成与分解 ⑴引起cAMP水平增高的胞外信号分子:胰高血糖素、肾上腺素、 促肾上腺皮质激素、促甲状腺素、甲状旁腺素和加压素等。 α-GDP-βγ(Gs蛋白)激素+受体→激素-受体→↓ α-GTP + βγ ↓ AC激活 ↓ ATP →cAMP 述:当信号分子(胰高血糖素、肾上腺素和促肾上腺皮质激素)与靶细胞质膜上的特异性受体结合,形成激素一受体复合物 而激活受体。活化的受体可催化Gs的GDP与GTP交换,导 致Gs的α亚基与βγ解离,蛋白释放出αs-GTP。αs-GTP能激 活腺苷酸环化酶,催化ATP转化成cAMP,使细胞内cAMP 浓度增高。过去认为G蛋白中只有α亚基发挥作用,现知βγ 复合体也可独立地作用于相应的效应物,与α亚基拮抗。 腺苷酸环化酶分布广泛,除成熟红细胞外,几乎存在于所有组织的细胞质膜上。cAMP经磷酸二酯酶(PDE)降解成 5'-AMP而失活。cAMP是分布广泛而重要的第二信使。

⑵AC活性的抑制与cAMP浓度降低 ◇Gα-GTP结合AC并使之激活后,同时激活自身的GTP酶活性,Gα-GTP→Gα-GDP,Gs、AC均失活。从而在细胞对cAMP浓度升高作出应答后AC活性迅速逆转。 ⑶少数激素,如生长激素抑制素、胰岛素和抗血管紧张素II 等,它们活化受体后可催化抑制性G蛋白解离,导致细胞内AC活性下降,从而降低细胞内cAMP水平。 ⑷正常细胞内cAMP的平均浓度为10-6mol/L。cAMP在细 胞中的浓度除与腺苷酸环化酶活性有关外,还与磷酸二酯酶的活性有关。举例如下: ①一些激素如胰岛素,能激活磷酸二酯酶,加速cAMP降解; ②某些药物如茶碱,则抑制磷酸二酯酶,促使细胞内cAMP 浓度升高。 2.cAMP的作用机制――cAMP激活PKA(幻灯64) ⑴cAMP对细胞的调节作用是通过激活cAMP依赖性蛋白激酶 或称蛋白激酶A (PKA)系统来实现的。 ⑵PKA的结构 2C(催化亚基):蛋白丝/苏氨酸磷酸化酶活性四聚体蛋白 变构酶 2R(调节亚基):各有2个cAMP结合位点述:催化亚基有催化底物蛋白质某些特定丝/苏氨酸残基磷酸化的功能。调节亚基与催化亚基相结合时,PKA呈无活性状态。当4分子cAMP与2个调节亚基结合后,调节亚基脱落,游离的催化亚基具有蛋白激酶活性。PKA的激活过程需要Mg2+。

信号转导通路图片大全【精品】

信号转导通路图片大全【精品】 一、概念 细胞信号转导是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。水溶性信息分子及前列腺素类(脂溶性)必须首先与胞膜受体结合,启动细胞内信号转导的级联反应,将细胞外的信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因的转录活性,诱发细胞特定的应答反应。 二、信号转导受体 (一)膜受体 1.环状受体(离子通道型受体) 多为神经递质受体,受体分子构成离子通道。受体与信号分子结合后变构,导致通道开放或关闭。引起迅速短暂的效应。 2.蛇型受体 7个跨膜α-螺旋受体, 有100多种,都是单条多肽链糖蛋白,如G蛋白偶联型受体。 3.单跨膜α-螺旋受体 包括酪氨酸蛋白激酶型受体和非酪氨酸蛋白激酶型受体。 (1)酪氨酸蛋白激酶型受体这类受体包括生长因子受体、胰岛素受体等。与相应配体结合后,受体二聚化或多聚化,表现酪氨酸蛋白激酶活性,催化受体自身和底物Tyr磷酸化,有催化型受体之称。 (2)非酪氨酸蛋白激酶型受体,如生长激素受体、干扰素受体等,。当受体与配体结合后,可偶联并激活下游不同的非受体型TPK,传递调节信号。(二)胞内受体 位于胞液或胞核,结合信号分子后,受体表现为反式作用因子,可结合DNA 顺式作用元件,活化基因转录及表达。包括类固醇激素受体、甲状腺激素受体等。 胞内受体都是单链蛋白,有4个结构区:①高度可变区②DNA结合区③激素结合区④绞链区 (三)受体与配体作用的特点是:①高度亲和力,②高度特异性,③可饱和性

1.受体:位于细胞膜上或细胞内,能特异性识别生物活性分子并与之结合,进而引起生物学效应的特殊蛋白质,膜受体多为镶嵌糖蛋白:胞内受体全部为DNA结合蛋白。受体在细胞信息传递过程中起极为重要的作用。 2.G蛋白:即鸟苷酸结合蛋白,是一类位于细胞膜胞浆面、能与GDP或GTP 结合的外周蛋白,由α、β、γ三个亚基组成。以三聚体存在并与GDP结合者为非活化型。当α亚基与GTP结合并导致βγ二聚体脱落时则变成活化型,可作用于膜受体的不同激素,通过不同的G蛋白介导影响质膜上某些离子通道或酶的活性,继而影响细胞内第二信使浓度和后续的生物学效应。 三、细胞信号转导的主要途径 亚基的功能,参与细胞内信号转导。信息分子与受体结合后,激活不同G蛋白,有以下几种途经:(1)腺苷酸环化酶途径通过激活G蛋白不同亚型,增加或抑制腺苷酸环化酶(AC)活性,调节细胞内cAMP浓度。cAMP可激活蛋白激酶A(PKA),引起多种靶蛋白磷酸化,调节细胞功能。(2)磷脂酶途径激活细胞膜上磷脂酶C(PLC),催化质膜磷脂酰肌醇二磷酸(PIP2)水解,生成三磷酸肌醇(IP3)和甘油二酯(DG)。IP3促进肌浆网或内质网储存的Ca2+释放。Ca2+可作为第二信使启动多种细胞反应。Ca2+与钙调蛋白结合,激活Ca2+/钙调蛋白依赖性蛋白激酶或磷酸酯酶,产生多种生物学效应。DG与Ca2+能协调活化蛋白激酶C(PKC)。α和γ亚基组成的异三聚体在膜受体与效应器之间起中介作用。小G蛋白只具有G蛋白β、α1.G蛋白介导的信号转导途径G 蛋白可与鸟嘌呤核苷酸可逆性结合。由 2.受体酪氨酸蛋白激酶(RTPK)信号转导途径受体酪氨酸蛋白激酶超家族的共同特征是受体本身具有酪氨酸蛋白激酶(TPK)的活性,配体主要为生长因子。RTPK途径与细胞增殖肥大和肿瘤的发生关系密切。配体与受体胞外区结合后,受体发生二聚化后自身具备(TPK)活性并催化胞内区酪氨酸残基自身磷酸化。RTPK的下游信号转导通过多种丝氨酸/苏氨酸蛋白激酶的级联激活:(1)激活丝裂原活化蛋白激酶(MAPK),(2)激活蛋白激酶C(PKC),(3)激活磷脂酰肌醇3激酶(PI3K),从而引发相应的生物学效应。 3.非受体酪氨酸蛋白激酶途径此途径的共同特征是受体本身不具有TPK活性,配体主要是激素和细胞因子。其调节机制差别很大。如配体与受体结合使受

第八章 细胞信号转导

第八章细胞信号转导 名词解释 1、蛋白激酶protein kinase 将磷酸基团转移到其他蛋白质上的酶,通常对其他蛋白质的活性具有调节作用。 2、蛋白激酶C protein kinase C 一类多功能的丝氨酸/苏氨酸蛋白激酶家族,可磷酸化多种不同的蛋白质底物。 3、第二信使second messenger 第一信使分子(激素或其他配体)与细胞表面受体结合后,在细胞内产生或释放到细胞内的小分子物质,如cAMP,IP3,钙离子等,有助于信号向胞内进行传递。 4、分子开关molecular switch 细胞信号转导过程中,通过结合GTP与水解GTP,或者通过蛋白质磷酸化与去磷酸化而开启或关闭蛋白质的活性。 5、磷脂酶C phospholipid C 催化PIP2分解产生1,4,5-肌醇三磷酸(IP3)和二酰甘油(DAG)两个第二信使分子。 6、门控通道gated channel 一种离子通道,通过构象改变使溶液中的离子通过或阻止通过。依据引发构象改变的机制的不同,门控通道包括电位门通道和配体门通道两类。 7、神经递质neurotransmitter 突触前端释放的一种化学物质,与突触后靶细胞结合,并改变靶细胞的膜电位。 8、神经生长因子nerves growth factor,NGF 神经元存活所必需的细胞因子 9、受体receptor 任何能与特定信号分子结合的膜蛋白分子,通常导致细胞摄取反应或细胞信号转导。10、受体介导的胞吞作用receptor mediated endocytosis 通过网格蛋白有被小泡从胞外基质摄取特定大分子的途径。被转运的大分子物质与细胞表面互补性的受体结合,形成受体-配体复合物并引发细胞质膜局部内化作用,然后小窝脱离质膜形成有被小泡而将物质吞入细胞内。 11、受体酪氨酸激酶receptor tyrosine kinase,RTK 能将自身或胞质中底物上的酪氨酸残基磷酸化的细胞表面受体。主要参与细胞生长和分化的调控。 12、调节型分泌regulated secretion 细胞中已合成的分泌物质先储存在细胞质周边的分泌泡中,在受到适宜的信号刺激后,才与质膜融合将内容物分泌到细胞表面。 13、细胞通讯cell communication 信号细胞发出的信息传递到靶细胞并与受体相互作用,引起靶细胞产生特异性生物学效应的过程。 14、细胞信号传递cell signaling 通过信号分子与受体的相互作用,将外界信号经细胞质膜传递到细胞内部,通常传递至细胞核,并引发特异性生物学效应的过程。 15、信号转导signal transduction 细胞将外部信号转变为自身应答反应的过程。 16、组成型分泌constitutivesecretion

相关主题
文本预览
相关文档 最新文档