当前位置:文档之家› 微积分在经济学中的应用

微积分在经济学中的应用

微积分在经济学中的应用
微积分在经济学中的应用

微积分在经济学中的应用

The Application of Calculus in Economics

王猛统计与应用数学学院统计学专业2006(0)班 200672016

指导教师:柴彩春

摘要:经济学与数学是有着十分密切关系的两个学科,经济学中的很多经济现象经济理论都能够用数学知识去解释。现代化经济理论已经从过去的经济定性分析发展成为量性分析和定性分析相结合。微积分作为数学知识的基础,是学习经济学的必备知识,在这里我要介绍一下微积分知识在经济学中的一些基本的应用。微积分在经济领域中的应用,主要是研究在这一领域中出现的一些函数关系,因此必须了解一些经济分析中常见的函数。价格函数、需求函数、成本函数、收益函数等等。还有弹性的经济分析,需求弹性、收益弹性等等。最优化问题是经济管理活动的核心,各种最优化问题也是微积分中最关心的问题之一。这些重要的经济理论都可以用微积分的一些内容解释,所以说微积分在经济学中的应用是十分有效的。

关键词:导数;积分;需求函数;弹性函数;价格函数;弹性;极限

Abstract:There is a very close relationship between economics and mathematics. Many phenomena and theories in economics can be explained by mathematical ideal. In the past, we studied economics by the theory of qualitative analysis. But now , the theory of quantitative and qualitative analysis have been combined together to help us studing modern economics. Calculus is a necessary subject when we emulate the knowledge of economics for it is the foundation of mathematics. Now, I would Introduce some basic applications about the knowledge of calculus in economics. We will mainly research some functions in this area, therefore we must understand some common functions about it, just like price function, demand function, cost function, revenue function, etc. There are also flexible economic analysis, demand elasticity, income elasticity, etc that we should get. Optimization is the core problem of economy and management activities and it is also the one of the most concerned problems in calculus. All of these important economic theories can be explained by some of the elements in calculus, so we can say that calculus is doing a big help when we study economics.

Key words: Derivative; integration; marginal cost function; elastic;flexible; functions; the ultimate

目录

1.引言 (1)

2.微积分在经济学中的应用 (3)

2.1导数在经济学中的应用 (3)

2.2极限在经济学中的应用 (11)

2.3积分在经济学中的应用 (12)

3.总结 (14)

参考文献 (16)

1.引言

微积分的产生是数学上的伟大创造。它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。

微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。早在古希腊时期,欧多克斯提出了穷竭法。这是微积分的先驱,而我国庄子的《天下篇》中也有“一尺之锤,日取其半,万世不竭”的极限思想,公元 263 年,刘徽为《九间算术》作注时提出了“割圆术”,用正多边形来逼近圆周。这是极限论思想的成功运用。

积分概念是由求某些面积、体积和弧长引起的,古希腊数学家要基米德在《抛物线求积法》中用究竭法求出抛物线弓形的面积,人没有用极限,是“有限”开工的穷竭法。但阿基米德的贡献真正成为积分学的萌芽。

微分是联系到对曲线作切线的问题和函数的极大值、极小值问题而产生的。微分方法的第一个真正值得注意的先驱工作起源于 1629 年费尔玛陈述的概念,他给同了如何确定极大值和极小值的方法。其后英国剑桥大学三一学院的教授巴罗又给出了求切线的方法,进一步推动了微分学概念的产生。前人工作终于使牛顿和莱布尼茨在 17 世纪下半叶各自独立创立了微积分。 1605 年 5 月 20 日,在牛顿手写的一面文件中开始有“流数术”的记载,微积分的诞生不妨以这一天为标志。牛顿关于微积分的著作很多写于1665 - 1676年间,但这些著作发表很迟。他完整地提出微积分是一对互逆运算,并且给出换算的公式,就是后来著名的牛顿-莱而尼茨公式。

如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。

从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。

微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微分的互逆关系。最后一步是由牛顿、莱布尼兹完成的。前两阶段的工作,欧洲的大批数学家一直追朔到古希腊的阿基米德都作出了各自的贡献。对于这方面的工作,古

代中国毫不逊色于西方,微积分思想在古代中国早有萌芽,甚至是古希腊数学不能比拟的。公元前7世纪老庄哲学中就有无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。刘徽公元263年首创的割圆术求圆面积和方锥体积,求得圆周率约等于

3 .1416,他的极限思想和无穷小方法,是世界古代极限思想的深刻体现。

微积分思想虽然可追朔古希腊,但它的概念和法则却是16世纪下半叶,开普勒、卡瓦列利等求积的不可分量思想和方法基础上产生和发展起来的。而这些思想和方法从刘徽对圆锥、圆台、圆柱的体积公式的证明到公元5世纪祖恒求球体积的方法中都可找到。北宋大科学家沈括的《梦溪笔谈》独创了“隙积术”、“会圆术”和“棋局都数术”开创了对高阶等差级数求和的研究。

从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的高徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多的三角形面积之和,这些都可视为黄型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。

解析几何为微积分的创立奠定了基础

由于16世纪以后欧洲封建社会日趋没落,取而代之的是资本主义的兴起,为科学技术的发展开创了美好前景。

到了17世纪,有许多著名的数学家、天文学家、物理学家都为解决上述问题做了大量的研究工作。

笛卡尔1637年发表了《科学中的正确运用理性和追求真理的方法论》(简称《方法论》),从而确立了解析几何,表明了几何问题不仅可以归结成为代数形式,而且

可以通过代数变换来发现几何性质,证明几何性质。他不仅用坐标表示点的位置,而且把点的坐标运用到曲线上。他认为点移动成线,所以方程不仅可表示已知数与未知数之间的关系,表示变量与变量之间的关系,还可以表示曲线,于是方程与曲线之间建立起对应关系。此外,笛卡尔打破了表示体积面积及长度的量之间不可相加减的束缚。于是几何图形各种量之间可以化为代数量之间的关系,使得几何与代数在数量上统一了起来。笛卡尔就这样把相互对立着的“数”与“形”统一起来,从而实现了数学史的一次飞跃,而且更重要的是它为微积分的成熟提供了必要的条件,从而开拓了变量数学的广阔空间。 2.微积分在经济学中的应用

微积分在经济领域中的应用,主要是研究在这一领域中出现的一些函数关系,因此必须了解一些经济分析中常见的函数。导数在经济学中的应用是十分广泛的,因为在经济学中很多函数里面都有导数的存在才能去进行一些定量分析进而得出最优化的结果。根据导数的一些性质可以为大家解释一些经济学函数图像的走向问题,为何会出现此种走向等等。同样的在极限的概念基础上面,很多微积分的概念理论得到发展,很多经济学的知识也得到有效的解决。像一些复利问题,还有用极限方法解决弹性计算问题。积分的应用是由人们在生产生活活动中,为了解决复杂和动态过程的量化累积而引入的。在日常经济活动中,积分的应用也非常广泛,比如求总值(如总成本和总利润等),包括其他变量时间累计的总量等。这些经济活动内容涉及到很多个领域,且函数表达方式都有所不同,但它们的原理都是一样的。这些都是微积分在经济学中的广泛应用。

2.1导数在经济学中的应用

2.1.1导数在经济学边际分析部分的应用

我们先介绍一下导数的定义:导数反映函数的自变量在变化时,相应的函数值变化的快慢程度——变化率(瞬时变化率)。函数f(x)y =在某一点0x 的导数表达式如下:若函数f(x)y =在某区间内每一点都可导,则称f(x)y =在该区间内可导,记)('x f 为

f(x)

y =在该区间内的可导函数(简称导数)。导数在引进经济学之后,对经济分析带

来了很大变革,可以定量分析很多以前没办法分析的经济问题。导数在经济学中最通常的应用是边际和弹性。经济学中的边际经济变量都是用增加某一个经济变量一单位从而对另一个经济变量带来的影响是多少,如边际效用、边际成、边际收益、边际利

润、边际替代率等等。这些边际概念几乎都用导数来表示。 (1)边际需求与边际供给

需求函数f(p)Q =在点p 处可导(其中Q 为需求量,P 为商品价格),则其边际函数称f(p)Q =为边际需求函数,简称边际需求,)(0'p f 称为当价格为0p 时的边际需求,其经济意义为:当价格达到0p 时,如果价格上涨一个单位,则需求将相应减少)(0'p f 个单位。

供给函数Q(P)Q =可导(其中Q 为供给量,P 为商品价格),则其边际函数)('

'

p Q Q =称为边际供给函数,简称边际供给,)(0'

p Q 称为当价格为0p 时的边际供给。

其经济意义为:当价格达到0p 时,如果价格上涨一个单位,则供给增)(0'p Q 个单位。

(2)边际成本函数

总成本函数 )()(0Q C C Q C C t +== 平均成本函数 Q Q C Q C /)()(= )(0''Q C C =

称为边际成本函数,0C 代表固定成本,)(Q C t 代表可变成本。)(0'Q C 称为当产量为0Q 时的边际成本,其经济意义为:当产量达到0Q 时,如果增减一个单位产品,则成本将相应增减)(0'Q C 个单位。

例1:某种产品的总成本C (万元)与产量q (万件)之间的函数关系式(即总成本函数)为 q 01.00.2q -4q 100C(q)C 2++==

求生产水平为10q =(万件)时的平均成本和边际成本,并从降低成本角度看,继续提高产量是否合适?

解 当q=10时的总成本为

130

1030.011020.2-104100C(10)=?+??+=(万元)

所以平均成本(单位成本)为

131013010C(10)=÷=÷(元/件)

边际成本 2'03.04.04)(q q q C MC +-==

31003.0104.042

=?+?-=mc

因此在生产水平为10万件时,每增加一个产品总成本增加3元,远低于当前的单位成本,从降低成本角度看,应该继续提高产量

(3)边际收益函数

总收益函数 R(Q)R =, 平均收益函数 Q

Q R R )(=

边际收益函数 )(''Q R R =

简称边际收益,)(0'Q R 称为当商品销售量为0Q 时的边际收益,经济意义为:当销售量达到0Q 时,如果增减一个单位产品,则收益将相应地增减)(0'Q R 个单位。总收益TR 是产量Q 与价格P 的乘积,

即 Q P TR ?= 总利润为总收益TR 与总成本TC 的差值, 即 TC -TR =π。

若价格P 随Q 的变化而改变,则Q 最大时总收益TR 和总利润不一定取到最大值,并且收益最大时的产量不一定能产生最大的利润,下面,运用导数对收益进行优化分析。 例2: 设垄断厂商的需求函数为0.4Q -12P =,总成本函数 =TC 546.02++Q Q , (1)求:Q 为多少时使总收益最大,与此相应的价格,总收益及总利润各为多少? (2)求:Q 为多少时总利润最大,价格,总收益及总利润为多少? 解:(1)已知厂商的产品的需求函数为 Q P 4.012-= 则 24.012Q Q Q P TR -=?= 总收益最大,即要求 08.012=-=Q Q TR 所以 15=Q 。

导数方法: 0

=dQ dTR

即 0

8.012=-=Q dQ

dTR

得 15=Q

所以 15=Q 时,TR 最大。

把 15=Q 代入 4Q -12P = 得 6P =

总收益 90Q P TR =?=

总利润 110-=-=TC TR π (2) 24.012Q Q TR -= 546.02++=Q Q TC 582-+-=-=Q Q TC TR π 总利润最大时, 0

82=+-=q dQ

d π

得 4=Q

把 4=Q 代入 Q P 4.012-= 得 4.10=P

总收益 41.6410.4Q P TR =?=?= 总利润 11TC -TR ==π (4)边际利润函数

利润函数 C(Q)-R(Q)L(Q)L ==, 平均利润函数 Q

Q L Q L L )()(=

=

边际利润函数 )()()('''Q C Q R Q L -=

)(0

'

Q L 称为当产量为0Q 时的边际利润,其经济意义是:当产量达到0Q 时,如果增减

一个单位产品,则利润将相应增减)(0'Q L 个单位。

在以上的定义中我们都发现不管是边际成本、边际利润,都是导数的一些很简单的应用。导数是函数关于自变量的变化率,在经济学中,也存在变化率的问题,因此我们可以把微观经济学中的很多问题归结到数学中来,用我们所学的导数知识加以研究并解决。导数在经济学中的意义可以解释为:用增加一个经济变量的一个单位从而对另一个经济变量带来的影响是多少。比如边际替代率:边际替代率的概念是这样来定义的:为了维持原有的满足程度不变,消费者为增加一单位商品x 而必须放弃的商品y 的数量。用公式表示就是: x

y ??-

=MRS

例3:某公司总利润L (万元)与日产量q (吨)之间的函数关系式(即利润函数)为150

0.005q -2q L(q)L 2

-==。试求每天生产150吨,200吨,350吨时的边际利

润,并说明经济含义。

解:边际利润 q q L ML 01.02)('-== 5.015001.02=?-=q ML

020001.02=?-=q

ML

5.135001.02-=?-=q

ML

从上面的结果表明,当日产量在150吨时,每天增加1吨产量可增加总利润0.5万元;当日产量在200吨时,再增加产量,总利润已经不会增加;而当日产量在350吨时,每天产量再增加1吨反而使总利润减少1.5万元,由此可见,该公司应该把日产量定在200吨,此时的总利润最大为:

50150200005.020022=-?-?=L (万元)

从上例可以发现,公司获利最大的时候,边际利润为零。

例4:某公司有A 、B 两个子公司生产同种产品,其总成本函数为

B A B A Q Q Q Q

C 32

2

-+= 其中A

Q 表示子公司A 生产的产量。B Q 表示子公司B 生产的产

量.当公司生产的产量为120时,求公司生产总成本最少时A 、B 两子公司的产量组合. 解法一:当—个公司用两个子公司生产同种产品时,它必须使两个子公司生产的边际成本相等,才能实现成本最少的产量组合子公司 A 生产的边际成本:

A A A

A

Q Q Q C MC

32-=??=

子公司曰生产的边际成本:

A B B

B Q Q Q

C MC 34-=??=

由 B A MC MC =的原则,

A B B A Q Q Q Q 3432-=-

即 B A Q Q 75=

因为 120=+B A Q Q 于是 )120(75A A Q Q -= 解得 70=A Q ,50=B Q

解法二(用拉格朗日函数方法):

B A B A Q Q Q Q

C 3min 2

2-+=

120)(.=+B A Q Q t s

建立拉格朗日函 )120(322

2-+--+=B A B A B A Q Q Q Q Q Q L λ

求偏导,得最大值的一阶条件

λ-+=??B A A Q Q Q C 32

λ--=??A B B

Q Q Q C 34

120

+--=??B A Q Q Q L λ

可得 A B B A Q Q Q Q 3432-=- 即 5

7B A Q Q =

代入得 120

5

7=+B B Q Q

解得 70=A Q ,50=B Q 与解法一结果相同。 2.1.2导数在弹性理论中的应用

弹性概念:①需求弹性用于描述在一定时期内一种商品的需求量的相对变动对于该商品的价格的相对变动的反应程度。

需求的点弹性公式为 d E =dP

dQ ?

Q

P

弧弹性公式为 d E =

P

Q ???

2

121Q Q P P ++

供给弹性用于表示在一定时期内的一种商品的攻击量的相对变动对于该商品的价格的相对变动额反应程度。

供给的点弹性公式为 Q

P dP

dQ E S ?=

供给弧弹性公式为 2

121Q Q P P P

Q E S ++?

??=

例5:假设某市场上A 、B 两公司是生产同种有差异产品的竞争者,且市场上对A 、

高鸿业 西方经济学(第四版)中国人民大学出版社 2007,8.

B 两公司产品的现有需求量已达到饱和。市场上A 公司的需求曲线为A A Q P 200800-=,B 公司的需求曲线为B B Q P 51500-=,两公司的销售价格分别为只400=A P 元,

500=B P 元。

(1)求A 、B 两公司的需求价格弹性。

(2)如果B 公司降价到A 公司的销售价格400,使得B 公司的销售量增加,而A 公司的销售量减少,那么A 公司需求的交叉弹性是多少?

(3)B 公司降价的行为选择正确吗?A 公司由销售量减少而造成的损失是多少? 解:由400=A P , 500=B P ,得 A Q 2800400-= B Q 51500500-= 于是 200=A Q ,200=B Q

从而市场上面对该产品的饱和需求量为400200200=+=+B A Q Q A 公司的需求价格弹性: 120040021=?=?-=B A B A dA P P dQ dQ e B 公司的需求价格弹性: 2

1200

50051=

?=?-

=A

B A

B dB P P dQ dQ e

(2)当400=B P 时, B Q 51500400-=

得220=B Q 市场上对该产品的饱和需求量为400可知180=A Q ,于是

-20200-180==?Q , -100500-400==?P A 公司需求的交叉弹性: 19

92

/)180200(2/)400500(10020=

++?

--=???=

A

B B

A A

B P P Q Q e

(3)B 公司在500=B P 时的需求价格弹性为12

1<,即需求缺乏弹性,降价会减少销

售收入,因为,降价前,

B 公司的收入 100000200500=?=f TR 降价后,B 公司的收入 88000220400=?=b TR %

12100000

88000

100000=-=

-b

b

f

TR TR TR

显然,b f TR TR <

B 公司降价减少了它的销售收人,所以,对于丑公司追求销售收入最大化的目标而言,

它降价在经济上是不合理的。

降价前,A 公司的销售收入 80000200400=?=f TR 降价后,A 公司的销售收入 72000180400=?=b TR

%

1080000

72000

80000=-=

-b

b

f

TR TR TR

A 公司有销售量减少而造成的损失时10%。 2.1.3导数在解释曲线形状中的运用

首先我们先认识两个曲线,无差异曲线:①即能给消费者带来相同效用水平或满足程度的两种商品不同数量组合的轨迹。等产量线:所谓等产量线是指在生产技术条件不变的情况下,生产相同产量的生产要素投入量的各种组合方式的点轨迹一般的等产量线有密集性,凸向原点,斜率为负,互不相交,远离远点的曲线代表更大的产量水平!这两条曲线都是斜向下倾斜,凸向原点!为什么呢?我们可以用导数来解释!如无差异曲线,其任一点的边际替代率可表示为: dx

dy x

y MRS x -=

??-=→)(

lim 0

(注0→?x )

对于通常的商品,由于其边际效用递减,随着一种商品的消费数量的连续增加,消费者为增加一单位商品X 而必须放弃的商品Y 的数量是递减的,所以边际替代率递减.根据函数单调性的判断法,递减函数的一阶导数小于零,即边际替代率小于零: 0)(2

2

'

'

<-

=-=dx

y d dx

dy MSR

从而有

022

>dx

y d

根据数学上关于曲线凹凸性的判断法,由二阶导数大于零,可知函数的曲线是凹的,即曲线凸向原点.因此无差异曲线是凸向原点的。

例6: 柯布一道格拉斯效用函数 d c y x y x U =),(,c 和d 是描述消费者偏好的正数。

证明:柯布一道格拉斯无差异曲线凸向原点的。 证明:一条无差异曲线就是效用函数

d

c y

x y x U =),(

高鸿业 西方经济学(第四版)中国人民大学出版社 2007,8.

等于某个常数的所有点)y ,(x 的集合,

不妨设 k y x y x U d c ==),((k 为大于0的常数) 并将y 作为x 的函数,的 d

c

d

x

k

y --

=1

求导得

2

1

'

---

=d c d x

k d

c y

因为c ,d 和k 均大于0,所以0'

'>y 从而曲线 d

c

d

x

k y --=1

是凹的,

也就是柯布一道格拉斯无差异曲线是凸向原点的。

综上一些导数在经济学中边际分析、弹性、曲线形状等内容中的应用可以看出,在经济学中很多的重要概念都会用到微积分中的导数来解释来分析,可见导数在经济学领域中的重大作用。然而微积分中的另一个重要内容同样在经济学中应用广泛,那就是极限。

2.2极限在经济学中的应用

极限概念是微积分中最基本的概念,微积分中大量的其它基本概念都是用极限概念来表达的。如导数概念和定积分概念都是建立在极限概念的基础之上。微积分建立在初等数学之上.能解决初等数学不能解决的问题,其根本原因在于它引进了一个新的思想方法,即“极限”的思想方法。“极限”思想方法揭示了常量与变量、有限与无限、直线与曲线、匀速运动与变速运动等一系列对立统一及矛盾相互转化的辩证关系。“极限”思想方法,是微积分中一个重要的内容.是应用微积分解决实际生活问题的重要思想来源。而经济学中的许多问题.也是用微积分来解决的.其中就涉及到 “极限”思想这一重要方法。因此,用“极限”思想方法指导经济学中相关概念的学习,对于掌握经济学中的重要概念有很大的帮助。 2.2.1极限解决连续复利问题

例7: 设银行存款现值P 和将来值B ,年利率为r .则t 年后的本利和即将来值 t r)(1B +=

若一年分n 次计算复利,则每期利率为三,一年后的本利和即将来值为 n n

r

P B )1(+=

而t 年后的本利和即将来值为 tn n

r

p B )1(+=

当∞→n 时,则t 年后的本利和即将来值为

t tn n pe n

r

p B =+=∞

→)1(lim

从而现值p 和将来值B 之间的关系为 t pe =B 或者 t Be p -= 现值P 为1,利息r 为100%,1t =,则得 e B =

例子中的极限应用体现了在经济学中当一个数值含有极限的意义即趋向无穷大或0时,利用微积分中的极限的思想去解题可以步骤简化,思路清晰的解决很多经济学的这些问题。

2.2.2极限在弹性求法中的应用

经济学中比较重要的弹性的求法也是利用到了极限的思想,在本文上面我们已经写出需求弧弹性公式、需求点弹性的公式。设某产品的单位售价为p ,该产品市场需求量为q ,它的需求函数为)q(p q =。 则两点问的需求弹性系数为

p

p q q Ep ?-?=

再看需求点弹性的概念。需求点弹性是指某价格水平上,当价格波动很小时所引起的需求量变化的敏感程度。需求点弹性系数为

q

dq p

dp p

p q

q Ep Vp ÷

=

?=→)(

lim 0

可见两点问的需求弹性系数为而通过两个弹性公式的本质上是相同的,区别是前者为价格变动量较大时的需求曲线上两点之间的弹性(平均值),后者为价格变动量无穷小时的需求曲线上某一点的弹性。用需求点弹性公式计算点弹性,其优点在于只需确定了需求曲线的形状,就可以求出与点相对应的精确的弹性系数。为了求出某一点的弹性.用在需求曲线上“两点之间的弹性”代替“某一点的弹性”求得弹性这个量的近似值.然后再通过取极限的方法实现从近似到精确的过渡。在这里,使“两点之间的弹性”与“某一点的弹性”转化的条件是取极限,不取极限同样也就不能实现从近似到精确的转化。

2.3积分在经济学中的应用。

大家都知道,在经济学中有各种各样的函数,代表不同的经济学现象。而且我们一般情况下知道的都是比较直接的一些边际函数,当我们想知道总函数的时候我们就要去了解一些微积分中的其他一些内容了,下面我们就谈谈微积分中积分部分在经济学中的应用。

2.3.1利用积分性质用来求原函数

在经济管理中,由边际函数求总函数(即原函数),一般采用不定积分来解决,或求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决。例8;设生产x个产品的边际成本2x

=,其固定成本为1000

100

C+

=元,产品单

C

价规定为500元。假设生产出的产品能完全销售,问生产量为多少时利润最大?并求出最大利润。

解:总成本函数为1000

+

2t)dt

+

C(x)2

=

(100

100x

+

C(0)

x

=

+

总收益函数为500x

R(x=

)

总利润1000

x

x

=x

C

x

x

R

L

-

)

400

=

(

)

-

(2-

)

(

L''=

400

2x

-

令0

'=

x=

L得200

因为0

('=

L所以,生产量为200单位时,利润最大,最大为

)

200

400

)

L(2002=

200

=(元)

?

39000

-

1000

-

200

在这里我们应用了定积分,分析出利润最大,并不是意味着多增加产量就必定增加利润,只有合理安排生产量,才能取得最大的利润。

2.3.2利用积分性质计算消费者剩余

消费者剩余是某商品价值与其价格之间的差额,或者说是消费者根据自己对商品效用的评价所愿意支付的价格与实际付出的价格的差额。计算消费者剩余,对于市场是否使得经济主体福利达到最大化、市场结构是否有效等问题的解答起着关键的作用。有限需求者的离散型的需求结构中,消费者剩余可以通过累加的方式进行计算;但是在连续需求函数中,消费者剩余的测算就需要利用积分的知识了。如下图(图1)所示,消费者剩余实际上是图中阴影部分曲边梯形的面积,利用定积分的知识容易计算出结果

D A

P b

O P

图1

而积分在经济学中的另一个作用就是发挥其作为微分的逆操作,通过对已知的边际成本、边际收益、边际利润的函数进行处理,以得到需求或生产函数。下面的例子就是积分在求取总生产函数中的应用。

例9:设生产某产品的固定成本为1万元,边际收益R '和边际成本'C 分别为{单位:万元,台):q R -=15' 2

12'q C +

= 求:若产量由1台增加到3台,总收益增加多少?

总成本增加多少?产量为多少时,总利润达到最大? 解:

总收益增加量为: ??

=-=

3

13

1'26)15((q)R dq q dq

总成本增加量为: 26

)2

12()(3

1

3

1

'=+

=

?

?

dq q dq q C

边际成本等于边际收益是利益最大,

即 2

12q -15MC MR q +===

时总利润最大,此时产量为2

例10:边际收益函数 5022)(2'+--=Q Q Q R 。 求总收益函数于需求函数P(Q)。此时总收益函数 C

Q Q Q dQ Q Q dQ Q R R ++--

=+--==??503

2)5022()()(Q 2

3

2'

由于0R(0)= 可得0C =得 Q

Q Q R 503

2)(Q 2

3+--=,

需求函数 503

2)()(2

+--

==

Q Q Q

Q R Q P ,

即 503

2)(2+--=Q Q Q P 。 3.总结

在经济管理中,由边际函数求总函数(即原函数),一般采用不定积分来解决,或求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决。而导数在经济学中的应用可以说是最广泛的,因为在经济学中很多函数:价格函数、需求函数、成本函数、收益函数、利润函数、还有像边际问题、弹性问题。这些十分重要的函数,里面都有导数的应用问题。还有就是在极限的概念基础上面,很多经济学的知识也是得到很大的解决的。微积分在经济学中的作用是十分的重要,对于一个企业经营者来说,对经济环节进行定量分析是十分必要的,数学是一个有力的定量分析工具可以提供客观、精确的数据。可以给策划者准确而且正确的思路去进行经济活动也是数学应用性的具体体现。微积分导致了微观经济学的形成。各种微积分方法以个体经济活动为出发点,以需求、供给为重心,强调主观心理评价,导致了以“个量分析”为特征,以市场和价格机制为研究中心的微观经济学的诞生。微观经济学正是研究市场和价格机制如何解决三大基本经济问题,探索消费者如何得到最大满足,生产者如何得到最大利润,生产资源如何得到最优分配的规律。微积分方法的运用使西方经济学研究重心发生了转变。由原来带有一定“社会性、历史性”意义的政治经济学转为纯粹研究如何抉择把有限的稀缺资源分配给无限而又有竞争性的用途上,以有效利用。因此,在当今国内外,越来越多地应用微积分知识,使经济学走向了定量化、精密化和准确化。微积分在经济学中的应用使实证经济学得到重大发展。研究变量变动时,整个经济发生了什么变动,这为研究事物本来面目、回答经济现象“是什么”问题的实证经济学提供了方法论基础。

参考文献:

[1]聂洪珍,朱玉芳.高等数学(一)微积分[M].北京:中国对外经济贸易出版社,2003,(6). [2]高鸿业.西方经济学(第四版)[M].北京:中国人民大学出版社,2007,8.

[3]张丽玲.极限思想在经济学中的应用[J].柳州职业技术学院学报, 2007,7(3).

[4]李春萍.导数与积分在经济分析中的应用[J].商业视角,2007,(5).

[5]褚衍彪.高等数学在经济分析中的运用[J].枣庄学院学报,2007,(10).

[6]李晋明,李朝阳.经济数学—微积分[M].北京:经济管理出版社,2001,(1).

[7]臧忠卿.导数在经济分析中的应用[J].商场现代化,2006,(30).

[8]胡守信,李柏年.基于MA TLAB的数学实验[M].北京:科学出版社,2005.

[9]张丽玲.导数在微观经济学中的应用[J].河池学院学报,2007,(27).

[10]曹克明.微积分[M].武汉:中国财政经济出版社,2002,9.

[11]陈坚.浅谈微积分在经济学中的应用[J].科技风,2009,7.

[12]霍伊.Michael·Hoy经济数学[M].北京:中国人民大学出版社,2006,12.

[13]张丽玲.微积分在经济学中的应用[J].百色学院学报,2007,(5).

[14]William·Baumol. Alans·Blinder经济学:原理与政策[M]. 北京:北京大学出版, 2001,1. [15]Chifu Huang. Foundation For Financial Economics[M].北京:清华大学出版社.2003,10. [16]顾霞芳.浅谈导数在经济中的应用.职业圈[J],2007,(4).

[17]杨敏华.经济数学[M].大连:东北财经大学出版社,2007,2.

[18]刘桂茹,孙永华.经济数学·微积分部分[M].南京:南开出版社,2002,11.

[19]马黎政,金朝嵩. 经济数学[J],2005,(22).

微积分及经济学应用

微积分及经济学应用 Prepared on 22 November 2020

第3章 微积分及其经济学应用 一元函数和多元函数 在数学上,函数的定义为:如果在一个变化过程中有两个变量x 和y ,对任意给定的x 值,仅存在一个y 值与其对应,则称y 是x 的函数,表示为 )(x f y =。 其中x 为自变量,y 为因变量。由于函数关系中仅有一个自变量,因此该函数称为一元函数。x 能够取得的所有值的集合称为函数定义域,y 能够取得的所有值的集合称为函数值域。 在对经济问题的分析过程中,我们通常用函数来描述经济变量之间的变化关系。例如,在商品的供求关系中,定义某种商品价格为P ,需求量为D Q ,供给量为S Q 。那么,需求与价格的函数关系可以表示为:)(P f Q D =, )(P g Q S =。 然而我们所处的经济环境是非常复杂的,每一个经济变量都要受到多种因素的影响。因此,采用一元函数来分析经济问题就会有很大的局限性。所以我们常常采用多元函数来研究经济问题。多元函数是在一个函数关系中函数值是由多个变量确定的,用),,,(21n x x x f y =的形式来表示,它表示因变量y 的值取决于n 个自变量n x x x ,,,21 的大小。 例如在消费理论的基本假设中,每个消费者都同时对多种商品有需求,“效用”取决于所消费的各种商品的数量,效用函数就可以表示为 ),,,(21n x x x f U =,其中U 表示消费者的效用,n x x x ,,,21 是对n 种商品的消 费量。这个函数称为效用函数。同样,生产函数常表示为),(K L f y =,y 为产

微积分在经济生活中的应用

微积分在经济生活中的应用 人们面对着规模越来越大的经济和商业活动,逐渐转向用数学方法来帮助自己进行分析和决策,而且正越来越广泛地应用数学理论进行经济理论研究.在经济生活中经常涉及成本、收入、利润等问题,解决这些问题与微积分有着紧密联系. 1 导数及微分的应用 导数及微分在经济生活中的应用主要有边际分析与弹性分析等. 1.1 边际问题[1](37)P - 1.1.1 边际成本 边际成本是指在一定产量水平下,增加或减少一个单位产量所引起成本总额的变动数. 设成本函数为()C C x =,产量从x 改变到x x +?时,成本相应改变 ()()C C x x C x ?=+?- 成本的平均变化率为 ()() C C x x C x x x ?+?-= ?? 若当0x ?→时,0lim x C x ?→??存在,则这个极限值就可反映出产量有微小变化时,成本的变化情 况.因此,产品在产量x 时的边际成本就是: 00()() ()lim lim x x dC C C x x C x C x dx x x ?→?→?+?-'= ==?? 如果生产某种产品100个单位时,总成本为5000元,单位产品成本为50元.若生产101个时,其总成本5040元,则所增加一个产品的成本为40元,即边际成本为40元. 在经营决策分析中,边际成本可以用来判断产量的增减在经济上是否合算.当企业的生产能力有剩余时,只要增加产量的销售单位高于单位边际成本,也会使得企业利润增加或亏损减少.或者说,只要边际成本低于平均成本,也可降低单位成本.由上面知当产量100x =时,这时候有 (100)40C '= (100) 50100 C = 即边际成本低于平均成本,此时提高产量,有利降低单位成本. 1.1.2 边际收入 边际收入是指在某一水平增加或减少销售一个单位商品的收入增加或减少的量.实际上就是收入函数的瞬时变化率.而从数学的角度来看,它是一个导数问题. 设收入函数为()R R x =,则边际收入函数就是

微积分在微观经济学中的应用

微积分在微观经济学中 的应用 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

1 引言 微积分广泛地应用在自然科学、社会科学及应用科学等各个领域,用来解决那些仅靠代数学不能有效解决的问题.经济学作为社会科学“皇冠上的明珠”,其与微积分的联系也尤为紧密,我们就拿微观经济学为例.微观经济学是研究社会资源配置以及社会微观个体的经济关系的一门科学,从它诞生之日便和数学结下了不解之缘.自威廉-斯坦利和卡尔-门格尔等人的“边际革命”将边际分析引入经济学分析起,微积分在经济学研究中的作用越来越重要,它为解决以“变量”为研究对象的大量问题提供了一种深刻的思想方法,是运用定量分析方法研究经济理论的有效工具.微积分以其特有的严密性为微观经济学理论提供了科学的论证和精确的数理分析,严格的量化的论证与分析提高了经济学理论的科学性.微观经济学这一百多来的发展实践证明:将现代的数学方法例如微积分引入到微观经济学领域,大大地推动了经济学的研究和发展. 本文主要结合微观经济学中的典型的经济模型和经济问题,探讨微积分在微观经济学研究中的具体运用,以提高用高等数学中的方法来处理复杂经济现象的能力.下面研究主要集中在诸如边际分析、弹性分析、成本问题、收入问题、消费者剩余和生产者剩余这些方面,从而让我们对微积分这个分析工具在经济学中的运用有个更加清晰全面的认识. 2经济学中常用函数[1] 在引入微积分在微观经济学中的运用之前,先来简要介绍下经济学中的几个常用的函数.需要注意的是,由于在现实中许多经济函数并不是连续函数,为了能够进行微积分运算,我们不妨先假设它们是连续且可微函数. 需求函数 需求函数是反映在每一可能的价格水平下消费者对某种商品愿意并且能够购买的有效需求量Q与该商品的价格P之间一一对应关系的函数,记作() d =. Q Q P 供给函数 供给函数是反映在每一可能的价格水平下生产者对某种商品愿意并且能够提供的有效供给量Q与该商品的价格P之间一一对应关系的函数,记作() S =. Q Q P 效用函数

经济数学—微积分第二版吴传生期末考试题

一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,学科网只有一项是符合题目要求的. 1.设集合M={0,1,2},N= ,则 =() A. {1} B. {2} C. {0,1} D. {1,2} 2.设复数,在复平面内的对应点关于虚轴对称,zxxk ,则() A. - 5 B. 5 C. - 4+ i D. - 4 - i 3.设向量a,b满足|a+b|=,|a-b|=,则a.b= () A. 1 B. 2 C. 3 D. 5 4.钝角三角形ABC的面积是,AB=1,BC= ,则AC=() A. 5 B. C. 2 D. 1 5.某地区空气质量监测资料表明,一天的空气质量为优良学科网的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是() A. 0.8 B. 0.75 C. 0.6 D. 0.45 6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()

7.执行右图程序框图,如果输入的x,t均为2,则输出的S= () A. 4 B. 5 C. 6 D. 7 9.设x,y满足约束条件,则的最大值为() A. 10 B. 8

C. 3 D. 2 10.设F为抛物线的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为() 11.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM 与AN所成的角的余弦值为() 12.设函数,则m 的取值范围是() 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,学科网每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题 13.的展开式中,的系数为15,则a=________.(用数字填写答案) 14.函数的最大值为_________. 15.已知偶函数,则 的取值范围是__________. 16.设点上存在点N,使得zxxk∠OMN=45°,则的取值范围是________. 三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知数列

微积分及经济学应用

第3章 微积分及其经济学应用 3.1 一元函数和多元函数 在数学上,函数的定义为:如果在一个变化过程中有两个变量x 和y ,对任意给定的x 值,仅存在一个y 值与其对应,则称y 是x 的函数,表示为)(x f y =。 其中x 为自变量,y 为因变量。由于函数关系中仅有一个自变量,因此该函数称为一元函数。x 能够取得的所有值的集合称为函数定义域,y 能够取得的所有值的集合称为函数值域。 在对经济问题的分析过程中,我们通常用函数来描述经济变量之间的变化关系。例如,在商品的供求关系中,定义某种商品价格为P ,需求量为D Q ,供给量为S Q 。那么,需求与价格的函数关系可以表示为:)(P f Q D =,)(P g Q S =。 然而我们所处的经济环境是非常复杂的,每一个经济变量都要受到多种因素的影响。因此,采用一元函数来分析经济问题就会有很大的局限性。所以我们常常采用多元函数来研究经济问题。多元函数是在一个函数关系中函数值是由多个变量确定的,用 ),,,(21n x x x f y =的形式来表示,它表示因变量y 的值取决于n 个自变量n x x x ,,,21 的大小。 例如在消费理论的基本假设中,每个消费者都同时对多种商品有需求,“效用”取决于所消费的各种商品的数量,效用函数就可以表示为),,,(21n x x x f U =,其中U 表示消费者的效用,n x x x ,,,21 是对n 种商品的消费量。这个函数称为效用函数。同样,生产函数常表示为),(K L f y =,y 为产出水平,K 表示资本,L 表示劳动力。它说明产出水平既取决于劳动力又取决于资本。 Q=A*L^ alpha *K^ belta A=1;alpha=0.5;belta=0.5;

微积分在现实中的应用

微积分的应用 微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 微积分建立之初的应用:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛

的应用,特别是计算机的出现更有助于这些应用的不断发展。 微积分作为一种实用性很强的数学方法和根据,在数学发展中的地位是十分重要的。例如,微分可以解决近似计算问题。比如:求sin29°的近似值,求不规则图形面积或几何体体积的近似值等。通过微积分求极限、利用微分中值定理,能够及时的放缩多项式,有利于不等式的化简和证明。极限求和、导数求和、积分求和也都是解决求数列前n项和的好方法。其次,数理化不分家。而且微积分在不等式中也有很大的运用,我们可以运用微积分中值定理,泰勒公式,函数的单调性,极值,最值,凸函数法等来证明不等式。在物理问题上,通过解微分方程研究物体运动问题、气体问题、电路问题也是非常普遍的。已知位移——时间函数计算速度,已知速度——时间函数计算加速度(即生活中交通管理方面的应用);运动学中的曲线轨迹求解(即生活中在篮球投篮训练中的应用);求不规则物体的重心;力学工程中计算变力和非恒力做功等等。在化学领域,用气相色谱仪和液相色谱仪做样品化学成分分析时,我们得到的并不是直观的数字结果,而是一张色谱图。色谱图是由一个一个的峰组成的,而我们进行定量计算的根据,就是这些峰的面积。而求这些峰的面积,就需要用到积分。现在的仪器里都集成了自动积分仪,只要选定某一个峰,它就能把积分计算出来。最终得到的成分含量就是基于积分原理计算出来的 微积分的应用不仅仅遍及各个学科,也渗透到了社会的各个行业,甚至深入人们日常生活和工作。利用微积分进行边际分析(经济函数的

大一微积分期末试题附答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001 () 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 二、填空题 1 d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+1 x5、若则的值分别为: x+2x-3

三、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 四、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 2 若34()(10),''(0)f x x f =+求 3 2 4 lim(cos )x x x →求极限 4 (3y x =-求 5 3tan xdx ? 五、证明题。 1、 证明方程3 10x x +-=有且仅有一正实根。 2、arcsin arccos 1x 12 x x π +=-≤≤证明() 六、应用题 1、 描绘下列函数的图形 21y x x =+

高数在经济学中的应用演示版.doc

《高等数学》知识在经济学中的应用举例 由于现代化生产发展的需要,经济学中定量分析有了长足的进步,数学的一些分支如数 学分析、线性代数、概率统计、微分方程等等已进入经济学,出现了数理统计学、经济计量学、经济控制论等新分支,这些新分支通常成为数量经济学。数量经济学的目的在于探索客观经济过程的数量规律,以便用来知道客观经济实践。应用数量经济学研究客观经济现象的关键就是要把所考察的对象描述成能够用数学方法来解答的数学经济模型。这里我们简单介绍一下一元微积分与多元微积分在经济中的一些简单应用。 一、复利与贴现问题 1、复利公式 货币所有者(债权人)因贷出货币而从借款人(债务人)手中所得之报酬称为利息。利 息以“期”,即单位时间(一般以一年或一月为期)进行结算。在这一期内利息总额与贷款额(又称本金)之比,成为利息率,简称利率,通常利率用百分数表示。 如果在贷款的全部期限内,煤气结算利息,都只用初始本金按规定利率计算,这种计息方法叫单利。在结算利息时,如果将前一期之利息于前一期之末并入前一期原有本金,并以此和为下一期计算利息的新本金,这就是所谓的复利。通俗说法就是“利滚利”。 下面推出按福利计息方法的复利公式。 现有本金A 0,年利率r=p%,若以复利计息,t 年末A 0将增值到A t ,试计算A t 。 若以年为一期计算利息: 一年末的本利和为A 1=A 0(1+r ) 二年末的本利和为A 2=A 0(1+r )+A 0(1+r )r= A 0(1+r )2 类推,t 年末的本利和为A t = A 0(1+r )t (1) 若把一年均分成m 期计算利息,这时,每期利率可以认为是 r m ,容易推得 0(1) mt t r A A m =+ (2) 公式(1)和(2)是按离散情况——计息的“期”是确定的时间间隔,因而计息次数有限——推得的计算A t 的复利公式。 若计息的“期”的时间间隔无限缩短,从而计息次数m →∞,这时,由于 000lim (1)lim[(1)]m mt rt rt r m m r r A A A e m m →∞→∞+=+= 所以,若以连续复利计算利息,其复利公式是 0rt t A A e =

微积分在经济学中的若干应用

微积分在经济学中的若干应用 微积分在经济学中的若干应用 1微积分的基本思想 微积分是微分论文联盟学和积分学的总称,它的基本思想是:局部求近似、极限求精确。以下我们具体阐述微分学与积分学的思想。 1.1微分学的基本思想:微分学的基本思想在于考虑函数在小范围内是否可能用线性函数或多项式函数来任意近似表示。直观上看来,对于能够用线性函数任意近似表示的函数,其图形上任意微小的一段都近似于一段直线。在这样的曲线上,任何一点处都存在一条惟一确定的直线--该点处的“切线”。它在该点处相当小的范围内,可以与曲线密合得难以区分。这种近似,使对复杂函数的研究在局部上得到简化。 1.2积分的基本思想:积分学的最基本的概念是关于一元函数的定积分与不定积分。蕴含在定积分概念中的基本思想是通过有限逼近无限。因此极限方法就成为建立积分学严格理论的基本方法。现在我们来举一个例子——物理中运动物体经过的路程:设速度函数已知,求运动物体所经过的路程也是上述两大步骤:(1)“局部求近似”:非均匀量近似于均匀量只有在微小局部才能成立.因此要处理这一非匀速变化的整体量,首先必须划分时间区间为若干小时间区间,再在各小时间区间上以“匀”代“不匀”,因此,这一思想需分为两步来实现:论文网

①“分割”:将区间任意划分成n份,考察微小区间上的小段; ②“求近似”:在上将运动近似看作匀速运动,用处理相应均匀量的乘法得:,,. (2)“极限求精确”:由于所求的是整体量,因此先将局部的近似值累加起来再向精确值转化(利用极限法实现“精确”的过程),所以实现精确的思想也分为两步: ①“求和”:; ②“求极限”:,其中. 可见,微分与积分虽然是微观和宏观两种不同范畴的问题,但它们的研究对象都是“非均匀”变化量,解决问题的基本思想方法也是一致的。可归纳为两步:(1)微小局部求近似值; (2)利用极限求精确。微积分的这一基本思想方法贯穿于整个微积分学体系中,并且将指导我们应用微积分知识去解决各种相关的问题。 2微积分在经济学中的基本应用 (1)一般均衡理论中的微积分方法:经济均衡理论是瓦尔拉斯创立的。所谓瓦尔拉斯均衡,就是对每一个商品市场的供给和需求相等的所有均衡条件进行描述。即寻求在经济生活中消费者追求效用最大化,生产者追求利润最大化的过程中,均衡价格体系存在的条件。一般均衡分析是在构建多变量方程组的前提下,运用微积分理论对商品

经济数学基础期末考试试题

经济数学基础(一) 微积分统考试题(B)(120分钟) 一、 填空题(20102=?分) 1、 设()?? ?≥-<=0 20 2 x x x x x f ,则()[]=1f f 。 2、 ( ) =--∞ →x x x x 2lim 。 3、 为使()x x x x f 111?? ? ??-+=在0=x 处连续,需补充定义()=0f 。 4、 若()()x f x f =-,且()21'=-f ,则()=1'f 。 5、 已知()x x f 22cos sin =,且()10=f ,则()=x f 。 6、 设)(x y y =由y y x =所确定,则=dy 。 7、 设某商品的需求函数为p Q 2.010-=,则需求弹性分析()=10E 。 8、 设()?? ?>+≤=0 10 x ax x e x f x ,且()x f 在0=x 处可导,则=a 。 9、 () dx x x ?+2 11 = 。 10、 =?xdx ln 。 二、 单项选择(1052=?分) 1、若0→x 时,k x x x ~2sin sin 2-,则=k ( ) A 、1 B 、2 C 、3 D 、4 2、若(),20'-=x f 则()() =--→000 2lim x f x x f x x ( ) A 、 41 B 、41 - C 、1 D 、1- 3、?=+-dx x x x 5 222 ( )

A 、() C x x x +-++-21 arctan 252ln 2 B 、() C x x x +-++-21 arctan 52ln 2 C 、() C x x x +-++-41 arctan 252ln 2 D 、() C x x x +-++-41 arctan 52ln 2 4、1 2 -= x x y 有( )条渐近线。 A 、 1 B 、 2 C 、 3 D 、 4 5、下列函数中,( )不能用洛必达法则 A 、x x x x x sin sin lim 0+-→ B 、()x x x 10 1lim +→ C 、x x x cos 1lim 0-→ D 、??? ? ?--→111 lim 0x x e x 三、 计算题(一)(1535=?分) 1、()x x x 3sin 21ln lim 0-→ 2、() (),0ln 22>+++=a a x x xa y x 求()x y ' 3、求?+dx x x ln 11

【精品完整版】微积分在经济学的应用

唐山师范学院本科毕业论文 题目微积分在经济学的应用 学生武亚南 指导教师张庆教授 年级 2014级专接本 专业数学与应用数学 系别数学与信息科学系 唐山师范学院数学与信息科学系 2016年5月

郑重声明 本人的毕业论文(设计)是在指导教师张庆的指导下独立撰写完成的.如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督.特此郑重声明. 毕业论文(设计)作者(签名): 年月日

目录 标题 (1) 中文摘要 (1) 1 引言 (1) 2 微积分在经济学的应用 (1) 2.1 边际分析 (1) 2.2 弹性分析 (3) 2.2.1 弹性的概念 (3) 2.2.2 需求弹性 (3) 2.2.3 需求弹性与总收入的关系 (4) 2.3 多元函数偏导数在经济分析中的应用 (5) 2.3.1 边际经济量 (5) 2.3.2 偏弹性 (6) 2.3.3 偏导数求极值 (8) 2.4 积分在经济分析中的应用 (9) 2.4.1 边际函数求原函数 (9) 2.4.2 消费者剩余与生产者剩余 (9) 2.4.3 收益流的现值与未来值 (10) 2.5 实际问题探索 (12) 2.5.1 经济批量问题 (12) 2.5.2 净资产分析 (13) 2.5.3 核废料的处理 (14) 3结束语 (16) 参考文献 (17) 致谢 (18) 外文页 (19)

微积分在经济学的应用 武亚南 摘要本文从边际分析、弹性分析、多元函数偏导数在经济分析的应用、积分在经济分析中的应用、实际问题探索五方面来讨论微积分在经济学的应用.其中实际问题探索是利用微积分去解决实际问题,为本文讨论的重点. 关键词微积分边际分析弹性分析实际问题 1 引言 微积分的产生是数学史上伟大的成就,它不仅仅是从社会生产和理论科技中产生的,反过来,它应用到我们生活中的社会和科学技术中去.如今,微积分已是广大科学工作者和科技人员必不可少的工具. 微积分是微分学和积分学的总称,它的萌芽、发生与发展经历了漫长的时期.并且它的产生与科学地继承和发展数学上的长期积累的研究成果是分不开的.以我国古代来说,三国时期魏人刘徽(公元263年)总结了前人的成果,提出了“割圆术”,他说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”用正多边形逼近圆周.这是极限论思想的成功运用. 微分是联系到对曲线作切线的问题和函数的极大值、极小值问题.积分概念是求某些面积、体积和弧长而引起的,古希腊数学家阿基米德在《抛物线求积法》中用穷竭法求出抛物线弓形的面积.阿基米德的贡献真正成为积分学的萌芽.通过前人的研究成果,十七世纪末英国物理学家兼数学家牛顿(Newton,1642-1727)和德国数学家莱布尼茨(Leibniz,1646-1716)创立了微积分学.它的产生并不是偶然的.那时候,建筑工程的盛兴、河道堤坝的修建、造船事业的发展等提出了很多计算不同形状物体的面积、体积、重心、器壁上液体压力等静力学的与流体力学的问题.所以微积分的产生是由于社会经济的发展、生产技术的进步所促使产生的. 2 微积分在经济学的应用 2.1 边际分析 在经济问题中,常常会使用变化率的概念.变化率一般分为平均变化率和即时或瞬时率,平均变化率就是函数的增量与自变量的增量之比,瞬时变化率就是函数对自变量的导数,在经济学中也将

微积分及经济学应用

第3章 微积分及其经济学应用 3、1 一元函数与多元函数 在数学上,函数的定义为:如果在一个变化过程中有两个变量x 与y ,对任意给定的x 值,仅存在一个y 值与其对应,则称y 就是x 的函数,表示为)(x f y =。 其中x 为自变量,y 为因变量。由于函数关系中仅有一个自变量,因此该函数称为一元函数。x 能够取得的所有值的集合称为函数定义域,y 能够取得的所有值的集合称为函数值域。 在对经济问题的分析过程中,我们通常用函数来描述经济变量之间的变化关系。例如,在商品的供求关系中,定义某种商品价格为P ,需求量为D Q ,供给量为S Q 。那么,需求与价格的函数关系可以表示为:)(P f Q D =,)(P g Q S =。 然而我们所处的经济环境就是非常复杂的,每一个经济变量都要受到多种因素的影响。因此,采用一元函数来分析经济问题就会有很大的局限性。所以我们常常采用多元函数来研究经济问题。多元函数就是在一个函数关系中函数值就是由多个变量确定的,用 ),,,(21n x x x f y K =的形式来表示,它表示因变量y 的值取决于n 个自变量n x x x ,,,21K 的 大小。 例如在消费理论的基本假设中,每个消费者都同时对多种商品有需求,“效用”取决于所消费的各种商品的数量,效用函数就可以表示为),,,(21n x x x f U K =,其中U 表示消费者的效用,n x x x ,,,21K 就是对n 种商品的消费量。这个函数称为效用函数。同样,生产函数常表示为),(K L f y =,y 为产出水平,K 表示资本,L 表示劳动力。它说明产出水平既取决于劳动力又取决于资本。 Q=A*L^ alpha *K^ belta A=1;alpha=0、5;belta=0、5;

经济数学微积分试题

经济数学-微积分模拟试题-按模块分类 一、单项选择题(每小题3分,) 1.下列各函数对中,( D )中的两个函数相等. A. x x g x x f ==)(,)()(2 B. 1)(,1 1)(2 +=--= x x g x x x f C. x x g x x f ln 2)(,ln )(2== D. 1)(,cos sin )(2 2 =+=x g x x x f 2.已知1sin )(-= x x x f ,当( A )时,)(x f 为无穷小量. A. 0→x B. 1→x C. -∞→x D. +∞→x 3. ? ∞+1 3 d 1x x ( C ). A. 0 B. 2 1- C. 2 1 D. ∞+ 1.下列函数中为奇函数的是( ).B (A) x x y sin = (B) x x y -=3 (C) x x y -+=e e (D) x x y +=2 2.下列结论正确的是( ).C (A) 若0)(0='x f ,则0x 必是)(x f 的极值点 (B) 使)(x f '不存在的点0x ,一定是)(x f 的极值点 (C) 0x 是)(x f 的极值点,且)(0x f '存在,则必有0)(0='x f (D) 0x 是)(x f 的极值点,则0x 必是)(x f 的驻点 3.下列等式成立的是( ).D (A) x x x d d 1= (B) )1d( d ln x x x = (C) )d(e d e x x x --= (D) )d(cos d sin x x x =- 1.若函数x x x f -= 1)(, ,1)(x x g +=则=-)]2([g f ( ).A A .-2 B .-1 C .-1.5 D .1.5

考研数学之微积分在经济学中的应用

考研数学之微积分在经济学中的应用 来源:文都教育 这一部分内容,数一和数二都不考,只有数三考试,考试内容比较简单。这一部分和常微分方程联系紧密,只要常微分法方程学的好,这一部分都不会困难,主要是计算量比较大一些。一下是文都数学老师总结的这一部分的主要内容,希望对数三考生有所帮助。 一、 差分方程 1、定义 设函数).(t y y t = 称改变量t t y y -+1为函数t y 的差分, 也称为函数t y 的一阶差分, 记为t y ?, 即t t t y y y -=?+1 或 )()1()(t y t y t y -+=?. 一阶差分的差分称为二阶差分t y 2?, 即 t t t t y y y y ?-?=??=?+12)(.2)()(12112t t t t t t t y y y y y y y +-=---=+++++ 类似可定义三阶差分, 四阶差分,…… ),(),(3423t t t t y y y y ??=???=? 2、差分方程的概念 一般形式:0),,,,,(2=???t n t t t y y y y t F 或.0),,,,,(21=+++n t t t t y y y y t G 差分方程中所含未知函数差分的最高阶数称为该差分方程的阶. 特别的,称1(x)y (x)x x y P f ++=为一阶差分方程,同样的,(x)0f ≠为非齐次的,反之为其次的;若为常数,我们称之为一阶常系数差分方程. 3、一阶常系数线性差分方程的解法 一阶常系数线性差分方程的一般形式为:)(1t f ay y t t =++, 其中常数0≠a ,)(t f 为t 的已知函数,当)(t f 不恒为零时,称为一阶非齐次差分方程; 当0)(≡t f 时,差分方程:01=++t t ay y 称为与一阶非次线性差分方程对应的一阶齐

微积分在经济中的应用分析

一、经济分析中常用的函数 (一)需求函数和供给函数】【2 1.需求函数。需求函数是描述商品的需求量与影响因素,其影响因素很多,例如收入、价格、消费者的喜好等。我们这里先不考虑其他因素,假设商品的需求量只受市场价格的影响,记Q=Q (p )(Q 表示某种商品的需求量,P 表示此种商品的价格)一般来说,需求函数为价格p 的单调减少函数.例如,某鸡蛋的价格从10元/千克降到8元/千克时,相应的需求量就从1500千克增到2000千克,显然需求是和价格相关的一个变量。一般来说,需求函数为价格p 的单调减少函数(如图一)。 需求曲线是从左上方向右下方倾斜的具有负斜率的曲线;曲线表明了需求量与价格之间呈反方向变动的关系。当价格下降时,需求量上升;当价格上升时,需求量下降。 2.供给函数。一种商品的市场供给量与商品的价格存在一一对应的关系,记S=S (p ),例如,当鸡蛋收购价为4.5元/千克时,某收购站每月能收购5 000 kg .若收购价每4.6元/千克时,收购量为5400kg 。一般来说,供给函数为价格的单调增加函数。(如图二)

供给函数特征:横轴S为供给量,纵轴P为自变量价格;供给曲线是从左下方向右上方倾斜的具有正斜率的曲线。当价格上升时,供给增加;当价格下降时,供给减少。 (二)、市场均衡 在市场中,当一种商品满足Q=S即需求量等于供给量时,这种商品就达到了市场均衡,当Q=S时的价格称为均衡价格,当市场价格高于均衡价格时,供给量就会增加而需求量就会减少,这是出现“供过于求”的现象;当市场价格低于均衡价格时,需求量就会增加而供给量减少,这是出现“供不应求”的现象。 (三)、价格函数、收入函数、利润函数 1.价格函数。一般来说,价格是销售量的函数。在我们的生活中是随处可见的,就像我们去买东西,买的越多就可以把价格讲得越低。例如,平和一家茶叶批发公司,批发50千克茶叶给零售商,批发价是50元每千克,若每次多批发20千克茶叶,那么相应的批发价格就可以降低4元,很明显价格和销售量是相关的一个变量。在厂商理论中,强调的是既定需求下的价格。在这种情况下,价格是需求量的函数,表示为P=P(Q)。要注意的是需求函数 Q=f(P)与价格函数 P=P(Q)是互为反函数的关系。 2.收入函数。在商业活动中,一定时期内的收益,就是指商品售出后的收入,记为R。销售某商品的总收入取决于该商品的销售量和价格。因此,收入函数为R=R(Q)=PQ。其中 Q 表示销售量,P表示价格。 3.利润函数。利润是指收入扣除成本后的剩余部分,记为L。则L=L(Q)=R (Q)-C(Q)。其中Q 表示产品的的数量,R(Q)表示收入,C(Q)表示成本。总收入减去变动成本称为毛利,再减去固定成本称为纯利润。 三、导数的经济学意义及其在经济分析中的应用 (一)、边际分析 经济学中的“边际”这一术语是指“新增”的或“额外”的意思。例如,当 【3。消费者多吃一单位的冰淇淋时,会获得“新增”的效用或满足,即边际效用】【4:设函数y=f(x)可导,则导函数f'(x)在经济学中称为边际函数。 定义】 在经济学中,我们经常用到边际函数,例如边际成本函数、边际收益函数、边际利润函数,它们都是表示一种经济变量相对于另一种经济变量的变化率问题,都反映了导数在经济学中的应用。成本函数C(P)表示生产P个单位某种产品时的总成本。平均成本函数c(P)表示生产P个单位某种产品时平均每个单位的成本,即c(P)=c(P)/P。边际成本函数是成本函数C(P)相对于P的变化率,即C(x)的导函数) (p C 。 边际成本的变动规律:最初在产量开始增加时由于各种生产要素的效率为得到充分发挥,所以,产量很小;随着生产的进行,生产要素利用率增大,产

经济数学--微积分期末测试及答案(A)

经济数学--微积分期末测试及答案(A)

经济数学--微积分期末测试 第一学期期末考试试题 ( A ) 一.选择题(每小题只有一个正确答案,请把正确答案前的字母填入括号,每题2分,共 30分) 1.函数1 ()x f x += A); ()(1,1)(1,) ()(1,) ()(1,) ()(1,1) A B C D -+∞-+∞+∞-U 2.下列函数中,与3y x =关于直线y x =对称的函数是 (A); 33 3 3()()()()A y x B x y C y x D x y = ==-=- 3.函数2 14y x = -的渐近线有(A); 3(A )条 (B )2条 (C )1条 (D )0条 4.若函数()f x 在(,)-∞+∞有定义,下列函数中必是奇 函数的是(B); 32()() ()() ()()() ()() A y f x B y x f x C y f x f x D y f x =--==+-= 5.0x →时,下列函数中,与x 不是等价无穷小量的 试题号 一 二 三 四 总分 考 分 阅卷人

11 00 1()lim (1) ()lim (1) ()lim(1) ()lim (1) x x x x x x x x A x B x C D x x +→∞ →∞ →→++++ 13.若ln x y x = ,则dy =(D); 2 2 2 ln 11ln ln 1 1ln () () () () x x x x A B C dx D dx x x x x ---- 14.函数2()f x x =,在区间[0,1]内,满足拉格朗日 中值定理的条件,其中ξ=(D); 1 121() () () () 4 3 3 2 A B C D 15.若函数()f x 在(,)-∞+∞内连续,则2 ()x f x dx ' ? ?= ???(D). 2222()[2()()]()2()() ()()()() A xf x x f x dx B xf x x f x C x f x dx D x f x ''++ 二.计算题(每小题7分,共 56分) 1. 2arccos 1y x x x =-y ' 解:1 22 2 2 (arccos )[(1) ]arccos arccos 121y x x x x x x x '''=--==-- 2. 求2(cos sin 32)x x x x e dx -+++? 解:原式=3 sin cos 2x x x x e x c +++++ (其中c 是任意常数) 3. 求曲线51001y x x y -+= 在0x =对应的点处的切线 方程. 解:0x =时,代入方程得 1 y =;方程两边对x 求导 67 7 5

微积分在经济学中的应用分析.doc

微积分在经济学中的应用分析 李博 西南大学数学与统计学院,重庆 400715 摘要:本文从经济学与数学的紧密联系出发,分析了数学,尤其是微积分在经济学研究中的地位和作用。 关键词:微积分;经济学;边际分析 Calculus’s Applied Analysis in Economics Li bo School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract: Based on the close relationship between economics and maths,this paper analyzes the role and function of maths especially calculus in economics. Key words: calculus; Economics; marginal analysis 1.数学与经济学的紧密联系 经济学与数学之间有天然的联系, 经济学从诞生之日起便与数学结下了不解之缘。 经济学应用数学有客观基础。经济学研究的对象是人与人之间的“物的交换”,是有量化规则的。经济学基本范畴如需求、供给、价格等是量化的概念。经济学所揭示的规律性往往需要数量的说明。特别是经济学的出发点是“理性经纪人”。由于经纪人在行为上是理性的,经纪人能够根据自己的市场处境判断自身利益,且在若干不同的选择场合时,总是倾向于选择能给自己带来最大利益的那一种。所以,数学中所有关于求极值和最优化的理论,都适用于分析各种各样的最优经济效果问题,而很多求极值的数学理论和概念,也只能在最优经济效果中找到原型。 数学方法本身所提供的可能性。多变量微积分的理论特别适用于研究以复杂

经济数学微积分期末复习资料

经济数学--微积分大一下期末复习资料 考试题型: 1.求偏导数5*8’=40’ 2.求偏弹性1*6’=6’ 3.条件极值1*6’=6’ 4.二重积分2*6’=12’ 5.微分方程与差分方程4*6’=24’ 6.无穷级数2*6’=12’ a.判断正项级数敛散性 判断交错级数敛散性及条件或绝对收敛 b.求和函数(收敛半径、收敛域) 求和函数展开式 一.求偏导 类型1:展开式形式,如:xy z = 求解:将求的看做变量,另一个看做常数。求二阶时,只要对相应的一阶再求一次即可。 Eg :设133 2 3 +--=xy xy y x z ,求22x z ??、x y z ???2、y x z ???2、22y z ?? 解: y -y 3-y x 3x z 322=?? x -x y 9-y x 2y z 23=?? 2 2x z ??= 2x y 6 x y z ???2=1-y 9-y x 622 y x z ???2=1-y 9-y x 62 2 22y z ??=x y 18-x 23 类型2:),(y x z f =

求解:画链式法则进行求解 Eg :)(z ,,xy y x f w ++=,求z x w x w ?????2, 解:设u=x+y+z ,v=xyz ,,(v u f w = 则 链 式 法 则 如右图所示 参考资料:课本练习册7-16页 二.求偏弹性 经济数学-微积分P310 例8 u w v x z y x y

PS :例8 参考资料:练习册21-22页 三.条件极值 求解:找出目标函数与约束条件,设出拉格朗日函数,解方程组,得出答案。 参考资料:练习册19-20页 四.二重积分 类型1.直角坐标系下 型 先积x 再积y 型 先积y 再积x 类型2.极坐标系下 ?? ?==θ θrsin y rcos x θσrdrd d =:PS 求解:1.做出积分区间 2.判断适合用直角坐标解答还是极坐标 3.如果适合用直角坐标系解答,判断是X 型还是Y 型。 4.如果需要,要考虑交换积分次序。 参考资料:练习册23-26页 五.微差分方程 微分方程: (一))x (y x dx dy Q P =+)(

微积分在经济学的应用毕业论文

微积分在经济学的应用毕业论文 目录 标题 (1) 中文摘要 (1) 1 引言 (1) 2 微积分在经济学的应用 (1) 2.1 边际分析 (1) 2.2 弹性分析 (3) 2.2.1 弹性的概念 (3) 2.2.2 需求弹性 (3) 2.2.3 需求弹性与总收入的关系 (4) 2.3 多元函数偏导数在经济分析中的应用 (5) 2.3.1 边际经济量 (5) 2.3.2 偏弹性 (6) 2.3.3 偏导数求极值 (8) 2.4 积分在经济分析中的应用 (9) 2.4.1 边际函数求原函数 (9) 2.4.2 消费者剩余与生产者剩余 (9) 2.4.3 收益流的现值与未来值 (10) 2.5 实际问题探索 (12) 2.5.1 经济批量问题 (12) 2.5.2 净资产分析 (13)

2.5.3 核废料的处理 (14) 3结束语 (16) 参考文献 (17) 致谢 (18) 外文页 (19)

微积分在经济学的应用 武亚南 摘要本文从边际分析、弹性分析、多元函数偏导数在经济分析的应用、积分在经济分析中的应用、实际问题探索五方面来讨论微积分在经济学的应用.其中实际问题探索是利用微积分去解决实际问题,为本文讨论的重点. 关键词微积分边际分析弹性分析实际问题 1 引言 微积分的产生是数学史上伟大的成就,它不仅仅是从社会生产和理论科技中产生的,反过来,它应用到我们生活中的社会和科学技术中去.如今,微积分已是广大科学工作者和科技人员必不可少的工具. 微积分是微分学和积分学的总称,它的萌芽、发生与发展经历了漫长的时期.并且它的产生与科学地继承和发展数学上的长期积累的研究成果是分不开的.以我国古代来说,三国时期魏人徽(公元263年)总结了前人的成果,提出了“割圆术”,他说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”用正多边形逼近圆周.这是极限论思想的成功运用. 微分是联系到对曲线作切线的问题和函数的极大值、极小值问题.积分概念是求某些面积、体积和弧长而引起的,古希腊数学家阿基米德在《抛物线求积法》中用穷竭法求出抛物线弓形的面积.阿基米德的贡献真正成为积分学的萌芽.通过前人的研究成果,十七世纪末英国物理学家兼数学家牛顿(Newton,1642-1727)和德国数学家莱布尼茨(Leibniz,1646-1716)创立了微积分学.它的产生并不是偶然的.那时候,建筑工程的盛兴、河道堤坝的修建、造船事业的发展等提出了很多计算不同形状物体的面积、体积、重心、器壁上液体压力等静力学的与流体力学的问题.所以微积分的产生是由于社会经济的发展、生产技术的进步所促使产生的. 2 微积分在经济学的应用 2.1 边际分析 在经济问题中,常常会使用变化率的概念.变化率一般分为平均变化率和即时或瞬时率,平均变

相关主题
文本预览
相关文档 最新文档