当前位置:文档之家› 2015届高考数学二轮专题训练:专题三 第2讲 三角变换与解三角形

2015届高考数学二轮专题训练:专题三 第2讲 三角变换与解三角形

2015届高考数学二轮专题训练:专题三 第2讲 三角变换与解三角形
2015届高考数学二轮专题训练:专题三 第2讲 三角变换与解三角形

第2讲 三角变换与解三角形

考情解读 1.高考中常考查三角恒等变换有关公式的变形使用,常和同角三角函数的关系、诱导公式结合.2.利用正弦定理或余弦定理解三角形或判断三角形的形状、求值等,经常和三角恒等变换结合进行综合考查.

1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β?sin αsin β. (3)tan(α±β)=tan α±tan β1?tan αtan β

.

2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.

(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α

1-tan 2α.

3.三角恒等式的证明方法

(1)从等式的一边推导变形到另一边,一般是化繁为简. (2)等式的两边同时变形为同一个式子. (3)将式子变形后再证明. 4.正弦定理

a sin A =

b sin B =

c sin C

=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c

2R .

a ∶

b ∶

c =sin A ∶sin B ∶sin C . 5.余弦定理

a 2=

b 2+

c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .

推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2

2ab .

变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B , a 2+b 2-c 2=2ab cos C . 6.面积公式

S △ABC =12bc sin A =12ac sin B =1

2ab sin C .

7.解三角形

(1)已知两角及一边,利用正弦定理求解.

(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解.

热点一 三角变换

例1 (1)已知sin(α+π3)+sin α=-435,-π2<α<0,则cos(α+2π

3)等于( )

A .-4

5

B .-35

C.45

D.35

(2)(2014·课标全国Ⅰ)设α∈(0,π2),β∈(0,π

2),且tan α=1+sin βcos β,则( )

A .3α-β=π

2

B .2α-β=π

2

C .3α+β=π

2

D .2α+β=π

2

思维启迪 (1)利用和角公式化简已知式子,和cos(α+2

3

π)进行比较.

(2)先对已知式子进行变形,得三角函数值的式子,再利用范围探求角的关系. 答案 (1)C (2)B

解析 (1)∵sin(α+π3)+sin α=-435,-π

2<α<0,

∴32sin α+32cos α=-43

5, ∴

32sin α+12cos α=-45

, ∴cos(α+2π3)=cos αcos 2π3-sin αsin 2π3

=-12cos α-32sin α=4

5

.

(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,

即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π

2-α).

∵α∈(0,π2),β∈(0,π

2

),

∴α-β∈(-π2,π2),π2-α∈(0,π

2),

∴由sin(α-β)=sin(π2-α),得α-β=π

2-α,

∴2α-β=π

2

.

思维升华 (1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现张冠李戴的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.

设函数f (x )=cos(2x +π

3

)+sin 2x .

(1)求函数f (x )的最小正周期和最大值;

(2)若θ是第二象限角,且f (θ2)=0,求cos 2θ

1+cos 2θ-sin 2θ

的值.

解 (1)f (x )=cos(2x +π3)+sin 2x =cos 2x cos π3-sin 2x sin π3+1-cos 2x 2=12-3

2sin 2x .

所以f (x )的最小正周期为T =2π

2=π,最大值为1+32

. (2)因为f (θ

2

)=0,

所以12-32sin θ=0,即sin θ=33,

又θ是第二象限角, 所以cos θ=-1-sin 2θ=-

6

3

. 所以cos 2θ

1+cos 2θ-sin 2θ=cos 2θ-sin 2θ2cos 2

θ-2sin θcos θ=(cos θ+sin θ)(cos θ-sin θ)2cos θ(cos θ-sin θ)=cos θ+sin θ2cos θ =-

63+3

32×(-63)

=6-326

=2-24.

热点二 解三角形

例2 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足a =2sin A ,cos B cos C +2a c +b

c =0.

(1)求边c 的大小;

(2)求△ABC 面积的最大值.

思维启迪 (1)将cos B cos C +2a c +b

c =0中的边化成角,然后利用和差公式求cos C ,进而求c .(2)只需求ab 的最

大值,可利用cos C =a 2+b 2-c 2

2ab

和基本不等式求解.

解 (1)∵cos B cos C +2a c +b

c =0,

∴c cos B +2a cos C +b cos C =0,

∴sin C cos B +sin B cos C +2sin A cos C =0, ∴sin A +2sin A cos C =0, ∵sin A ≠0,

∴cos C =-1

2,∵C ∈(0,π)

∴C =2π3,∴c =a sin A

·sin C = 3.

(2)∵cos C =-12=a 2+b 2

-3

2ab

∴a 2+b 2+ab =3,∴3ab ≤3,即ab ≤1. ∴S △ABC =12ab sin C ≤3

4.

∴△ABC 的面积最大值为

3

4

. 思维升华 三角形问题的求解一般是从两个角度,即从“角”或从“边”进行转化突破,实现“边”或“角”的统一,问题便可突破. 几种常见变形:

(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;

(2)a =2R sin A ,b =2R sin B ,c =2R sin C ,其中R 为△ABC 外接圆的半径; (3)sin(A +B )=sin C ,cos(A +B )=-cos C .

(1)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则b

a

于( ) A. 2 B .2 2 C. 3

D .2 3

(2)(2014·江西)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π

3,则△ABC

的面积是( ) A .3 B.932

C.332

D .3 3

答案 (1)A (2)C

解析 (1)因为a sin A sin B +b cos 2A =2a ,由正弦定理得sin 2A sin B +sin B cos 2A =2sin A ,即sin B =2sin A ,

sin B sin A =2,b a =sin B

sin A

= 2. (2)∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π

3=a 2+b 2-ab .②

由①②得ab =6.

∴S △ABC =12ab sin C =12×6×32=332.

热点三 正、余弦定理的实际应用

例3 (2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到

C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =12

13,

cos C =3

5

.

(1)求索道AB 的长;

(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?

(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?

思维启迪 (1)直接求sin B ,利用正弦定理求AB .(2)利用余弦定理和函数思想,将甲乙距离表示为乙出发后时间t 的函数.

解 (1)在△ABC 中,因为cos A =1213,cos C =35,

所以sin A =513,sin C =4

5

.

从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C =

513×35+1213×45=6365.由正弦定理AB sin C =AC

sin B

,得 AB =AC sin B ×sin C =1 2606365×45

=1 040(m).

所以索道AB 的长为1 040 m.

(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得

d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×12

13

=200(37t 2-70t +50),由于0≤t ≤1 040

130

,即0≤t ≤8,

故当t =35

37 min 时,甲、乙两游客距离最短.

(3)由正弦定理BC sin A =AC

sin B ,

得BC =

AC sin B ×sin A =1 2606365

×5

13

=500(m). 乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤625

14

所以为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在????

1 25043,62514(单位:m/min)范围内.

思维升华 求解三角形的实际问题,首先要准确理解题意,分清已知与所求,关注应用题中的有关专业名词、术语,如方位角、俯角等;其次根据题意画出其示意图,示意图起着关键的作用;再次将要求解的问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识建立数学模型,从而正确求解,演算过程要简练,计算要准确;最后作答.

如图,中国渔民在中国南海黄岩岛附近捕鱼作业,中国海监船在A 地侦察发现,在南偏东60°

方向的B 地,有一艘某国军舰正以每小时13海里的速度向正西方向的C 地行驶,企图抓捕正在C 地捕鱼的中国渔民.此时,C 地位于中国海监船的南偏东45°方向的10海里处,中国海监船以每小时30海里的速度赶往C 地救援我国渔民,能不能及时赶到?(2≈1.41,3≈1.73,6≈2.45)

解 过点A 作AD ⊥BC ,交BC 的延长线于点D .

因为∠CAD =45°,AC =10海里, 所以△ACD 是等腰直角三角形. 所以AD =CD =

22AC =2

2

×10=52(海里). 在Rt △ABD 中,因为∠DAB =60°,

所以BD =AD ×tan 60°=52×3=56(海里). 所以BC =BD -CD =(56-52)(海里).

因为中国海监船以每小时30海里的速度航行,某国军舰正以每小时13海里的速度航行, 所以中国海监船到达C 点所用的时间t 1=

AC 30=1030=13(小时),某国军舰到达C 点所用的时间t 2=BC

13

=5×(6-2)13≈5×(2.45-1.41)

13=0.4(小时).

因为1

3

<0.4,所以中国海监船能及时赶到.

1.求解恒等变换问题的基本思路

一角二名三结构,即用化归转化思想“去异求同”的过程,具体分析如下:

(1)首先观察角与角之间的关系,注意角的一些常用变换形式,角的变换是三角函数变换的核心. (2)其次看函数名称之间的关系,通常“切化弦”. (3)再次观察代数式的结构特点. 2.解三角形的两个关键点

(1)正、余弦定理是实现三角形中边角互化的依据,注意定理的灵活变形,如a =2R sin A ,sin A =a

2R (其中

2R 为三角形外接圆的直径),a 2+b 2-c 2=2ab cos C 等,灵活根据条件求解三角形中的边与角.

(2)三角形的有关性质在解三角形问题中起着重要的作用,如利用“三角形的内角和等于π”和诱导公式可得到sin(A +B )=sin C ,sin

A +

B 2=cos C

2

等,利用“大边对大角”可以解决解三角形中的增解问题等. 3.利用正弦定理、余弦定理解决实际问题的关键是如何将实际问题转化为数学问题,抽象出三角形模型.

真题感悟

1.(2013·浙江)已知α∈R ,sin α+2cos α=10

2

,则tan 2α等于( ) A.43 B.34 C .-34 D .-4

3 答案 C

解析 ∵sin α+2cos α=

10

2

, ∴sin 2α+4sin α·cos α+4cos 2α=5

2.

用降幂公式化简得:4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-3

4

.故选C.

2.(2014·江苏)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 答案

6-2

4

解析 由sin A +2sin B =2sin C ,结合正弦定理得a +2b =2c . 由余弦定理得cos C =a 2+b 2-c 2

2ab

=a 2

+b 2

-(a +2b )242ab =34a 2+12b 2-

2ab

2

2ab

6-2

4

≤cos C <1,且3a 2=2b 2时取“=”. 故cos C 的最小值为6-2

4

. 押题精练

1.在△ABC 中,已知tan A +B

2

=sin C ,给出以下四个结论: ①

tan A

tan B

=1;②1

A .①③

B .②③

C .①④

D .②④ 答案 D

解析 依题意,tan A +B

2=sin

A +

B 2cos A +B 2=2sin A +B 2cos A +B

22cos 2

A +B

2

sin (A +B )1+cos (A +B )=sin C

1+cos (A +B )

=sin C .

∵sin C ≠0,∴1+cos(A +B )=1,cos(A +B )=0.

∵0

2,即△ABC 是以角C 为直角的直角三角形.

对于①,由tan A

tan B =1,得tan A =tan B ,即A =B ,不一定成立,故①不正确;

对于②,∵A +B =π2,∴sin A +sin B =sin A +cos A =2sin(A +π

4),

∴1

对于③,∵A +B =π

2,∴sin 2A +cos 2B =sin 2A +sin 2A =2sin 2A ,

其值不确定,故③不正确;

对于④,∵A +B =π

2

,∴cos 2A +cos 2B =cos 2A +sin 2A =1=sin 2C ,故④正确.

2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,q =(2a,1),p =(2b -c ,cos C ),且q ∥p . (1)求sin A 的值;

(2)求三角函数式-2cos 2C

1+tan C

+1的取值范围.

解 (1)∵q =(2a,1),p =(2b -c ,cos C )且q ∥p ,∴2b -c =2a cos C , 由正弦定理得2sin A cos C =2sin B -sin C , 又sin B =sin(A +C )=sin A cos C +cos A sin C ,

∴1

2

sin C =cos A sin C . ∵sin C ≠0,∴cos A =12,又∵0

3,

∴sin A =

3

2

. (2)原式=-2cos 2C 1+tan C

+1=1-2(cos 2C -sin 2C )

1+

sin C cos C =1-2cos 2C +2sin C cos C =sin 2C -cos 2C

=2sin(2C -π

4

),

∵0

12π,

∴-

22

4

)≤1, ∴-1<2sin(2C -π

4

)≤2,

即三角函数式-2cos 2C

1+tan C

+1的取值范围为(-1,2].

(推荐时间:60分钟)

一、选择题

1.(2014·浙江)为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( ) A .向右平移π

4个单位

B .向左平移π

4个单位

C .向右平移π

12个单位

D .向左平移π

12

个单位

答案 C

解析 因为y =sin 3x +cos 3x =2sin(3x +π

4)

=2sin[3(x +π12)],又y =2cos 3x =2sin(3x +π

2

)

=2sin[3(x +π6)],所以应由y =2cos 3x 的图象向右平移π

12个单位得到.

2.已知α∈(π2,π),sin(α+π4)=3

5,则cos α等于( )

A .-210

B.7210 C .-

210或7210

D .-7210

答案 A

解析 ∵α∈(π2,α).∴α+π4∈(34π,5

4π).

∵sin(α+π4)=3

5,

∴cos(α+π4)=-4

5

∴cos α=cos(α+π4)cos π4+sin(α+π4)sin(π4)=-45×22+35×22=-2

10.

3.在△ABC 中,若sin C sin A =3,b 2-a 2=5

2ac ,则cos B 的值为( )

A.1

3 B.1

2 C.15 D.14

答案 D

解析 由正弦定理:c a =sin C

sin A

=3,

由余弦定理:cos B =a 2

+c 2

-b 2

2ac =c 2-52ac

2ac =12×c a -54=32-54=1

4

.

4.(2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B = a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定

答案 B

解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0

2

,所以△ABC 为直角三角形.

5.已知tan β=43,sin(α+β)=5

13,其中α,β∈(0,π),则sin α的值为( )

A.63

65 B.3365 C.1365 D.6365或3365

答案 A

解析 依题意得sin β=45,cos β=35.注意到sin(α+β)=513π2(否则,若α+β≤π

2,则有

0<β<α+β≤π2,0

13,sin α=sin[(α+β)

-β]=sin(α+β)cos β-cos(α+β)sin β=63

65

.

A.3

2

B.3-1 C .2 D .2- 3

答案 D

解析 由题意得,BC →·BA →=|BC →|·|BA →

|cos B =ac cos B =12,即cos B =12ac ,

由余弦定理,

得cos B =a 2+c 2-b 22ac =1

2ac ?a 2+c 2-b 2=1,

所以tan B =2-3

a 2-

b 2+

c 2=2-3,故选D.

二、填空题

7.已知tan ????α+π4=12,且-π

2<α<0,则2sin 2

α+sin 2αcos ????α-π4=________. 答案 -25

5

解析 由tan ????α+π4=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0,可得sin α=-10

10.

故2sin 2α+sin 2αcos ????α-π4=2sin α(sin α+cos α)22(sin α+cos α)

=22sin α=-25

5

.

8.在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,则b =________. 答案 4

解析 由sin A cos C =3cos A sin C 得:a 2R ·a 2+b 2-c

2

2ab =3·b 2+c 2-a 22bc ·c 2R

∴a 2

+b 2

-c 2

=3(b 2

+c 2

-a 2

),a 2

-c 2

=b 2

2

解方程组:????

?

a 2-c 2

=2b a 2-c 2=b 22

,∴b =4.

9.已知0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45,则cos(α+π

4

)=________.

解析 因为0<α<π

2<β<π,

所以π4<β-π4<3π4,π2<α+β<3π2.

所以sin(β-π

4)>0,cos(α+β)<0.

因为cos(β-π4)=13,sin(α+β)=4

5,

所以sin(β-π4)=223,cos(α+β)=-3

5.

所以cos(α+π4)=cos[(α+β)-(β-π

4)]

=cos(α+β)cos(β-π4)+sin(α+β)sin(β-π

4)

=-35×13+45×223=82-3

15

.

10.如图,嵩山上原有一条笔直的山路BC ,现在又新架设了一条索道AC ,小李在山脚B 处看索道AC ,发现张角∠ABC =120°;从B 处攀登400米到达D 处,回头看索道AC ,发现张角∠ADC =150°;从D 处再攀登800米方到达C 处,则索道AC 的长为________米. 答案 40013

解析 如题图,在△ABD 中,BD =400米,∠ABD =120°.因为∠ADC =150°,所以∠ADB =30°.所以∠DAB =180°-120°-30°=30°.

由正弦定理,可得BD sin ∠DAB =AD sin ∠ABD .

所以400sin 30°=AD sin 120°

,得AD =4003(米).

在△ADC 中,DC =800米,∠ADC =150°,由余弦定理,可得 AC 2=AD 2+CD 2-2×AD ×CD ×cos ∠ADC

=(4003)2+8002-2×4003×800×cos 150°=4002×13,解得AC =40013(米). 故索道AC 的长为40013米. 三、解答题

11.(2014·安徽)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B . (1)求a 的值; (2)求sin ???

?A +π

4的值. 解 (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .

由正、余弦定理得a =2b ·a 2+c 2-b 2

2ac .

因为b =3,c =1,所以a 2=12,a =2 3.

(2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-1

3.

由于0

所以sin A =1-cos 2A =

1-19=223

. 故sin ????A +π4=sin A cos π4+cos A sin π4=223×22+????-13×22=4-2

6. 12.已知函数f (x )=4cos ωx ·sin(ωx -π6)+1(ω>0)的最小正周期是π.

(1)求f (x )的单调递增区间;

(2)求f (x )在[π8,3π

8]上的最大值和最小值.

解 (1)f (x )=4cos ωx ·sin(ωx -π

6)+1

=23sin ωx cos ωx -2cos 2ωx +1 =3sin 2ωx -cos 2ωx =2sin(2ωx -π

6).

最小正周期是2π

2ω=π,所以,ω=1,

从而f (x )=2sin(2x -π

6

).

令-π2+2k π≤2x -π6≤π

2+2k π,k ∈Z .

解得-π6+k π≤x ≤π

3

+k π,k ∈Z .

所以函数f (x )的单调递增区间为[-π6+k π,π

3+k π](k ∈Z ).

(2)当x ∈[π8,3π8]时,2x -π6∈[π12,7π

12],

f (x )=2sin(2x -π

6)∈[6-22

,2],

所以f (x )在[π8,3π

8]上的最大值和最小值分别为2,6-22

.

13.已知角A 、B 、C 是△ABC 的三个内角,若向量m =(1-cos(A +B ),cos A -B 2),n =(5

8,cos A -B 2),且

m ·n =9

8

.

(1)求tan A tan B 的值;

(2)求

ab sin C

a 2

+b 2-c 2

的最大值.

解 (1)m ·n =58-5

8cos(A +B )+cos 2A -B 2

=98-18cos A cos B +98sin A sin B =9

8, ∴cos A cos B =9sin A sin B 得tan A tan B =19

.

(2)tan(A +B )=tan A +tan B 1-tan A tan B =98(tan A +tan B )≥98·2tan A tan B =3

4.

(∵tan A tan B =1

9

>0,

∴A ,B 均是锐角,即其正切值均为正) ab sin C a 2

+b 2-c 2=sin C 2cos C =1

2

tan C =-12tan(A +B )≤-3

8,

所求最大值为-38.

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高考数学压轴专题2020-2021备战高考《三角函数与解三角形》技巧及练习题附答案

【高中数学】数学《三角函数与解三角形》复习资料 一、选择题 1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++? ?=++<< ?+++-? ?的最小值为 ( ) A B C D 【答案】B 【解析】 【分析】 利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】 2 2222sin 2sin cos 2cos 2sin cos 1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222 x x x x x x x x x x x x x x x x x x x x +++-+++= ++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x x x x x x x x x x x ???? ++ ? ?????=+= +=???? ++ ? ? ???? , 则()21tan 0sin 32f x x x x π? ?= +<< ?? ?, 322222 21sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x ' ' ' --+????=+=-+= ? ????? . 令()cos 0,1t x =∈,() 32 61g t t t =--+为减函数,且102g ??= ??? , 所以当03 x π <<时, ()1 1,02 t g t <<<,从而()'0f x <; 当 3 2 x π π << 时,()1 0,02 t g t << >,从而()'0f x >. 故( )min 33f x f π??== ??? . 故选:A 【点睛】 本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题. 2.在ABC ?中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,

高中数学解题思维提升专题05三角函数与解三角形大题部分训练手册

专题05 三角函数与解三角形大题部分 【训练目标】 1、掌握三角函数的定义,角的推广及三角函数的符号判断; 2、熟记同角三角函数的基本关系,诱导公式,两角和差公式,二倍角公式,降幂公式,辅助角公式,并能熟练的进行恒等变形; 3、掌握正弦函数和余弦函数的图像与性质,并能正确的迁移到正弦型函数和余弦型函数; 4、掌握三角函数的图像变换的规律,并能根据图像求函数解析式; 5、熟记正弦定理,余弦定理及三角形的面积公式; 6、能熟练,灵活的使用正弦定理与余弦定理来解三角形。 【温馨小提示】 此类问题在高考中属于必考题,难度中等,要想拿下,只能有一条路,多做多总结,熟能生巧。 【名校试题荟萃】 1、(浙江省诸暨中学2019届高三期中考试题文) 已知函数. (1).求 )(x f 的最小正周期和单调递增区间; (2).当 时,求函数)(x f 的最小值和最大值 【答案】(1)π, (2) 【解析】 (1) ,π=T , 单调递增区间为; (2) ∴当 时, ,∴ . 当时, ,∴ . 2、(河北省衡水中学2019届高三上学期三调考试数学文)试卷)已知 中,角 所对的边分别是 ,

且,其中是的面积,. (1)求的值; (2)若,求的值. 【答案】 (1);(2). (2),所以,得①, 由(1)得,所以. 在中,由正弦定理,得,即②, 联立①②,解得,,则,所以. 3、(湖北省武汉市部分市级示范高中2019届高三十月联考文科数学试题)已知函数f(x)=sin(ωx+)- b(ω>0,0<<π的图象的两相邻对称轴之间的距离,若将f(x)的图象先向右平移个单位,再向上平移个单位,所得图象对应的函数为奇函数. (1)求f(x)的解析式并写出单增区间; (2)当x∈,f(x)+m-2<0恒成立,求m取值范围. 【答案】 (1),单调递增区间为; (2).

中考专题复习解三角形

1.(10分) 我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC ∥AD ,斜坡AB=40米,坡角∠BAD=600 ,为防夏季因瀑雨引发山体滑坡,保障安全,学校决 定对山坡进行改造,经地质人员勘测,当坡角不超过450 时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结果保留根号)? 2. 如图,山顶建有一座铁塔,塔高CD =20m ,某人在点A 处,测得塔底C 的仰角为45o ,塔顶D 的仰角为60o ,求山高BC (精确到1m ,参考数据:2 1.41,3 1.73≈≈) 3.(10分)如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD= 60,坡长AB=m 320,为加强水 坝强度,将坝底从A 处向后水平延伸到F 处,使新的背水坡的坡角∠F= 45,求AF 的长度(结果精确到1米,参考数据: 414.12≈,732.13≈). D A B C E F G (22题图)

4.(8分)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m , ∠ABC=45o ,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使0 30=∠ADC (如图所示). (1)求调整后楼梯AD 的长; (2)求BD 的长. (结果保留根号) 5.(8分)为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需修建隧道AB. 如图,在山外一点C 测得BC 距离为20m ,∠,540=CAB ∠,300=CBA 求隧道AB 的长.(参考 数据: ,73.13,38.154tan ,59.054cos ,81.054sin 000≈≈≈≈精确到个位) 6.(8分)(2013?恩施州)“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A 处测得“香顶”N 的仰角为45°,此时,他们刚好与“香底”D 在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110米,到达B 处,测得“香顶”N 的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:, ).

高考解三角形专题(一)及答案

解三角形专题 1.在ABC ?中,角,,A B C 的对边分别是,,a b c ,若1,3 a b B π ===,则A = ( ) A. 12π B. 6π C. 3π D. 2 π 2.在ABC ?中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC ?的面积,若 () 2 2214 S b c a = +-,则A ∠=( ) A. 90? B. 60? C. 45? D. 30? 3.在ABC ?中,若sin 2sin cos A B C =,且 ()()3b c a b c a bc +-++=,则该三角形的形状是( ) A. 直角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等边三角形 4. 在 中,内角为钝角, , , ,则 ( ) A. B. C. D. 5.在中,若,,则的周长为( )C A . B . C. D . 6. 在锐角中,角、、所对的边分别为,且、、成等差数列, 则面积的取值范围是 7.已知锐角的内角 的对边分别为 ,且 ,则 的最大值为 __________. 8.在中,角,,所对的边分别为,,,且,,则的最小值为 . 9.在 中,内角,,所对的边分别为,,,已知 . (1)求角的大小; (2)若的面积,为边的中点,,求. ABC △23 C π = 3AB =ABC △6sin 33A π?? + + ?? ?6sin 36A π??++ ???33A π??++ ???36A π? ?++ ?? ?ABC ?A B C ,,a b c A B C b =ABC ?ABC ?A B C a b c 2sin cos 2sin sin C B A B =+3c ab =ab

高考数学压轴专题专题备战高考《三角函数与解三角形》难题汇编及答案解析

数学《三角函数与解三角形》复习知识要点(1) 一、选择题 1.已知sin α,sin()10 αβ-=-,,αβ均为锐角,则β=( ) A . 512 π B . 3 π C . 4 π D . 6 π 【答案】C 【解析】 【分析】 由题意,可得22 π π αβ- <-< ,利用三角函数的基本关系式,分别求得 cos ,cos()ααβ-的值,利用sin[(]sin )ααββ=--,化简运算,即可求解. 【详解】 由题意,可得α,β均为锐角,∴-2π <α-β<2 π. 又sin(α-β),∴cos(α-β). 又sin α= 5,∴cos α=5 , ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =5×10 -5×10??- ? ??? =2.∴β=4π. 【点睛】 本题主要考查了三角函数的化简、求值问题,其中熟记三角函数的基本关系式和三角恒等变换的公式,合理构造sin[(]sin )ααββ=--,及化简与运算是解答的关键,着重考查了推理与运算能力,属于基础题. 2.将函数()()sin 0,π2f x x ?ω?ω? ?=+>< ?? ?的图象向右平移6π个单位长度后,所得图象关 于y 轴对称,且1π2f ω?? =- ??? ,则当ω取最小值时,函数()f x 的解析式为( ) A .()sin 26f x x π? ? =+ ?? ? B .()sin 2π6f x x ? ?=- ??? C .()sin 4π6f x x ? ?=+ ?? ? D .()sin 4π6f x x ? ?=- ?? ? 【答案】C 【解析】

三角函数与解三角形专题训练

三角求值与解三角形专项训练 1三角公式运用 【通俗原理】 1?三角函数的定义:设 P(x,y),记 xOP R , r |0P| ~y", 则sin y ,cos r x , ,ta n r 弘0) 2 .基本公式: 2 2 sin c os 1,tan sin cos 3 ?诱导公式: 其中 由tan -及点(a,b)所在象限确定 a ② asin bcos a cos b sin . a 2 b 2 cos( 4 ?两角和差公 式: si n( ) sin cos cos sin , cos( ) cos cos msin sin , tan( ) tan tan 1 mtan gtan 5.二倍角公式: si n2 2si n cos , cos2 cos 2 sin 2 2cos 2 1 1 2sin 2 1 tan 2 6 .辅助角公式:① asin bcos 、、a 2 b 2 sin(

其中由tan b及点(a , b)所在象限确定 a 【典型例题】 1.已知R,证明:sin(-) cos

4 ?求cos15o tan 15o的值. 、 3 5 ?证明:cos3 4cos 3cos 【跟踪练习】 1 ?已知sin( ) 3 ,求cos( )的值. 2 ?若(0,—), tan 2,求sin cos 的值. 2 3 ?已知sin()1 , sin() 2,求芽的值.

3 5 6

1 2?若sin2 2,求tan 的值. 三角求值与解三角形专项训练 2.解三角形 A, B, C 的对边分别为a,b,c ,①A B C ② cos2A cos2B A B . 7.解三角形的三种题型:①知三个条件 (知三个角除外),求其他(角、边、面积、周长等 ② 知两个条件,求某个特定元素或范围; ③ 知一边及其对角,求角、边、周长、面积的范围或最值 . 【典型例题】 1 .在△ ABC 中,若acosA bcosB ,试判断△ ABC 的形状. 2 a b 2 2 c 2bccosA 2 2 2 b 2 2 2 2accosB .变形: b c a a c cosA ,其他同理可得 2bc 2 c 2 a b 2 2abcosC 3 .余弦定理: 1 ?三角形边角关系:在 △ ABC 中, ②若a b c ,则a b c ;③等边对等角,大边对大角 2 .正弦定理: a b c sin A sinB sinC 变形:a 2RsinA , b 2Rsin B,c 2R ( R 是厶ABC 外接圆的半径). 2Rsi nC 1 4 .三角形面积公式: S A ABC absi nC 2 5.与三角形有关的三角方程:① si n2A bcsin A 2 acs in B . 2 sin2B A B 或 2A 2B ; 6 .与三角形有关的不等式:① a b si nA sin B cosA cosB .

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

(新高考地区使用)专题01 三角函数与解三角形

三角函数与解三角形专项练习 1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos 2c A b a =-. (1)求角C ; (2)若D 是边BC 的中点,11cos 14 B =,21AD =,求AB C 的面积S . 2.如图,四边形OACB 中,,,a b c 为ABC ?的内角,,A B C 的对边,且满足sin sin tan 2cos cos A B C B C =--+ (1)证明:2b c a +=;

(2)若22OA OB ==,且b c =,设()0AOB θθπ∠=<<,当θ变化时,求四边形OACB 面积的最大值. 3.一个玩具盘由一个直径为2米的半圆O 和一个矩形ABCD 构成,1AB =米,如图所示.小球从A 点出发以8v 的速度沿半圆O 轨道滚到某点E 处后,以3v 的速度沿与点E 切线垂直的方向弹射到落袋区BC 内,落点记为F .记AOE θ∠=, (1)用θ表示小球从A 到F 所用的时间()f θ; (2)当小球从A 到F 所用的时间最短时,求cos θ的值. 4.在ABC 中,,,a b c 分别为角,,A B C 所对的边.在①(2)cos cos a c B b C -=;①3=2ABC BA BC S →→?△;①sin sin 33B B π? ?++= ??? 这三个条件中任选一个,作出解答.

(1)求角B 的值; (2)若ABC 为锐角三角形,且1b =,求ABC 的面积的取值范围. 5.已知ABC 的面积为 (Ⅰ)b 和c 的值; (Ⅱ)sin()A B -的值. 条件①:6a =,1cos 3 =- C ;条件②:A C =,7cos 9B =-.注:如果选择条件①和条件②分别解答,按第一个解答计分. 6.在ABC 中,7cos 8 A =,3c =,且b c ≠,再从条件①、条件②中选择一个作为已知,求: (1)b 的值;

高二解三角形综合练习题

解三角形 一、选择题 1.在△ABC中,角A,B,C的对边分别为a,b,c.若A=60°,c=2,b=1,则a=( ) A.1 B.3 C.2 D.3 2.设a,b,c分别是△ABC中角A,B,C所对的边,则直线l1:sin A·x+ay+c=0与l2:bx-sin B·y+sin C=0的位置关系是( ) A.平行B.重合 C.垂直D.相交但不垂直 3.在△ABC中,若2cos B sin A=sin C,则△ABC的形状一定是( ) A.等腰直角三角形B.直角三角形 C.等腰三角形D.等边三角形 4.在△ABC中,已知A∶B=1∶2,∠ACB的平分线CD把三角形分成面积为3∶2的两部分,则cos A等于( ) A.1 3 B. 1 2 C.3 4D.0 5.在△ABC中,AC=7,BC=2,B=60°,则BC边上的高等于( ) A. 3 2 B. 33 2 C.3+6 2 D. 3+39 4 6.已知锐角三角形三边长分别为3,4,a,则a的取值范围为( ) A.1

C.7

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

高中数学专题练习-三角函数及解三角形

高中数学专题练习-三角函数及解三角形 1.【高考全国Ⅰ卷理数】函数f(x)=在的图像大致为 A.B. C.D. 【答案】D 【解析】由,得是奇函数,其图象关于原点对称,排除A.又,排除B,C,故选D. 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案. 2.【高考全国Ⅰ卷理数】关于函数有下述四个结论: ①f(x)是偶函数②f(x)在区间(,)单调递增 ③f(x)在有4个零点④f(x)的最大值为2 其中所有正确结论的编号是 A.①②④B.②④ C.①④D.①③ 【答案】C 【解析】为偶函数,故①正确.当时,,它在区间单调递减,故②错误. 当时,,它有两个零点:;当时,

,它有一个零点:,故在有个零点:,故③错误.当时,;当时, ,又为偶函数,的最大值为,故④正确.综上所述,①④正确,故选C. 【名师点睛】本题也可画出函数的图象(如下图),由图象可得①④正确. 3.【高考全国Ⅱ卷理数】下列函数中,以为周期且在区间(,)单调递增的是A.f(x)=|cos2x| B.f(x)=|sin2x| C.f(x)=cos|x| D.f(x)=sin|x| 【答案】A 【解析】作出因为的图象如下图1,知其不是周期函数,排除D; 因为,周期为,排除C; 作出图象如图2,由图象知,其周期为,在区间(,)单调递增,A正确; 作出的图象如图3,由图象知,其周期为,在区间(,)单调递减,排除B,故选A. 图1

图2 图3 【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数的周期是函数周期的一半; ②不是周期函数. 4.【高考全国Ⅱ卷理数】已知α∈(0,),2sin2α=cos2α+1,则sinα= A. B. C.D. 【答案】B 【解析】,, ,又,,又,,故选B. 【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案. 5.【高考全国Ⅲ卷理数】设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论: ①在()有且仅有3个极大值点 ②在()有且仅有2个极小值点

2017高考真题专题解三角形

2017高考解三角形汇总 1. (2017全国│文,11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B+sin A (sin C ―cosC )=0, a =2, c=√2, 则C= A.π12 B. π6 C. π4 D. π3 2. (2017全国Ⅱ文,16)△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B= 3. (2017全国Ⅲ文,15)△ABC 的内角A,B,C 的对边分别为a,b,c,,已知3,6,600===c b C ,则=A ________ 4. (2017山东文,17)△ABC 中,角A,B,C 的对边分别为a,b,c,已知b=3,AB ????? ·AC ????? =?6,S △ABC =3,求A 和a 。 5. (2017山东理,9)锐角△ABC 中,角A,B,C 的对边分别为a,b,c,且sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列成立的是() A.a=2b B.b=2a C.A=2B D.B=2A 6. (2017浙江文(理),14)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______. 7. (2017全国│理,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为2 3sin a A (1)求sin B sin C ; (2)若6cos B cos C =1,a =3,求△ABC 的周长 8. (2017全国Ⅱ理,17)ABC ?的内角,,A B C 的对边分别为,,a b c ,已知2 sin()8sin 2 B A C +=. (1)求cos B (2)若6a c += , ABC ?面积为2,求.b 9. (2017全国Ⅲ理,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A cos A =0,a ,b =2. (1)求c ;

北京高三理科解三角形大题专题带答案

实用文档 解三角形大题专题 20141513 分)(.(本小题满分石景山一模)B,Ca,b,cA,ABCca?b?Asin2b3a?中, 角.,的对边分别为,且在△B的大小;(Ⅰ)求角c ABC2a?7?b的面积.,求边的长和△(Ⅱ)若, 13201415分)(.(本小题满分西城一模)222 aBACbcABC bca?b?c?.在△中,角,,所对的边分别为.已知,,A的大小;(Ⅰ)求6b?2?Bcos ABC 的面积.,(Ⅱ)如果,求△3 标准文案. 实用文档 (2014海淀二模)15.(本小题满分13分)

A7sina?2ABC?b?21. 且在锐角中,B的大小;(Ⅰ)求c c3a?的值(Ⅱ)若. ,求 20151513 分)西城二模)(.(本小题满分 b 3 a C ABC AB ab c 7,,=,所对的边分别为=在锐角△中,角,,,,已知 .A 的大小;(Ⅰ)求角ABC 的面积.(Ⅱ)求△ 标准文案. 实用文档 (2013丰台二模)15.(13分) 2(B?C)?32sinsin2A.的三个内角分别为已知A,B,C,且ABC?(Ⅰ)求A的度数; BC?7,AC?5,求(Ⅱ)若的面积S. ABC?

20141513 分)(.(本小题满分延庆一模)?3c,a,b,AB,C?C?Bcos2ABCa?.在三角形中,角,且所对的边分别为,,45Asin的值;(Ⅰ)求ABC?的面积.(Ⅱ)求 标准文案. 实用文档 (2015顺义一模)15.(本小题满分13分) ?6ABC??32,sinBb?B?A?c,a,bA,B,C. 在已知,中角,所对的边分别为, 32a; (I)求的值Ccos. 的值(II)求

解三角形专项练习(含解答题)

解三角形专练 1.在ABC △中,已知4,6a b ==,60B =,则sin A 的值为 2.在ABC ?中,若0 120,2==A b ,三角形的面积3= S ,则三角形外接圆的半径为( )A . B .2 C ..4 3.边长为8,7,5的三角形的最大角与最小角的和是( ) A . 120 B . 135 C . 90 D . 150 4.在△ABC 中,已知a =4,b =6,C =120°,则边C 的值是( ) A .8 B . C . D . 5.在三角形ABC 中,若1tan tan tan tan ++=B A B A ,则C cos 的值是 B. 22 C. 21 D. 21- 6.在△ABC 中,若22 tan tan b a B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形 C .不能确定 D .等腰三角形 7.在△ABC 中,角,,A B C 所对的边分别为,,a b c .若 2226 5b c a bc +-=,则 sin()B C +=( )A .-45 B.45 C .-35 D.3 5 8.设△ABC 的三内角A 、B 、C 成等差数列,sinA 、sinB 、 sinC 成等比数列,则这个三角形的形状是( ) A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形 9.在ABC ?中,内角C B A ,,的对边分别为c b a ,,,若18=a ,24=b ,?=45A ,则这样的三角形有( )A.0个 B. 两个 C. 一个 D. 至多一个 10.已知锐角A 是ABC ?的一个内角,,,a b c 是三角形中各角的对应边,若221 sin cos 2A A -= ,则下列各式正确的是 ( ) A. 2b c a += B. 2b c a +< C. 2b c a +≤ D. 2b c a +≥ 11.在ABC ?中,已知 30,4,34=∠==B AC AB ,则ABC ?的面积是 A .34 B .38 C .34或38 D .3 12.在ABC ?中,角角,,A B C 的对边分别为,,a b c ,若22 a b -=且sin C B =,则A 等于A .6π B .4 π C .3π D .2 3π 13.若?ABC 的三角A:B:C=1:2:3 ,则A 、B 、C 分别所对边a :b :c=( ) A.1:2:3 B.2 D. 1:2: 14.△ABC 的三个内角A,B,C 的对边分别a ,b ,c ,且a cosC,b cosB,c cosA 成等差数列,则角B 等于( )A 30 B .60 C 90 D.120 15.在?ABC 中,三边a ,b,c 与面积S 的关系式为 2221 () 4S a b c =+-,则角C 为 ( ) A .30 B 45 C .60 D .90 16.△ABC 中,a b sin B = 2 ,则符合条件的三角形有( ) A .1个 B .2个 C .3个 D .0个 17.设?ABC 的内角A,B ,C 所对边的长分别为a,b,c ,若b+c= 2a,.3sinA=5sinB ,则角C=

解三角形大题专项训练

标准文档 1.在△ABC中,内角A,B,C的对边分别为a,b,c,已知. (Ⅰ)求cosA的值; (Ⅱ)的值. 2.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求的值; (2)若cosB=,△ABC的周长为5,求b的长. 3.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求; (Ⅱ)若C2=b2+a2,求B.

4.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC (1)求cosA的值 (2)若a=1,,求边c的值. 5.在△ABC中,角A、B、C的对边分别为a,b,c (1)若,求A的值; (2)若,求sinC的值. 6.△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC= (I)求△ABC的周长; (II)求cos(A﹣C)的值.

7.在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=. (I)求sinC的值; (Ⅱ)当a=2,2sinA=sinC时,求b及c的长. 8.设△ABC的内角A、B、C的对边长分别为a、b、c,且3b2+3c2﹣3a2=4bc. (Ⅰ)求sinA的值; (Ⅱ)求的值. 9.在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小; (Ⅱ)求sinB+sinC的最大值.

10.在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且.(1)确定角C的大小; (2)若,且△ABC的面积为,求a+b的值. 11.在△ABC中,角A,B,C的对边分别为,. (Ⅰ)求sinC的值; (Ⅱ)求△ABC的面积. 12.设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:(Ⅰ)的值; (Ⅱ)cotB+cot C的值.

专题四 三角函数与解三角形第十二讲 解三角形答案

专题四 三角函数与解三角形 第十二讲 解三角形 答案部分 1.A 【解析】因为2 13 cos 2cos 121255 =-=?-=-C C ,所以由余弦定理, 得222 32cos 251251()325 =+-?=+-???-=AB AC BC AC BC C , 所以=AB A . 2.C 【解析】根据题意及三角形的面积公式知222 1sin 24 a b c ab C +-=, 所以222sin cos 2a b c C C ab +-= =,所以在ABC ?中,4 C π =.故选C . 3.A 【解析】由sin (12cos )2sin cos cos sin B C A C A C +=+, 得sin 2sin cos sin cos sin B B C A C B +=+, 即2sin cos sin cos B C A C =,所以2sin sin B A =,即2b a =,选A . 4.A 【解析】由余弦定理得213931AC AC AC =++?=,选A. 5.C 【解析】设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得 1sin 342a c π== ,则2 a c =.在△ABC 中,由余弦定理可得 222222295 322 b a c c c c c =+-= +-= ,则b =. 由余弦定理,可得22 22 2 2 59cos 2c c c b c a A bc +-+-===C . 6.B 【解析】 11 sin 22 AB BC B ??= ,∴sin 2B =,所以45B =或135B =. 当45B = 时,1AC = =, 此时1,AB AC BC ===90A =与“钝角三角形”矛盾; 当135B = 时,AC = =.

解三角形专题练习【附答案】

解三角形专题(高考题)练习【附答案】 1、在ABC ?中,已知内角3 A π = ,边BC =设内角B x =,面积为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 13,4==c a ,求△ABC 的面积。 2、已知ABC ?中,1||=AC ,0120=∠ABC , θ=∠BAC , 记→ → ?=BC AB f )(θ, (1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域; 3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.2 1 222ac b c a =-+ (1)求B C A 2cos 2 sin 2 ++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ?中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m B =, 2cos 2,2cos 12B n B ? ?=- ?? ?,且//m n 。 (I )求锐角B 的大小; (II )如果2b =,求ABC ?的面积ABC S ?的最大值。 5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=?,且22=b ,求c a 和b 的值. 6、在ABC ?中,cos 5A = ,cos 10 B =. (Ⅰ)求角 C ; (Ⅱ)设AB =,求ABC ?的面积. 7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =u r ,(sin ,1cos ),//,.n A A m n b c =++=r u r r 满足 (I )求A 的大小;(II )求)sin(6π+B 的值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 A B C 120° θ

专题24解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题 解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意2 2 ,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理: 2sin sin sin a b c R A B C ===,其中为ABC V 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网 例如:(1)2 2 2 2 2 2 sin sin sin sin sin A B A B C a b ab c +-=?+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=?+=(恒等式) (3) 22sin sin sin bc B C a A = 2、余弦定理:2 2 2 2cos a b c bc A =+- 变式:()()2 2 21cos a b c bc A =+-+ 此公式在已知的情况下,配合均值不等式可得到和的最值 4、三角形中的不等关系 (1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少 (2)在三角形中,边角以及角的三角函数值存在等价关系: sin sin cos cos a b A B A B A B >?>?>?<

专题 三角函数及解三角形(解析版)

专题 三角函数及解三角形 1.【2019年高考全国Ⅰ卷理数】函数f (x )= 在[,]-ππ的图像大致为 A . B . C . D . 2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间( 2 π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③ 3.【2019年高考全国Ⅱ卷理数】下列函数中,以2 π为周期且在区间( 4 π, 2 π)单调递增的是 A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x | 4.【2019年高考全国Ⅱ卷理数】已知α∈(0, 2 π),2sin2α=cos2α+1,则sin α= A . 15 B . 5 C 3 D 5 5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5 x ωπ + )(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 2 sin cos ++x x x x

③()f x 在(0, 10 π )单调递增 ④ω的取值范围是[1229 510 ,) 其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④ 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ω?ω?=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π ,且4g π?? = ???38f π??= ??? A .2- B . C D .2 7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π 6,2,3 b a c B === ,则ABC △的面积为_________. 9.【2019年高考江苏卷】已知 tan 2π3tan 4αα=-??+ ?? ?,则πsin 24α? ?+ ???的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设 22(sin sin )sin sin sin B C A B C -=-. (1)求A ; (2 2b c +=,求sin C . 12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2 A C a b A +=. (1)求B ;

相关主题
文本预览
相关文档 最新文档