当前位置:文档之家› 国内外纳米材料研究进展

国内外纳米材料研究进展

国内外纳米材料研究进展
国内外纳米材料研究进展

(中国科学院固体物理研究所张立德研究员)

一、国际纳米科技发展态势和特点

纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术。美国科学技术委员会,2000年3月向美国政府提出报告,把启动纳米技术的计划,看作是下一次工业革命的核心。世纪之交世界先进国家都从未来发展战略的高度,重新布局纳米材料研究。纳米材料诞生10多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进.K90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。它是当今新材料研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。

从1999年开始,美国政府决定把纳米技术研究列入2l世纪前10年的11个关键领域之一,《美国商业周刊》在掌握2l世纪可能取得重要突破的3个领域中就包括了纳米技术领域(其它两个为信息科学和技术、生命科学和生物技术)。即使是信息技术和生物技术在21世纪内涵也要发生变化,这二个重要领域的发展也必须和纳米技术相结合,推动技术全面升级。如下~代的超高密度存储、器件的超小型化、单电子器件、自旋器件和随穿器件的问世,生物芯片技术进入生物体内工作的超小型机器人、超微型生物传感器都是以纳米技术为基础才有发展的机遇。布什总统上台以来,比克林顿时代更重视发展纳米技术,并制定新的目标,到2010年美国要培养80万真正懂纳米科技的人才,要提供200万个新就业机会,要使美国纳米技术对GDP的贡献达到loooolL美元。美国从2000年开始,政府对纳米技术的投资逐年增加,2001年为5.7个亿,2002年为6.3个亿,预计2003年为7.1个亿。美国白宫之所以在2l世纪初如此重视发展纳米技术,其原因有两个方面:一是德科学技术部和其它权威部门预测到2010年,估计能达到2万亿美元,美国试图在这样一个诱人的市场中占有一半的份额。美国基础研究的负责人威廉姆斯说:纳米技术未来的应用远远超过计算机工业。美国白寓战略规划办公室还认为纳米材料是纳米技术最为重要的组成部分。在《自然》的报道中还特别提到美国已在纳米结构组装体系的高比表面纳米颗粒制备与合成方面领先世界的潮流。在纳米功能涂层设计改性及纳米材料在生物技术中的应用与欧共体并列世界第一,纳米尺度的元器件和纳米固体也要与日本分庭抗礼。1999年7月,美国加尼福尼亚大学洛杉机分校与惠普公司合作研制成功100nm芯片,2002年3月7日在美国硅谷正式建设一条纳米锌片生产线,从实验室的研究成果,经过二年的努力,就实现了规模生产,转化速度之快令人吃惊。美国明尼苏达大学和普林斯顿大学于1998年制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系,10-1lbits/in2。美冒商家已组织有关人员迅速转化,预计2005年市场为400tL美元。1988年法国人首先发现了巨磁电阻效应,到1997年巨磁电阻为原理的纳米结构器件已在美国问世,在磁存储、磁记忆和计算机读写磁头将有重要的应用前景。最近美国柯达公司研究部成功地研究了一种既具有颜料、又具有染料功能的新型纳米粉体,预计将给彩色印像带来革命性变革。纳米粉体材料在橡胶、颜料、陶瓷制品的改性等方面很可能给传统产业和产品注入新的高科技含量,在未来市场上占有重要的份额。2002年美

国科学进展正式发布消息,经过科学家们的努力,分子结构和纳米结构器件和线路的研究成果已基本接近或达到工业界要求的水平,美国康乃尔大学和密歇根大学以成功的制备了近入血管的机器人,利用激光和单壁碳管技术解决了机器人的动力,发展了微轴承、微齿轮、微连杆和微传感器一体化的组合技术;值得重视的是美国正在研发新的机器人,通过与生物酶相配合,可以从人体实物链获取能量,维持生物体内机器人的正常工作。加拿大多伦多的科技人员以C60为载体,高聚物为过渡层,外包覆生物蛋白和抗病毒的药物,并以纳米硒为靶向,制备了新型抗爱滋病的药物,这些成果都显示出纳米技术的魅力。权威人士估计纳米技术比原预计提前到来5年~6年,纳米时代正在向我们大踏步走来。纳米材料和技术领域是知识创新和技术创新的源泉,新的规律新原理的发现和新理论的建立给基础科学提供了新的机遇,美国计划在这个领域的基础研究占有绝对优势地位。

在富有挑战的2l世纪,世界各国都对富有战略意义的纳米科技领域予以足够的重视,特别是发达国家都从战略的高度部署纳米材料和纳米科技的研究,目的是提高在未来lo年乃至20年在国际中的竞争地位。日本国会正式提出要把发展纳米技术作为日本国特别是前20年的“立国之本”,重振日本经济。最近又出台了一系列发展纳米技术的战略规划,日本一些大的公司,如El立、三井物业、三菱化工、五田药业、松下、东芝等今年以来纷纷制定了二年内发展纳米实用化技术的计划,十分重视从rr产业切入,加速纳米技术的发展。韩国在汉阳大学成立了纳米技术研究院,并与三星公司合作,共建纳米科技中心,以显示技术为主体,全面发展纳米技术,力争在这领域做出二、三项领导世界潮流的新产品。最近以成功制备了Im70.5m的以碳管为场发射主体材料平板显示器。台湾地区仅工研院今年获得了50亿新台币的科研经费用于发展纳米技术,要以IT产业为突破口,带动应用纳米技术的发展,以继续保持台湾在微电子时代IT产业的优势。德国、英国、法国、瑞典、加拿大、澳大利亚、墨西哥等国家都根据国际纳米科技发展的最新动态,重新制定了纳米科技的发展战略。从各国对纳米材料和纳米科技的部署来看,发展纳米材料和纳米技术的战略是:(1)以未来的经济振兴和国家实际的需求为目标,牵引纳米材料的基础研究、应用开发研究,(2)组织多学科的科技人员交叉创新,做到基础研究、应用研究并举,纳米科学、纳米技术并举,重视基础研究和应用研究的衔接,重视技术集成;(3)重视发展纳米材料和技术改造传统产品,提高高技术含量,同时部署纳米材料和纳米技术在环境、能源和信息等重要领域的应用,实现跨越式的发展。根据国际纳米科技的发展趋势,应把重点放在纳米技术的实用化方面,以推动生产方式的变革和生产力的高速发展,为经济繁荣作贡献,并以此来带动纳米科学技术的基础研究。

二、国内纳米科技研究的现状

国内关于纳米材料和技术的研究,也取得重要的进展。为了使我国纳米材料和技术研究走向世界,在国际上占有重要地位,抢占国际市场,从前瞻性、战略性、基础性来考虑,应该合理布局纳米材料、基础研究和应用研究,要重视纳米技术的创新。纳米技术内涵广泛,从材料的角度,纳米技术包括纳米材料的制备技术、纳米颗粒表面的控制、改性和修饰技术,以及把纳米材料应用到各个领域和各种产品上的关键技术。

近年来,我国在功能纳米材料研究上取得了举世瞩目的重大成果,引起了国际上的关注。大面积定向碳管阵列合成:刊ff=|化学气相法高效制备纯净碳纳米管技术,用这种技术合成的纳米管,直径基本一致,约20hm。长度约l82

100mm,纳米管阵列面积达到3ram×3mm。其定向排列程度高,碳纳米管之间间距为100mm。这种大面积定向纳米碳管阵列,在平板显示和场发射阴极等方面有着重要应用前景。今年,中科院物理所和长春物理所合作,以纳米碳管为发射源,制备了2英寸场发射动态扫描显示屏,为设计新型场发射平板显示器件奠定了基础;超长纳米碳管制备:首次大批量地制备出长度为2-3mm的超长定向碳纳米管阵列。这种超长碳纳米管比现有碳纳米管的长度提高1—2个数量级;氮化嫁纳米棒制备:首次乖J用碳纳米管作模板成功地制备出直径为3-40nm、长度达微米量级的发蓝光氮化镓一维纳米棒,并提出了碳纳米管限制反应的概念。该项成果被评为1998年度中国十大科技新闻之一;硅衬底上碳纳米管阵列研制成功,推进碳纳米管在纳米器件方面的应用;准一维纳米丝和纳米电缆:应

用溶胶凝胶与碳热还原相结合的新方法,首次合成了碳化钽(TaC)纳米丝外包覆绝缘体Si02、TaC纳米丝外包覆石墨、GaN外包BN、和GaN外包Si02纳米电缆,还合成了以SiC纳米丝为芯的纳米电缆,当前在国际上仅少数研究小组合成这种材料,近年来Si3N4、Si02和InN3纳米线也是我国科技工作者率先合成的。在软化学方法合成准一维纳米半导体材料,我国科技工作者也做了有显示度的工作;用苯热法制备岩盐相纳米氮化镓微晶:发展了溶剂热合成技术,首次在300。C左右制成粒度达30nm的氮化镓微晶,还用非水热合成法,制备了金刚石纳米粉。发表在1998年的《科学》杂志上。美国《化学与工程新闻》杂志还发表题为”稻草变黄金一从四氯化碳(CCl4)制成金刚石”一文,予以高度评价;仿生超双疏纳米结构二元协调界面的设计与合成技术有新的突破:合成了大面积类荷叶结构的超双疏纳米碳管薄膜,论文发表在国际著名的应用化学刊物;有序纳米结构徽阵列的制备技术有新的推进:纳米线微阵列合成质量显著地提高,掌握了在纳米孔洞内生长单晶纳米线的基本条件,首次合成了纳米In203、GaO、Bi纳米微阵列,研究了纳米Bi线微阵列的磁学性质和导电特性,受到了国外同行的重视,其中纳米硅单晶微阵列高分辨点阵线的研究很有特色。

在体材料巨磁电阻研究领域,中国也做出了有显示度的工作。在Zn0.5+yFe2.5一y04/a—Fe203的结构中发现了低场巨磁电阻效应:在磁场为0.5个特斯拉,温度为4.2K时这种复相材料的磁电阻高达1380%。这属于首次发现,并对机理进行卓有成效的讨论。

最近我国科学家又成功地合成了直径最小的碳纳米管;还发现了纳米金属铜的超延展性。在”八五”研究工作的基础上初步形成了几个纳米材料研究基地。无论从研究对象的前瞻性、基础性还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发鼹,培养高水平的纳米材料研究人才做出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化中也发挥了重要的作用。制备包括金属、合金、氧化物、氮化物、碳化物、离子晶体和半导体等多种纳米材料和纳米复合材料,近年来,根据国际纳米材料研究的发展趋势,建立和发展了制备纳米结构(如纳米有序阵列体系、介孔组装体系、MCM一41等)组装体系的多种方法,特别是白组装与分子自组装、模板合成、碳热还原、液滴外廷生长、介孔内延生长等也积累了丰富的经验,已成功地制备出多种准一维纳米材料和纳米组装体系。这些方法为进一步研究纳米结构和准一维纳米材料的物性,推进它们在纳米结构器件的应用奠定了良好的基础。纳米材料和纳米结构的评价手段基本齐全,达到了国际90年代末的先进水平。

当前纳米材料应用开发正处于一个千载难逢的大好时机,挑战严峻,但也充满了机遇。纳米材料应用开发合作应做到三个结合:一、纳米技术和传统技术相结合t二、纳米专家与各领域技术革新专家相结合;三,纳米专家与企业家相结合。这种做法是开发纳米材料和技术新产品,进入市场十分重要的措施。纳米材料和技术领域新产品的创新必须以市场为导向、需求为索引,要十分重视纳米材料向各个领域的应用技术的创新,开拓纳米材料产品的市场,带动上游纳米粉体技术的创新,必须明确纳米粉体的应用目标,以市场为推动力,带动纳米技术的成熟。

到目前为止,我国已建立纳米材料和技术的生产线10多条。纳米复合、塑料、橡胶和纤维的改性、纳米功能涂层材料的设计和应用,纳米材料在能源和环保等方面的应用开发已在我国兴起。以纳米材料和纳米技术注册的公司有三百多个,企业家对纳米材料和技术的关注和介入,为纳米技术产业的形成注入了新的活力。在富有挑战的2l世纪,一批新兴的纳米技术产业一定会崭露头角,为我国国民经济可跨跃的发展做出新的贡献。

三、发展我国纳米科技的基本策略和建议

面对国际纳米科技快速发展的新形势,我们必须重新思考发我国发展纳米技术的总体战略,要充分认识到发展纳米技术是关系到我国在未来政治经济竞争格局中的地位,只有把认识提高到这样的高度,才能积极的制定适合我国国情的发展纳米技术上战略规划。

我国发展纳米技术的指导思想是:纳米材料和技未蕴藏着巨大的潜力,为传统产业升级带来新的商机,为高科技产业注入新的活力。脚踏实地的有效运用和开发纳米材料和技术,将为我国国民经济的增长带来不可多得的机遇。

1.结合国家的战略需求,重点在能源(石油开采和煤的综合利用),环境和水处理、医药健康和新材料等领域加快发展纳米技术,促使这些领域在技术上实现跨越式的发展。

2.纳米技术向传统产业切入,调整产品结构,注入高科技含量,为实现我国传统产业升级,促进GDP的增长做出贡献。

3向高科技产业渗透,要抓住信息领域中产品升级对新材料需求的机会,开发纳米材料和技术。

我国发展纳米产业的目标是:在5年到lO年的时间,建立十到二十个国家级纳米技术工程中心,成为我国发展纳米实用化技术的创新源头。通过技术转移,为我国纳米技术产业成为新经济增长点奠定基础,力争在10年内,在全国建立十个到二十个纳米技术骨干产业。

主要任务和优先发展的领域是:近期重点发展纳米材料和技术的实用化,部署应用和基础研究加快进入市场的步伐。要贯彻政府引导和市场竞争相结合的方针,重视调动社会的积极性,多渠道筹措资金,发展多种纳米技术。重点解决纳米材料产业化中的粉体分散、生产过程中的环保以及应用中的高成本等问题,在带有共性的关键纳米技术方面要拥有自主知识产权,推动我国纳米产业的快速发展。应重点发展的领域:纳米材料在石油开采中的f—i用拽术、煤燃烧综合利用的纳米材料和技术、纳米材料和技术在水处理上的应用、特种纳米材料产业。这包括纳米碳管、纳米稀土材料、高含能纳米材料、纳米硅及其化合物粉体、天然纳米材料改性的工程塑料和橡胶产

业、纳米电子陶瓷基料和添加材料的产业、纳米功能涂层、纳米建筑涂料和纳米固体润滑产品产业。还要注意在信息产业、医药卫生和生物技术产业发展和应用纳米技术。

为了使我国纳米科学技术健康快速发展,必须采取有力的措施,推动我国纳米科学技术的繁荣。当前急需要做的几件事情是:

1.媒体要全面正确宣传纳米材料和技术的科学内涵,纠正乱用和炒作纳米概念的不正之风,提倡各领域专家协同创新,促进纳米技术向各个领域交叉渗透。

2.建立纳米技术实用化和产业化基金,加大对纳米技术和产业发展的资金扶持力度。形成政府、企业、金融部门、社会等多面的投资渠道,支持纳米产业的发展。制定优惠税率、贷款贴息等相关政策,引导企业、金融部门、风险投资机构及社会闲散资金投入到纳米技术和产业的发展中。

3.建立一批从事纳米技术研究和产业化开发的重点实验室和工程技术研究中心,并与纳米产业挂钩,增强纳米产业发展的动力。

4.建立国家级纳米技术产业认定、评价中心和纳米技术产品标准制定中心。负责和指导纳米技术的行业标准和产品标准。

5.制定纳米产业核心技术自主知识产权的保护措施,鼓励申请国际发明专利,并予以适当财政补贴。

6.成立非常设纳米产业发展指导协调委员会和咨询专家组,对全国纳米材料和技术的发展进行宏观咨询、指导和协调。

7.建议成立国家纳米技术学会和国家纳米产业协会,促进纳米技术的交流,推进纳米产业健康发展。

8.从现在开始要特别重视纳米技术人才的培养,教育部门要把纳米科学和技术作为重要的学科加强建设,传统学科领域要注意与纳米科学技术相结合,充实纳米科学技术的内涵,使传统学科的知识与国际前沿接轨。

三鬻篓新材料产业发展促进委员会简介

一、概述

新材料产业发展促进委员会(以下简称促进会)是1999年10月在共青团中央和中华全国青年联合会的支持下,由中国青年科技工作者协会副会长李建保教授等一批材料领域青年专家,在浙江杭州西湖畔发起成立的。经过近两年时间的精心筹备,2001年7月,促进会在青岛召开第一届会员代表大会,正式成立。促进会现有注册会员260余人。

2001年促进会获团中央颁发的“中国青年科技创新行动先进集体奖”。

国内外纳米材料研究进展

作者:张立德

作者单位:中国科学院固体物理研究所本文链接:https://www.doczj.com/doc/c96386168.html,/Conference_5703958.aspx

2021年半导体光催化制氢的进展

《能源材料》课程论文 欧阳光明(2021.03.07) 题目:半导体光催化水解制氢的进展 指导教师:毛景 学生姓名:朱永坤学号: 20130800830 专业:建筑结构及功能材料 院(系):材料科学与工程 2016年 6月 8 日关键词:半导体;光催化;太阳能;电解水;制氢; 改性。 引言: 在上课过程中老师讲到的新能源汽车当中的氢燃料池 汽车让我对氢能的开发利用产生了浓厚的兴趣,就想着 写一篇关于氢能方面的文章。结合老师上课过程提到的 太阳能制氢,就定位在了半导体光催化制氢这个主题 了。 目前,氢气在氢燃料电池汽车当中得到了广泛的应 用,氢燃料电池通过液态氢与空气中的氧结合而发电,根 据此原理而制成的氢燃料电池可以发电用来推动汽车。 氢燃料电池汽车是终极环保汽车。氢燃料电池汽车零排 放,且一次加氢续驶里程长,加氢时间短,相当于汽油 车,一直以来被作为新能源汽车技术路线之一。 但是,到目前为止,氢燃料电池汽车,并没有得到大 范围的普及,因为一些技术条件的短板暂时限制了它的应 用。其中最大的问题就是氢气来源问题,世界上很多国家

的氢燃料的生产并不是以水为原料,而是以天然气作为生 产原料,先前讲到了,如果要电解水取得氢气,那需要很 大的能量消耗,而且要生产出能量值与普通汽油燃料相当 的氢燃料,我们就需要大量的水资源,水同样也是我们这 个星球稀缺的资源。同时,氢气的储存和运输过程又要耗 费很大的能量,所以到目前为止,要驱动一辆氢燃料电池 汽车,所需能耗太大,还不能达到节能环保的目的。麻省 理工学院的一些能源专家则提出,氢燃料电池车真正要 “跑起来”,至少还需要15年的时间。 那么,如何低能耗,效率高地制备氢气成为了氢燃料 汽车的一个瓶颈,目前制备氢气有也有很多方法,包括热 化学法制氢,光电化学分解法制氢,光催化法制氢,人工 光合作用制氢,生物制氢等,在这里重点介绍一下光催化 制氢的一些新的研究和进展。 摘要: 氢能具有高效、清洁、无污染、易于产生、便于输运 和可再生等特点,是最理想的能源载体。因此,氢能将会成 为未来化石能源的主要替代能源之一,利用可再生能源制 取氢气是未来能源发展的必然趋势。 利用太阳能直接从水中获得的氢气,氢气又可作为能源燃料,燃烧产物是水,它以最清洁环保的形态回到自然生态循环中,这是一种完全的可持续开发的能源利用的途径。 背景: 光解水制氢技术始自1972年,由日本东京大学Fujishima A和Honda K两位教授首次报告发现TiO2单晶电极光催化分解水从而产生氢气这一现象,从而揭示了利用太阳能直接分解水制氢的可能性,开辟了利用太阳能光解水制氢的研究道路。 利用太阳能分解水制氢或将太阳能直接转化为化学能逐渐成为能源领域的研究热点之一。近年来,太阳能利用的研究、特别是利用

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

光催化材料的研究与进展

光催化材料的研究与进展 洛阳理工学院吴华光B08010319 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文介绍了一些关于光催化研究的制备与发展方向的思考,光催化正在以TiO 2 ,ZnO为主导多种非重金属离子掺杂,趋于多样化的制备方法方向发展。 关键字:光催化催化效率 正文: 光催化(Photocatalysis)是一种在催化剂存在下的光化学反应,是光化学与催化剂的有机结合,因此光和催化剂是光催化的必要条件。“光催化”定义为:通过催化剂对光的吸收而进行的催化反应(a catalytic reaction involving light absorption by a catalyst or a substrate)。氧化钛(TiO 2 )具有稳定的结构、优良的光催化性能及无毒等特点,是近年研究最多的光催化剂, 但是,TiO 2 具有大的禁带宽度,其值为3.2 eV,只能吸收波长A≤387 11111的紫外光,不能有效地利用太阳能,光催化或能量转换效率偏低,使它的应用受到限制。因此,研制新型光催化剂、提高光催化剂的催化活性仍是重要的研究课题]1[。复合掺杂不同半导体,利用不同半导体导带和价带能级的差异分离光生载流子,降低复合几率,提高量子效率,成为提高光催化材料性能的有效方法5]-[2。 与一元氧化物如TiO 2 和ZnO等光催化剂相比,复合氧化物光催化剂,如 ZnO- SnO 2TiO 2 -SnO 2 和WO3- TiO 2 等体系具有吸收波长更长和光催化效率更 高等特点因而成为研究热点. 一、常用的光催化剂的制备方法 (一)水热合成法。 热合成反应是在特制的密封容器中(能够产生一定的压力),以水溶液作为反应介质,通过对反应体系加热或接近其临界温度而产生高压,从而进行材料的合成与制备的一种有效方法。 (二)溶剂热合成法 溶剂热合成技术是在水热法的基础上,以有机溶剂代替水作为介质,采用类似水热合成的原理制备纳米材料,极大的扩展水热法的应用范围。 (三)溶胶-凝胶法

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

光催化材料研究进展概要

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO2、ZnO、CdS、WO 3、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、

金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体内部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

光催化材料研究进展

. 光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅[1]。光催化适合特定的污染物而不适合大规模推广应用等方面的缺陷氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO 、ZnO、CdS、2 WO 、Fe O 等半导体光催化技术因其可以直接利用光能而被许332[2]。多研究者看好1.1 TiO光催化概述 21.1.1 TiO的结构性质 2二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO在自然界主要有三种结晶形态分布:锐钛矿型、2金红石型和板钛矿型。三种晶体结构的TIO中,锐钛矿和金红石的工2业用

途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密资料Word . 度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见 光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在[3]。光催化处理环境污染物方面有着极为广阔的应用前景 1.1.2TiO光催化反应机理2半导休表面多相光催化的基本原理:用 能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价-+)随后h(e,.)—空穴(带产生相应的空穴,这样就半导体内部生成电子电子-空穴对迁移到粒子表面不同位置、 与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态 的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复 合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO催化剂的局限及改性途径2作为光催化剂,虽然二氧化钛 具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大 规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不 高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸 收的光的波长主要集中在紫外区,而在照射到地球表面的太阳光中,

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备, 表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。 1.1研究背景与意义

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

半导体光催化制氢的进展.

《能源材料》课程论文 题目:半导体光催化水解制氢的进展 指导教师:毛景 学生姓名:朱永坤学号:20130800830 专业:建筑结构及功能材料 院(系):材料科学与工程 2016年6月8 日

关键词:半导体;光催化;太阳能;电解水;制氢;改性。 引言: 在上课过程中老师讲到的新能源汽车当中的氢燃料池汽车让我对氢能的开发利用产生了浓厚的兴趣,就想着写一篇关于氢能方面的文章。结合老师上课过程提到的太阳能制氢,就定位在了半导体光催化制氢这个主题了。 目前,氢气在氢燃料电池汽车当中得到了广泛的应用,氢燃料电池通过液态氢与空气中的氧结合而发电,根据此原理而制成的氢燃料电池可以发电用来推动汽车。 氢燃料电池汽车是终极环保汽车。氢燃料电池汽车零排放,且一次加氢续驶里程长,加氢时间短,相当于汽油车,一直以来被作为新能源汽车技术路线之一。 但是,到目前为止,氢燃料电池汽车,并没有得到大范围的普及,因为一些技术条件的短板暂时限制了它的应用。其中最大的问题就是氢气来源问题,世界上很多国家的氢燃料的生产并不是以水为原料,而是以天然气作为生产原料,先前讲到了,如果要电解水取得氢气,那需要很大的能量消耗,而且要生产出能量值与普通汽油燃料相当的氢燃料,我们就需要大量的水资源,水同样也是我们这个星球稀缺的资源。同时,氢气的储存和运输过程又要耗费很大的能量,所以到目前为止,要驱动一辆氢燃料电池汽车,所需能耗太大,还不能达到节能环保的目的。麻省理工学院的一些能源专家则提出,氢燃料电池车真正要“跑起来”,至少还需要15年的时间。 那么,如何低能耗,效率高地制备氢气成为了氢燃料汽车的一个瓶颈,目前制备氢气有也有很多方法,包括热化学法制氢,光电化学分解法制氢,光催化法制氢,人工光合作用制氢,生物制氢等,在这里重点介绍一下光催化制氢的一

纳米材料研究进展

2011年第4期甘肃石油和化工2011年12月 纳米材料研究进展 李彦菊1,高飞2 (1.河北科技大学化学与制药工程学院,河北石家庄050018; 2.中核第四研究设计工程有限公司,河北石家庄050000) 摘要:纳米材料具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。综述了纳米材料 的分类、特性以及应用领域。 关键词:纳米材料;功能材料;复合材料 1前言 纳米(nm)是一个极小的长度单位,1nm=10-9m。当物质到纳米尺度以后,大约是在1~100nm 这个范围空间,物质的性能就会发生突变,呈现出特殊性能。这种既具有不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。纳米技术正是利用纳米粒子这些特性实现其在各行各业中的特殊应用[1,2]。纳米技术和纳米材料的科学价值和应用前景已逐步被人们所认识,纳米科学与技术被认为是21世纪的三大科技之一。目前世界各国都对纳米材料和纳米科技高度重视,纷纷在基础研究和应用研究领域对其进行前瞻性的部署,旨在占领战略制高点,提升未来10~20年在国际上的竞争地位。我国政府对纳米科技十分重视,先进的纳米产业正在蓬勃发展[3,4]。 2纳米材料的分类 以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1~100nm[5]。在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。广义而言,纳米材料是指在3维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数[6],纳米材料的基本单元可以分为3类:①0维,指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;②1维,指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等; ③2维,指在3维空间中有1维在纳米尺度,如超薄膜、多层膜、超晶格等。按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料[7,8]。按材料物性可分为:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。按应用可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。纳米材料大部分都是人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米固体。例如天体的陨石碎片,人体和兽类的牙齿都是由纳米微粒构成的[9,10]。 3纳米材料的特性[11,12] 3.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面体 收稿日期:2011-07-05 作者简介:李彦菊(1981-),女,河北廊坊人,硕士,已发表论文10余篇,其中SCI2篇。主要从事纳米材料的研究工作。8

光解水制氢半导体光催化材料的研究进展

光解水制氢半导体光催化材料的研究进展 田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1 (1. 中国科学院地球化学研究所,贵州贵阳550002 ; 2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030) 摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 1021489204 1 引言 在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) , 导带中引入了光生电子(e - ) 。光生空穴和光生电子分别具有氧化和还

原能力。要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 / H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。 2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示: 图1 部分半导体材料的能带结构示意图 Fig 1 Schematic diagram of band st ructure for some semiconductor s TiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。具有代表性的

碳纳米管的研究进展

碳纳米管的研究进展* 王全杰1,2** 王延青1*** (1. 陕西科技大学资源与环境学院,陕西 西安 710021;2. 烟台大学化学生物理工学院, 山东 烟台 264005) 摘要:碳纳米管是由石墨层片卷成的管状结构的一种新型纳米材料,拥有独特的物理化学、电学、热学和机械性能以及十分诱人的应用前景。文章对碳纳米管的制备方法、性质、纯化及应用前景进行了简要的综述。 关键词:碳纳米管;合成;性能;纯化;应用 中图分类号G 311 文献标识码 A Progress of Research for Carbon Nanotubes Wang Quanjie 1,2,Wang Yanqing 1 (1.College of Resource and Environment,Shaanxi University of Science and Technology,Xi’an 710021,China;2. Chemistry and Biology College,Yantai University,Yantai 264005,China)Abstract: Carbon nanotubes are a new class of nano-material with tubular structure formed via rolling-up of coaxial sheets of graphite. They have unique physicochemical, electrical, thermal and mechanical properties, opening up various intriguing possibilities for applications. The preparation methods, properties, methods of purification and application of carbon nanotubes are briefly reviewed. Key words: carbon nanotubes;synthesis;property;purification;application 自1991年日本科学家Lijima发现碳纳米管(Carbon Nanotubes,简称CNTs),1992年Ebbesn等人提出了实验室规模合成碳纳米管的方法后,其独特的结构和物理化学性质受到人们越来越多的关注[1]。碳纳米管因具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等特点,从而使其具有特殊的机械、物化性能,在工程材料、催化、吸附、分离、储能器件电极材料等诸多领域中具有重要的应用前景。 *基金来源:山东省科技攻关项目(2008GG10003020) **第一作者简介:王全杰,男,1950年生,教授 ***通讯联系人

金属纳米材料研究进展

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:………….

金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词: 纳米材料水热合成金属氧化物

Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ;

引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 1.1 纳米材料概述 纳米是长度的度量单位,1纳米=10-9米,1纳米大约为10个氢原子并排起来的长度,仅仅相当于一根头发丝直径的0.1%。纳米材料则是在纳米量级(lnm-100nm)内调控物质结构所制成的具有特殊功能的新材料,其三维尺寸中至少有一维小于100nm,且性质不同于一般的块体材料。 纳米材料是指在三维尺度上至少存在一维处于纳米量级或者由它们作为基本单元所构成的材料,一般将纳米材料分为零维、一维以及二维纳米材料: (1)零维纳米材料,是指在空间三维尺度上都处于纳米量级的纳米材料,如纳米球,纳米颗粒等; (2)一维纳米材料,是指在空间三维尺度上只有两维处于纳米量级,而第三维处于宏观量级的纳米材料,比如纳米棒、纳米管、纳米线/丝等; (3)二维纳米材料,是指在空间三维尺度上只有一维处于纳米量级,而其他两维处于宏观量级的纳米材料,比如纳米片,纳米薄膜等。 1.2纳米粒子基本效应的研究 纳米粒子是尺寸为1-100nm的超细粒子。纳米粒子的表面原子与总原子数之比随着粒径的减小而急剧增大,显示出强烈的体积效应(即小尺寸效应)、量子尺寸效应、表面效应和宏观量子隧道效应。 1.2.1 量子尺寸效应[1] 当粒子尺寸达到纳米量级时,金属费米能级附近的电子能级由准连续变为分立能级的现象称为量子尺寸效应。能带理论表明:金属纳米粒子所包含的原子数有限,能级间距发生分裂。当此能级间隔大于热能、磁能、静电能、静磁能、光子能量或超导态的凝聚能时,纳米粒子的磁、光、声、热、电及超导电性与宏观物体有显著的不同。 1.2.2 体积效应[2] 由于粒子尺寸变小所引起的宏观物理性质的变化称为体积效应。当纳米粒子的尺寸与德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米粒子的表面层附近原子密度减小,导致声、光、电、磁、热力学等特性呈现新的体积效应。例如:磁有序态向磁无序态、超导相向正常相的转变;光吸收显著增加;声子谱发生改变;强磁性纳米粒子(Fe-Co合金,氧化铁等)尺寸为单磁畴临界尺寸时具有很高的矫顽力;纳米粒子的熔点远远低于块状金属;等离子体共振频率随颗粒尺寸改变[3]。 1.2.3 表面效应[4] 表面效应是指纳米粒子的表面原子数与总原子数之比随着粒径减小而急剧增大后引起的性质上改变。随着粒径减小,表面原子数迅速增加,粒子的表面张力和表面能增加。原子配位不足以及高的表面能使原子表面有很高的化学活性,极不稳定,很容易与其他原子结合,这就是活性的原因。表面原子的活性引起了纳米粒子表面输运和构型的变化,也引起了表面原子自旋构象和电子能谱的变化。

光催化研究发展综述性报告

光催化研究发展综述性报告 本人申请攻读动力工程与工程热物理专业博士学位,由于对后续能源与新能源技术专业太阳能分解水制氢方向有浓厚的兴趣,通过对相关文献的阅读和参加相关报告,对太阳能光催化分解水制氢有了详细的了解,对其发展简述如下: 1.前言 当今人类社会面临能源和环境两大问题[1-2]。能源的短缺和环境的污染严重制约着人类社会的发展。一方面,社会的高速发展使得人类对于能源的需求越来越大,而我们目前所用的能源还是以传统的化石燃料为主,但是因为化石燃料的不可再生性,或者说是形成的时间周期太长,使得其必有枯竭的一天。据估计,按照目前的开采水平和消耗量,石油还能够维持四十年左右,煤炭最多也就是两百年,而天然气还可以维持大概六十多年。另一方面,化石燃料的燃烧,引起严重的环境污染和对环境的危害,如温室效应、酸雨、光化学烟雾等等,对人类的生存产生了严重的威胁。 研究自然的、社会的、生态的、经济的以及利用自然资源过程中的基本关系,以确保全球的可持续发展已经成为各国都十分关注的一个话题。就像美国,在2009年提出的7870亿美元的巨额经济刺激计划中,把发展新能源定位于抢占未来发展制高点的重要战略产业,并提出在未来的三年的时间里,国内可再生能源产量要增加一倍。而我国人口众多,常规能源储备远低于世界平均水平,而且近几十年来,环境污染也是日益严峻。这使得寻找一种清洁可持续的替代能源变得更加迫切。而我国幅员辽阔,拥有极为丰富的太阳能资源,开发潜力巨大,从长远发展来看完全可以满足国家可持续发展的需求。但太阳能能量密度低、分散性强、不稳定、不连续的缺点使得我们至今仍缺乏对其高效低成本大规模利用的有效手段。但是考虑到占地表约3/4的水域和植物的光合作用,我们是不是可以利用太阳能分解水,制取氢气,而氢气又是是一种无色无臭无味无毒的清洁燃料,

纳米材料国内外研究进展

纳米材料国内外研究进展 一、前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)[1]。自20世纪80年代初, 德国科学家 Gleiter[2]提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)[3]。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。 二、国内外研究现状 1984年德国科学家Gleiter首先制成了金属纳米材料, 同年在柏林召开了第二届国际纳米粒子和等离子簇会议, 使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议, 标志着纳米科技的正式诞生;l994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。2004年度纳米科技研发预算近8.5亿美元,2005年预算已达到10亿美元,而且在美国该年度预算的优先选择领域中,纳米名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一[4]。 自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料, 至今已有 30多年的历史, 但真正成为材料科学和凝聚态物理研究的前沿热点是在 80年代中期以后。因此 ,从其研究的内涵和特点来看大致可划分为三个阶段[5]。 第一阶段(1990年以前)主要是在实验室探索,用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。 第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复

相关主题
文本预览
相关文档 最新文档