当前位置:文档之家› 步进电机调速系统的设计与实现

步进电机调速系统的设计与实现

步进电机调速系统的设计与实现
步进电机调速系统的设计与实现

步进电机调速系统的设计

与实现

Newly compiled on November 23, 2020

目录

摘要

步进电机有启动快、步进精确、定位准等特点。随着现在自动化的需求,步进电机的应用已经非常广泛,在现在的自动化工厂中,起着重要的作用。

利用Proteus软件,进行电路的搭建和仿真。以单片机为核心通过连接外围电路组成控制步进电机调速的控制系统,通过方向信号,改变步进电机的旋转方向,调节频率,从而改变速度。本文通过介绍驱动电路,从中选择驱动方式,从而实现步进电机的细分驱动功能,确定步进电机的运行方式,并详细介绍了细分驱动电流的计算方法,细分能使步进电机的运行更稳定可靠,减少运行噪音。其中驱动电路的核心是以TB6560AHQ芯片搭建的电路,转速能达到五个级别的调速范围,最高转速能达到500多转。最后进行仿真,然后画出相对应的PCB板进行焊接,完成相应的实物。整个设计思路还是比较简单,操作容易,成本也比较低。

关键词:步进电机;单片机;细分驱动

ABSTRACT

The step motor has the characteristics of starting fast, stepping in precise and positioning, and the application of stepping motor is very extensive with the demand of automation. It plays an important role in today's automated factories.

This article USES Proteus software to build and simulate circuits. With the single chip processor as the core by connecting the peripheral circuit, control system, through the direction of the signal, adjust the electricity order of stepper motor windings, and transform the direction of rotation of the stepper motor. The purpose of controlling the speed of the motor is achieved by controlling the speed of the frequency. By driving circuit, also can achieve the function of stepping motor subdivision driver, this paper also introduces in detail the calculation method of subdivision drive current, segmentation can make step motor running more stable and reliable, greatly reducing the noise. The core of the drive circuit is the circuit of the TB6560AHQ chip, which can speed up to five levels, and the maximum speed can reach over 500. Finally, the PCB board is drawn and the corresponding material is completed. In comparison, the whole design idea is simple, easy to operate and low cost.

Key words: stepper motor, mcu, subdivided driving

第1章绪论

步进电机有很多其他电机所没有的功能,现在已经是全球的第三类的电机了,是人类进入自动化过程中重要的东西,而随着现在电子计算机方面的发展,其控制的方式方法也越来越多。

课题研究的目的和意义

研究的目的,现在步进电机已经成为第三类电动机,虽然现在生产步进电机的厂家有很多,但是现在关于用好步进电机的方案,基本还都是处于仿制外国的阶段,控制系统还比较复杂,所需要用到的知识还很多,所以要想用好步进电机还是很不容易的[1]。

研究的意义,步进电机和其它电机性能和功能都有很大的区别。步进电机有启动快、步进精确、精准定位的特点。随着现在自动化的发展,步进电机的应用也是越来越多,在很多机器仪器中,都有它的存在,特别是在一些高端精密的仪器中,更是离不开它,所以研究好步进电机还是很有用处的。

国内外研究概况

步进电机已经存在了一百多年,最早出现的步进电机,是由英国人发明的。当时的电子技术还不是很高,控制太复杂,所以步进电机的发展受到了很大的限制,基本只是出现了原理,实际应用起来确实很麻烦。而步进电机的发展是从50年代之后,驱动电路得到很大的发展,才开始大规模的发展,我国是从70年之后才开始引入[2]。而且随着现在工业的发展,在数字电路、电力电子和永磁材料的高速发展下,更是促进了步进电机性能的提高,驱动更是得到快速的发展,步进电机的功能也是得到很大的进步。80年代后,混合的步进电机已现,使性能和功能更加强大,很快就得到了成长和利用。也是从这个时候开始,步进电机开始了大规模的应用,在打印机、扫描机、机器人、传真等方面都有它的用处[3]。

步进电机输入一个脉冲,就走一定角度,因此可以通过去控制走多少步,来达到精准定位。因为电机是通过输入脉冲,来确定是否旋转,所以能快速停止和启动,而旋转速度,还可以通过控制脉冲频率大小去改变。而且它的体积还比较小,控制相对来说还是比较方便,在现在的数控机床,生产线上都有步进电机的身影,特别是对定位有很高的要求的精密仪器里面,都有它的存在,所以设计高精度的步进电机是很有必要的。现在微电子学的发展越来越快,相对的步进电机的驱动电路就越来越简单,不仅把驱动部分的硬件部分减少了很多,还大大提高了步进电机的灵活性[4]。现在更是出现了很多的芯片和驱动板,可以直接把步进电机驱动起来,控制简单了,价格就降下来了,就满足了工业生产的要求,可以大规模的生产了。本文主要内容

能实现步进电机的调速,使步进电机能够在一定的范围内旋转,当步进电机运行的时候,能够显示步进电机的正反转和速度。并且以步进电机为对象,研究步进电机驱动的方式,步进电机的驱动方式有很多,本文主要研究的是细分驱动电路,研究步进电机细分控制算法,通过计算电流的各个阶段的大小,实现步进电机的细分驱动的控制。完成系统的总体框图,设计硬件电路,画出原理图,分析电路的原理,确定各个元器件值的大小,进行编程完成相对应的程序然后仿真。最后绘制PCB图,进行实物的焊接和调试。

第2章步进电机系统设计方案

步进电机的概述

步进电机精度误差小,一般在步距角的3%到5%。而因为上次脉冲所产生的误差,还不会累加在下一次中[5]。其驱动需要的信号必须是脉冲形式的,否则就会静止。而本身用的磁性材料,有很高的耐温作用,温度要达到130以上才会退磁,

这样电机外表的温度就可以达到很高。由于步进电机的响应,只是与输入的脉冲数有关,所以可以作成开环系统,结构大大简化降低成本。步进电机还是有缺点的,很容易就会产生共振。而且转速都达不到很高,很难有大的转矩,而且能量利用率也比较低。

反应式步进电机是比较传统的电机。其工作原理简单,内部的励磁绕组比较多,则输出转矩比较大,这样的结构也就决定了它的动态性能比较差,而且噪音震动都很大,其内部绕组基本为三相的,步距角基本在度左右。永磁式步进电机大部分是两相,在其内部转定子的极数基本相同[6]。这样的结构,也就决定了其步距角比较大,一般为或者15度,主要应用在计算机的外部、医疗设备、光电组合等装置里面。混合式步进电机,根据名字就很容易知道它是由上面两种电机的优点结合起来组成的。相数有好几种,两相的步距角基本在度左右,五相的在度左右,步距角的减少,也就使精度得到很大的提高了[7]。而且因为有永磁体的存在,所以就导致了反电动势的存在,在运行的过程中平稳、噪声低、震动小。综合比较来说,还是混合式的步进电机功能比较好,所以本文采用的就是混合式的步进电机。

步进电机的驱动方式论证

步进电机的驱动方式有很多,而驱动方式的选择,却可以直接决定步进电机运行的性能,下面介绍一下常用到的驱动方式。

高低压驱动,都是先用高电压去驱动要导通的绕组,再用低电压去续流,保证了电流的连续性,也利用了高电压提高出力的作用,而不是通过改变时间常数来提高矩频性能。

在电机的绕组回路上给串联上一个电阻,电机的时间常数就会变小,这样在高频率运行时,相应的产生的转矩也就更大一些,而且还可以缓解共振。这样的电路,线路布局简单成本低。不过因为串联了一个电阻,这样就引起了附加的一些损

耗,如果频率比较高损耗更是严重,所以基本都是用在功率比较小,频率要求不高的地方。

由名字很容易就可以知道,这是有两个电压信号,根据不同频率选择不同的电压驱动。在低频率是用低电压,在高频率时用高电压。这样的电路,就可以使步进电机在高频的时候,还有很大的力矩,而在静止锁定的状态下,相应的功耗也减小。

使导通绕组的电流,不论是工作在什么状态下,都能保证其在一定的数值下,这样就可以使电机有比较恒定的输出转矩[8]。这种驱动的方法,能极大的提高高频响应,因为电流比较恒定,所以输出转矩也就比较稳定共振减少,不过这样的线路比较复杂,但是现在已经有相对应的集成模块出来了,可以直接采用,图1为斩波恒流电路图。

图1 斩波恒流电路

用R来采集绕组电流的变化,然后和控制信号做比较,当控制信号比较大的时候,而且脉冲也是高电平。则两个三极管都会导通,这样直流电源会给绕组直接供电。因为电感是感性负载,电流慢慢变大的时候,则R两端的电压会增大,这样采取的电压就会比较大,在通过比较器比较输出,则输出的电平就是低电平[9]。由于比较器输出的电流是低电平,则无论脉冲是高或者低电平,通过与门电路后,都将输出低电平,相应导管被截止,电源无法对绕组供电,但这个时候,如果输入的脉冲还是高电平,那VT2继续导通,沿着VD2继续给绕组供电,当电流下降到比给定电压低的时候,就又重复上述过程,这样电流就比较稳定了[10]。相对来说这种驱动电路用的还是比较多的。

步进电机的驱动,通过改变各个绕组之间通电顺序,从而改变绕组中电流进而改变磁场,则相应的改变合力的方向,从而使电机旋转起来[11]。在一般的时候,

步进电机的步距角一定,而改变绕组通电方式,能达到的细分数量非常有限,要增大细分情况还是要靠驱动电路,通过改变绕组中的电流,使其电流变化为阶梯形式的变化,电流阶梯形式的变化如图2所示。这就为步进电机的运行,提供了很多中间状态,同时绕组产生的磁场合成方向也变的多了,这样就可以使转子旋转,因为合成力的方向经过了好几个过程变化,这样就使步距角进一步细分了。由此可以看出,想要步进电机的细分系数更高,还是要通过改变各个绕组之间电流的细分去实现。

图2 电流细分变化情况

通过控制各个绕组之间的电流变化,从而能达到电机的细分驱动,在早期的时候绕组之间的电流,其都是通过硬件电路去控制的,绕组中的每一相都分别连接了很多并联的晶体管,想要达到多少细分,就要去并联多少个晶体管,这样就可以控制导通多少晶体管的数量,从而去控制相电流[12]。不过这种方法,电路太过复杂,需要的元器件太多了,很不容易控制体积还会很大,元器件多相应的成本也就上去了,而且一旦造出来了,就很难改变细分数了,所以现在很少采用这种方法。现在单片机的发展是越来越快了,步进电机细分的方法也相对改变了,现在步进电机的驱动,都是靠微机控制。

现在步进电机的细分驱动是靠微机控制的。其按照功放管的工作状况,可以分为两种形式的驱动。放大型输出电流,其电流的大小,都是受单片机输出来的电压大小决定的,这样的控制电路相对比较简单,电流控制也比较准确。不过这样的电路因为末级管工作的状态是放大的,所以整个电路的能耗也就比较大,很容易就会发热,影响驱动电路的性能,甚至还会击穿晶体管[13]。这种电路一般都是应用在对电流控制精度高,电流小散热比较容易的地方。而开关型的末级管通过控制信号去改变末级管的开关,使损耗减少避免了不必要的功率消耗和发热的问题,但是电路比较复杂,而且输出的电流还有波纹,所以这种电路,基本适合于输出力矩比较大的电路。

现在大部分的细分都是采用开关型,而开关型又可以分为两种驱动电路。斩波式细分驱动,通过调用储存到单片机里细分电流的信号,转换成相应的电压信号,这个电压信号在输入到相应的控制信号那里,在与电路取样得到的电压比较,这样就可以控制功放管的开通和关闭,而且还有采样电压进行比较,可以有效的控制各个绕组之间的电流变化,从而实现电流的细分。而脉宽调制是单片机调用相应的电流量,经过转换电路,换成相对应的电压,在把电压变换成相对应的脉冲,每段电流都对应着不同占空比的脉冲。在把这样的脉冲放到绕组的功放电路上,这样就可以控制功放管的导通时间,进而去控制相应的电流。电机里面的负载都是感性的,所以电流变化是缓慢的,又因为脉冲的频率比较高,所以在占空比一定的情况下,电流也基本是不变的,这样就实现了电流的细分[14]。而本次设计,采用的就是细分驱动进行的驱动系统。

步进电机运行控制

本次选用的步进电机型号是42BYGH0425,图3为步进电机结构图。

图3 步进电机结构图

42BYG型步进电机其定子上有很多绕组,这样产生的力也就比较多,从而输出转矩也就比较大,相对应的步距角也比较小,表1为步进电机的参数。

表1 步进电机参数

电机型号步

(A)

(V)

(Ω)

静力矩

()

定位力矩

()

转动惯量

()

42BYGH04251228070

步进电机运行方式有多种,二相四拍正转的时候,绕组通电方式如下。

单四拍正转:A-B-A-B-A

双四拍正转:AB-B A-A B-B A-AB

反转时各绕组通电顺序为:

单四拍反转:A-B-A-B-A

双四拍时反转:AB-B A-A B-B A-AB

二相八拍时,各相绕组之间的通电顺序:

正转:A-AB-B-B A-A-A B-B-B A-A

反转:A-A B-B-B A-A-A B-B-BA-A

电机在四拍的时候运行,叫做整步运行这个时候步距角不变,和出厂时候的一样。而当运行的时候是八拍的时候,叫做半步运行,步距角相应的会减少一半,则步距角减少的越多,相应的控制精度也就越精确[15]。而为了提高输出转矩,所以本文用二相四拍的运行方式进行运行。

算法

步进电机的细分,是控制绕组电流变化,而电流变化,是通过调用单片机里面储存的细分电流控制信号去细分的。脉冲的占空比不同,则加载在绕组上的平均电压就不同,相应的绕组电流也就不一样[16]。如果不细分在整步的运行方式下工

作,则电机旋转一圈,根据公式,则需要200个脉冲,图4为电机细分时内部合成的磁势情况。

图4 细分驱动时磁场合成情况

在细分情况下,A 、B 绕组之间电流的变化情况,相应的电流变化公式为。

)(S I I A n

90sin m ?

= () )(S I I B n

90cos m ?

= () 其中m I 是额定电流,n 为细分数,S 为步数。如果采用的是16细分,则电流的变化为,第一步A I =m I B I =m I 等。就这样以此计算下去,算出所有过程中电流的变化情况,这样就可以建立各相电流变化情况的电流表,在单片机运行的时候,只需要按照查表法以此调取电流表,就能控制相应的绕组之间电流的变化情况了。这种计算方式,理论上实现了细分驱动,但是由于电流和磁场,磁场和力的关系并不是线性变化的,其数学模型计算公式为

A (n )=Z[n/M +K ×sin(2π×n M )] ()

B (n )=Z[(M ?n)/M +K ×sin(2π×M?n M )] ()

式中A 、B 为电流数据,M 为细分数,n 为细分步序数,Z 和K 为为常数,其中可以根据不同的步进电机,改变K 值去调整比例。

步进电机的加减速,是不能一下子就加到需要的速度,也不能一下减到需要的速度相对应的频率的,这需要一些中间过程,因为如果加速或者减速直接改变,如果不经历加速,一开始就把速度提高到给定的频率下的速度,如果这个频率超过了极限的频率,电机很容易就会不能正常工作,也可能会出现失调的现象。或者出现过冲的现象造成定位不准确,导致精度下降,所以在加减速的时候不能直接把频率加到需要的频率下,这中间要有过度的过程,基本上有两种情况的加减速,一种是均匀增加频率,另一种就比较随便了,看着有点像S型曲线,频率变换没有规律,而现实中加减速变化,基本选用频率呈直线变化的去编程,这是因为这样的变化相对好编程。

第3章系统硬件设计

前面了解了步进电机分类发展,步进电机性能和参数驱动方式。本章介绍系统硬件的设计,图5为系统的原理框图。本文选用的步进电机型号为42BYG0425,通过单片机产生脉冲,经过连接电路,提供给TB6560,TB6560在通过一系列的电路运行在去驱动步进电机。单片机通过运行和计算,根据程序的运行方式,把电机的旋转速度传递给显示屏,这样就能显示速度了。

主控芯片介绍

STC89C52是常用的芯片,其内有静态逻辑操作,可以选择省电模式。当单片机不工作时,会暂停CPU的工作,但是其它系统会继续工作。而当断电的时候,不会随着断电而失去内部的内容,而是自动储存下来。单片机的引脚有很多,每个引脚都有自己的功能,就是因为有这么多的引脚,才使其功能更强大,表2为各个引脚的功能。

表2 引STC89C52脚的功能

引脚功能

9引脚Rst复位键

10-11引脚RXD串口输入 TXD串口输出

12-13引脚分别是中断0和中断1

14-15引脚计数脉冲T0 T1

16-17引脚WR写控制 RD读控制

18-19引脚晶振谐振器

20引脚地线

21-28引脚P2接口高8位地址中线

29引脚片外rom时引脚输出低电平

30引脚地址锁存器

31引脚指令控制器

32-39引脚为到口

40引脚电源输入端图6为复位电路,复位电路单片机通电之后,由于出现问题,需要将单片机复位,使其中的参数都恢复到原先的状态。复位方式有两种。其复位原理是RST为高电平。如果是通过上电产生高电平,这就是上电复位。手动复位就比较容易明白了,就是直接按下按键使其产生高电平。

图6 复位电路

晶振电路,在单片机里有XTAL1和XTAL2这两个端口。在这两个引脚上接上石英晶体,在分别接上两个电容,电容的另一个引脚在接地,这样单片机内部的振荡器,就能自激振荡。其晶振一般都可以达到很高,但是频率越高,相应消耗也就越大,本次设计,使用的是12M的,电容对振荡的影响不算很大,但还是可以稍微调一下的,本次采用的电容大小是30pF,图7为晶振电路。

图7 晶振电路

驱动电路

驱动板是选择的是TB6560模式的驱动板。最高耐压40V,电流可以达到。板子里面有温度保护功能,当温度过高时可以自动断开电路,使其不至于烧坏板子,其内还含有三个电路,可以对信号进行分析进行相应的控制。步进电机的隔离电路是光耦隔离,这是为了防止电机干扰其他电路,而其中的PUL、DIR、EN接口分别接控制脉冲、方向、使能信号。

驱动板的主要芯片就是BT6560AHQ,它能完成很多功能,图8 为

BT6560AHQ引脚图,通过一系列的外部链接电路,可以组成TB6560驱动板。起主要的芯片是BT6560AHQ,BT6560AHQ与各种外围电路进行连接,其中与控制信号的连接是通过隔离电路连接的,这是为了防止电机干扰到单片机,而且隔离还具有整形的作用。而选用的隔离是6N137高速光耦隔离,这种隔离,能满足更高频率的脉冲信号通过,这样不会影响到电机的正常运转。

图8 BT6560AHQ

其内部的主电路,主要有驱动和逻辑控制,在引脚的VMB和VMA应该接入电容,来达到稳压的目的,而其中的9、12、13、16分别接到电机的四个接口,在

四个端口的内部都有续流二极。NFA和NFB是输出中A、B最大电流的定义脚,其计算公式为

I OUT(A)=0.5(V)/RNF(Ω)

()由此可以计算出RNF的电阻大小了。其内的驱动板还可以根据设置不同,选择用不同的细分方法去调速,当电机的额定电流为的时候,经过16细分,那电流的变化也就很少了,这样绕组内每次电流的变化也都慢慢增加,旋转力的方向的变化也就很少,使电机的振动和噪音都大大减少。而DCY2和DCY1是可以设置,可以改变电机的电流,可以满足不同的步进电机的要求。而且如果是因为一些外在原因或者电机自己的影响产生噪音,就可以设置这两个按键去衰弱电流,从而减少噪声的影响。

在芯片里面,还有自动半流的电路,电机工作时就输出最大的电流,当电机不工作时就减小电流。而自动半流的芯片是74CH123,图9为74CH123引脚连接示意图。这是用CLK引脚输出的脉冲作为触发条件的电路,此单稳态电路的反相输出,接到了B上面,当电机正常旋转的时候就一直保持着低电平,但是当没有驱动脉冲时就立马保持高电平,从而实现自动半流。

图9 74CH123引脚连接示意图

稳压管设计

图10为稳压管电路图,本文选用的稳压芯片MC7805,其外部接了四个电容使其组合成滤波器,其中大容量的电容可以滤出交流部分,还能拉平其内的波纹,而相应的小电容则可以过滤掉高频率的谐波,一些比较尖端的脉冲也可以过滤掉。

图10 稳压管电路图

显示电路设计

本文选用的显示器是LCD1602,这是一个既可以用来显示数字,又可以显示字母的模块,图11显示屏引脚图。

图11 显示屏的引脚图

本文选用的显示屏能同时显示32个字符,引脚有16个,每个引脚都有不同的作用,可以显示两行,每行最多可以显示16个字符,表3为LCD引脚功能。

表3 LCD引脚的功能如下表

引脚数功能

第2引脚VCC接电源的正极,电压为5V

第3引脚V0为显示器对比度调整端,其接正电源时对比度最弱,接地电源时对

比度最高。

第4引脚当引脚为高电平时是数据寄存器,反之为指令寄存器。

第5引脚确定读写操作,当为高电平是读操作,反之是写操作。

第6引脚E为使能端。

第7到14引脚这8个引脚是数据端。

第15到16引脚15是背光正极,16为背光负极。

按键设计

本文中,通过设置几个独立的按键,来控制单片机内部的信号。按键一边连接到I/O口,一边去连接电源地,这样当按键按下的时候,I/O口就会由原先的高电平变成低电平。运行时只要让程序循环检测,当检测到低电平就能判断按键是否按下了,但是这种按键是金属解除的方式,所以会出现抖动的情况,在程序中加入适当的延时环节,可以防止由于抖动而产生的按键按下的误操作。图12为按键电路,图中按键有四个,第一个按键控制启动停止,第二个控制正转或者反转,刚开始的时候是默认为正转,按下在反转,当再次按下的时候,就变成正转了。第三个控制速度加,第四个控制速度减。

图12 按键电路

第4章系统软件设计

本文采用的编程软件是Keil软件进行编程的,这是特意为单片机语言开发而开发的系统。其操作方便易学易懂,而里面还存在很多系统,可以进行综合使用,功能强大很方便使用。

主程序设计

在写程序时,一般都是先对单片机,或单片机的一些外围的电路,先进行初始化处理,有些元器件必须经过初始化后才能正常使用,还要重新进行一些变量的重新赋值。初始化完成后然后就进入循环,只有进行循环了,程序才不会运行了一次,就会退出来,而是进入循环模式,就可以实时的进行检测。而且主函数上面,最好不要放置很多代码,基本上代码多少进行封装的,然后在主函数里面调用,这样有利于软件的运行,而且方便修改,图13为主函数的主流程图。

按键子程序

在本设计中按键的一端接地,另一端接上I/O口。当按键按下的时候,按键的另一端是接地,所以高电平就变成了低电平,图14为按键流程图。

系统的仿真

通过Proteus进行仿真,经过对仿真电路的搭建和硬件电路的调试,组成了以单片机为核心的控制系统,通过仿真可以发现电机可以旋转,而且显示器显示转速、转速等级、转速正反转情况。通过按键电路去改变旋转的等级,进而改变步进电机的速度,使电机能从最小等级的几十转每分钟,调速到最大级别的五百多转。按下复位按键电路能正常复位。并且计算机输送到显示屏里面的旋转速度也显示的正确,图15为步进电机的仿真示意图。

步进马达控制电路设计

毕业设计 题目步进电机运动控制系统设计学院XXXXXX 年级专业应用电子专业 学生姓名XXXX 指导老师XXXX 专业负责人XXXXX 答辩日期

步进电机运动控制系统设计 摘要:步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。步进电机的调速一般是改变输入步进电机的脉冲的频率来实现步进电机的调速,因为步进电机每给一个脉冲就转动一个固定的角度,这样就可以通过控制步进电机的一个脉冲到下一个脉冲的时间间隔来改变脉冲的频率,延时的长短来具体控制步进角来改变电机的转速,从而实现步进电机的调速。在本设计方案中采用AT89C51型单片机内部的定时器改变CP脉冲的频率从而实现对步进电机的转速进行控制,实现电机调速与正反转的功能 关键词:步进电机单片机调速系统。

Stepper Motor Motion Control System Design Abstract:Stepper motor is the electrical impulse signals into angular displacement or linear displacement of the open-loop control components. In the non-overload case, the motor speed, and stop location depends only on pulse frequency and pulse number, regardless of the load change, that is, to add an electrical pulse signal, then turn one motor step angle. The existence of this linear relationship, coupled with only a periodic error of stepper motors without the accumulated error and so on. Made in terms of speed, position and other control areas to control the stepper motor used become very simple. Stepper motor speed control in general is to change the input frequency of stepper motor pulses to achieve the stepper motor speed, because the stepper motor to a pulse on each rotation a fixed angle, so that you can by controlling the stepper motor a pulse to the next a pulse time interval to change the pulse frequency, the length of delay to specific controls to change the angle stepper motor speed, in order to achieve speed control stepper motor. In this design the use of AT89C51 microcontroller-based timer to change the internal pulse frequency of CP in order to achieve the speed of stepper motor control, to achieve the function of motor speed and the positive inversion Keywords:Stepper Motor SCM Speed Control System

步进电机控制实验

步进电机控制实验 一、实验目的: 了解步进电机工作原理,掌握用单片机的步进电机控制系统的硬件设计方法,熟悉步进电机驱动程序的设计与调试,提高单片机应用系统设计和调试水平。 二、实验容: 编写并调试出一个实验程序按下图所示控制步进电机旋转: 三、工作原理: 步进电机是工业过程控制及仪表中常用的控制元件之一,例如在机械装置中可以用丝杠把角度变为直线位移,也可以用步进电机带螺旋电位器,调节电压或电流,从而实现对执行机构的控制。步进电机可以直接接收数字信号,不必进行数模转换,用起来非常方便。步进电机还具有快速启停、精确步进和定位等特点,因而在数控机床、绘图仪、打印机以及光学仪器中得到广泛的应用。 步进电机实际上是一个数字/角度转换器,三相步进电机的结构原理如图所示。从图中可以看出,电机的定子上有六个等分磁极,A、A′、B、B′、C、C ′,相邻的两个磁极之间夹角为60o,相对的两个磁极组成一相(A-A′,B-B′,C-C′),当某一绕组有电流通过时,该绕组相应的两个磁极形成N极和S极,每个磁极上各有五个均匀分布矩形小齿,电机的转子上有40个矩形小齿均匀地分布的圆周上,相邻两个齿之间夹角为9°。 当某一相绕组通电时,对应的磁极就产生磁场,并与转子形成磁路,如果这时定子的小齿和转子的小齿没有对齐,则在磁场的作用下,转子将转动一定的角度,使转子和定子的齿相互对齐。由此可见,错齿是促使步进电机旋转的原因。 三相步进电机结构示意图 例如在三相三拍控制方式中,若A相通电,B、C相都不通电,在磁场作用下使转子齿和A相的定子齿对齐,我们以此作为初始状态。设与A相磁极中心线对齐的转子的齿为0

两相步进电机控制系统设计

综合课程设计 题目两相步进电机 学院计信学院 专业10自动化 班级2班 学生姓名 指导教师文远熔 2012 年12 月28 日

两相步进电机课程设计报告 步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。控制系统通过单片机存储器、I/O 接口、中断、键盘、LED 显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。人们用它来驱动时钟和其他采用指针的仪器,打印机、绘图仪,磁盘光盘驱动器、各种自动控制阀、各种工具,还有机器人等机械装置。此外作为执行元件,步进电机是机电一体化的关键产品之一,被广泛应用在各种自动化控制系统中,随着微电子和计算机技术的发展,它的需要量与日俱增,在各个国民经济领域都有应用。步进电机是机电数字控制系统中常用的执行元件,由于其精度高、体积小、控制方便灵活,因此在智能仪表和位置控制中得到了广泛的应用,大规模集成电路的发展以及单片机技术的迅速普及,为设计功能强,价格低的步进电机控制驱动器提供了先进的技术和充足的资源。 关键字: 步进电机单片机

步进电机调速

摘要 本文介绍的是在DICE-AT2型自控原理实验箱上,通过编写汇编语言实现对步进电机转速的调节以及正转—停止—反转的控制。 在试验箱上将电路搭好,打开软件,输入程序,将宏汇编程序经过汇编,连接后形成.EXE文件装入系统,运行程序观察电机转速及转向的变化。 程序运行后电机的变化跟预期相符,各项步骤运行正常。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。 关键词:步进电机;汇编编程;8088cpu;计算机控制

Abstract Is introduced in this paper on the DICE - AT2 control principle experiment box, by writing assembly language implementation of the stepping motor speed regulation and control forward, stop, reverse. In test chamber, general layout is good, open software, input program, the macro assembler after assembly, connection formation. EXE file into the system, run the program to observe the changes of motor speed and steering. Program is running after the change of the motor with expectations, the various steps to run normally. Stepper motor is the electrical pulse signal into angular displacement or linear displacement of open loop control stepping motor. Stepper motor as the executive element, it is one of the key products of electromechanical integration, widely used in all kinds of automation control system. With the development of microelectronics and computer technology, step ? Keywords:Stepping motor; Assembler programming; 8088 CPU; The computer control

实验三PLC步进电机控制实验

实验三 PLC步进电机控制实验 一、实验目的 1、掌握步进电机工作原理; 2、用PLC构成五相步进电机控制系统。 二、实验要求 1、通过实验,加深并验证学过的理论知识,掌握实验的基本方法和实验原理; 2、正确使用仪器设备; 3、认真观察仪器设备的运动方式,独立编写控制程序并进行操作。 4、学生在实验过程中,应学会独立思考,应用所学专业理论知识分析和解决实验中遇到的具体问题; 三、实验原理 步进电机工作原理 步进电机按工作原理可分为电磁式、磁阻式、永磁式、混合式四类。其中混合式步进电机从定子或转子的导磁体来看,它如反应式步进电机,所不同的是它的转子上置有磁钢,反应式转子则无磁钢。从它的磁路内含有永久磁钢这一点来说,又可以说它是永磁式,但因其结构不同,使其作用原理及性能方面,都与永磁式步进电机有明显区别。它好像是反应式和永磁式的结合,所以常称为混合式。混合式步进电机具有驱动电流小,效率高,过载能力强、控制精度高等特点,是目前市面上应用最为广泛的一种步进电机。 四、实验所用仪器 1、三菱FX1N-60MR一台; 2、计算机一台; 五、实验步骤和方法 1、熟悉编程环境,输入所编制的程序; 2、接通实验箱电源、串口通讯线; 3、将程序下载至PLC并运行。 六、实验注意事项 经指导教师检查同意后,方可接通电源进行实验操作。 七、实验预习要求 1、预习PLC编程环境,上机前预先将控制程序编制完成; 2、预习步进电机工作原理。 八、实验报告要求 实验报告的主要内容 1、实验目的 2、实验所用仪器 3、实验原理方法简要说明 4、程序清单。

实验报告册样式

实验步骤: 1、熟悉编程环境,编制程序;

步进电机的控制实验报告

步进电机的控制实验报告 一、实验目的 1.学习步进电机的工作原理。 2.了解步进电机的驱动电路。 3.学会用单片机控制步进电机。 二、实验器件 1.T IVA C 系列芯片,电机模块和LCD显示模块。 2.电脑以及CCS开发软件。 三、实验内容 设计一个简单的程序驱动步进电机并控制转速,通过LCD板上的滚轮装置可以调节步进电机的转速。 四、实验原理 双极性四线步进电机:一般双极性四线步进电机线序是 A B A/ B/, 其中A 与A/是一个线圈,B和B/是一个线圈,一般这种驱动需要的是H桥电路。 H双极性四线步进电机驱动相序: 1.单相四拍通电驱动时序 正转: A/ B A B/ 反转: B/ A B A/ 2.双相通电四拍驱动时序 正转:A/B AB AB/ A/B/ 反转:A/B/ AB/ AB A/B 3.半步八拍驱动时序 正转:A/ A/B B AB A AB/ B/ A/B/ 反转:A/B/ B/ AB/ A AB B A/B A/

DRV8833驱动芯片: DRV8833为玩具、打印机及其他机电一体化应用提供了一款双通道桥式电机驱动器解决方案。该器件具有两个H 桥驱动器,并能够驱动两个直流(DC)电刷电机、一个双极性步进电机、螺线管或其他电感性负载。每个H桥的输出驱动器模块由N沟道功率MOSFET组成,这些MOSFET被配置成一个H桥,以驱动电机绕组。每个H桥都包括用于调节或限制绕组电流的电路。借助正确的PCB设计,DRV8833的每个H桥能够连续提供高达1.5-ARMS(或DC)的驱动电流(在25℃和采用一个5VVM电源时)。每个H桥可支持高达2A的峰值电流。在较低的VM电压条件下,电流供应能力略有下降。该器件提供了利用一个故障输出引脚实现的内部关断功能,用于:过流保护、短路保护、欠压闭锁和过热。另外,还提供了一种低功耗睡眠模式。 DRV8833内置于16引脚HTSSOP封装或采用PowerPAD?的QFN封装(绿色环保:RoHS和无Sb/Br)。 图1 H桥电路真值表 设计思路:使用单相四拍通电驱动时序驱动步进电机。用单片机生成四个占空比为25%相位逐个延迟90度的PWM信号,按照特定顺序输入到驱动芯片的AIN1、AIN2、BIN1、BIN2引脚。通过调节LCD模块上的滚轮来调节PWM信号的周期从而控制步进电机的转速。调节的频率范围是25HZ-50HZ。步进电机的转速信息通过传感器采样送到单片机,信息处理后送到LCD显示模块显示。 实验主程序: int main(void) { uint32_t pui32ADC0Value[1]; // 保存ADC采样值 int speed = 0; uint32_t cur_Period, old_Period = 0; // 根据滚轮ADC转换值换算出当前的时间周期值 // 系统时钟设置 SysCtlClockSet(SYSCTL_SYSDIV_64 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ); // 初始化滚轮 Init_ADCWheel();

控制步进电机调速系统实验报告

华北科技学院计算机系综合性实验 实验报告 课程名称微机原理及应用 实验学期 2011 至 2012 学年第二学期学生所在系部电子信息工程学院 年级 2009 专业班级 学生姓名学号 任课教师 实验成绩 计算机系制

《微机原理及应用》课程综合性实验报告 开课实验室:计算机接口实验室2012年5月29日 实验题目微机控制步进电机调速系统 一、实验目的 1、了解计算机控制步进电机原理 2、掌握步进电机正转反转设置方法 3、掌握步进电机调速工作原理及程序控制原理 二、设备与环境 TPC-2003A 微机。 Vc++编译器。 三、实验内容 硬件接线图参考实验指导书。 软件编程在TPC-2003A自带的VC++编译环境下使用。 在通用VC++下编程,需要拷贝相关的库文件。 用汇编语言编写控制程序需注明原理。 四、实验结果及分析 1、实验步骤 1、按如下实验原理图连接线路,利用8255输出脉冲序列,开关K0~K6控制步进电机转速,K7控制步进电机转向。8255 CS接288H~28FH。PC0~PC3接BA~BD;PA口接逻辑电平开关。 2、编程:当K0~K6中某一开关为“1”(向上拨)时步进电机启动。K7向上拨电机正转,向下拨电机反转。 实验原理图

2.实验结果 按照实验步骤连接实验电路,检查无误后运行程序。可以看到,当开关k0到k6依次为高电平时,电机转速越来越慢,k0闭合时速度最快,k6闭合时速度最慢,当k0到k6的低位有闭合时,步进电机按最低位的转速运行,因为程序中的查询方式是从k0-k6,即在程序的优先级别中k0的级别是最高的而k7的优先级别是最低的。k7控制电机的正转与反转。 3.实验分析 (1)步进电机的工作原理: 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点,使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 步进电机驱动原理是通过对每相线圈中的电流的顺序切换来使电机作步进式旋转。驱动 电路由脉冲信号来控制,所以调节脉冲信号的频率便可改变步进电机的转速。 如图(b)所示:本实验使用的步进电机用直流+5V 电压,每相电流为0.16A,电机线圈 由四相组成:即: φ1(BA) φ2(BB) Φ3(BC) Φ4(BD) 驱动方式为二相激磁方式,各线圈通电顺序如下表所示。图(b) 表中首先向φ1 线圈-φ2 线圈输入驱动电流,接着φ2-φ3,φ3-φ4,φ4-φ1,又返回到φ1-φ2,按这种顺序切换,电机轴按顺时针方向旋转。 实验可通过不同长度的延时来得到不同频率的步进电机输入脉冲,从而得到多种步进速度。

实验6(步进电机实验)

实验6:步进电机实验 一、实验目的 了解直流电机和步进电机的工作原理 学会Linux下用软件的方法实现步进电机的脉冲分配,用软件 的方法代替硬件的脉冲分配器 二、实验内容 学习步进电机的工作原理,了解实现电机转动对于系统的软件和硬件要求。学习ARM知识,要掌握I/O的控制方法。Linux下编程实现ARM的四路I/O通道实现环形脉冲分配用于控制步进电机的转动。 三、预备知识 C语言的基础知识、程序调试的基础知识和方法,Linux的基本操作。Linux关于module的必要知识。 四、实验设备及工具 硬件:UP-NETARM2410-S嵌入式实验平台、PC机Pentium 500以上,硬盘10G以上 软件:PC机操作系统REDHAT LINUX 9.0+MINICOM+ARM-LINUX开发环境 五、实验原理 1、步进电机概述 步进电机是一种能够将电脉冲信号转换成角位移或线位移的机电元件,它实际上是一种单相或多相同步电动机。单相步进电动机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。多相步进电动机有多相方波脉冲驱动,用途很广。使用多相步进电动机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电动机各相绕组。每输入一个脉冲到脉冲分配器,电动机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受

电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。 2、步进电机的种类 目前常用的步进电机有三类: 1、反应式步进电动机(VR)。它的结构简单,生产成本低,步距角可以做的相当小,但动态性能相对较差。 2、永磁式步进电动机(PM)。它的出力大,动态性能好;但步距角一般比较大。 3、混合步进电动机(HB)。它综合了反应式和永磁式两者的优点,步距角小,出力大,动态性能好,是性能较好的一类步进电动机。 3、步进电机的工作原理 现以反应式三相步进电机为例说明其工作原理。定子铁心上有六个形状相同的大齿,相邻两个大齿之间的夹角为60度。每个大齿上都套有一个线圈,径向相对的两个线圈串联起来成为一相绕组。各个大齿的内表面上又有若干个均匀分布的小齿。转子是一个圆柱形铁心,外表面上圆周方向均匀的布满了小齿。转子小齿的齿距是和定子相同的。设计时应使转子齿数能被二整除。但某一相绕组通电,而转子可自由旋转时,该相两个大齿下的各个小齿将吸引相近的转子小齿,使电动机转动到转子小齿与该相定子小齿对齐的位置,而其它两相的各个大齿下的小齿必定和转子的小齿分别错开正负1/3的齿距,形成“齿错位”,从而形成电磁引力使电动机连续的转动下去。 和反应式步进电动机不同,永磁式步进电动机的绕组电流要求正,反向流动,故驱动电路一般要做成双极性驱动。混合式步进电动机的绕组电流也要求正,反向流动,故驱动电路通常也要做成双极性。 4、开发板中步进电机控制的实现 本开发板中使用的步进电机为四相步进电机。转子小齿数为64。 系统中采用四路I/O进行并行控制,ARM控制器直接发出多相脉冲信号,在通过功率放大后,进入步进电机的各相绕组。这样就不再需要脉冲分配器。脉冲分配器的功能可以由纯软件的方法实现。

微机原理课程设计 步进电机的正反转及调速控制分解

课程设计报告 题目步进电机正反转及调速 控制系统的设计 课程名称微机原理及应用 院部名称机电工程学院 专业电气工程及其自动化班级10电气1班 学生姓名管志成 学号1004103027 课程设计地点C304 课程设计学时20 指导教师李国利 金陵科技学院教务处制

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件,具有快速启动能力,定位精度高,能够直接接受数字量,因此被广泛地应用于数字控制系统中,如数模转换装置、精确定位、计算机外围设备等,在现代控制领域起着非常重要的作用。 本设计基于Proteus 7.8设计环境,运用了8086 CPU芯片以及74273芯片、74244芯片和步进电机以及7位小功率驱动芯片ULN2003A、按钮、指示灯等辅助硬件电路,设计了步进电机正反转及调速系统。绘制软件流程图,进行了软件设计并编写了源程序,最后对软硬件系统进行联合调试。该步进电机的正反转及调速系统具有控制步进电机正反转的功能,还可以对步进电机进行调速,不同的按钮对应不同的速度,并且在没有速度按钮按下的时候,步进电机自动切换到停止状态。 关键词:步进电机;正反转;调速控制;ULN2003A芯片;8086微机系统

一、概述 1.1 课程设计的目的 (4) 1.2课程设计的要求 (4) 二、总体设计方案及说明 2.1 系统总体设计方案 (5) 2.2系统工作框图 (5) 三、系统硬件电路设计 3.1 Intel 8086 微处理器的简介 (6) 3.2 步进电机的原理 (7) 3.3 ULN2003A的简介 (8) 3.4 74154芯片简介 (9) 3.5 74LS273芯片简介 (10) 3.6 8086最小系统的设计 (11) 3.7 步进电机及其驱动电路的设计 (12) 3.8 电机状态显示电路的设计 (12) 3.9 输入采样电路的设计 (13) 3.10系统总电路图 (14) 四、系统软件部分设计 4.1 系统流程图 (15) 4.2 系统软件源程序 (16) 4.2.1电机绕组通电顺序设定 (16) 4.2.2 延时子程序设计 (16) 4.2.3 汇编源程序及说明 (16) 五、总结 5.1 系统软硬件的联合调试 (21) 5.2 问题分析和解决方案 (23) 5.3 心得与体会 (23) 六、参考文献 (23) 附录:总电路图 (25)

步进电机速度控制系统设计

目录 1 总体方案的确定 (1) 1.1 对步进电机的分析 (1) 1.2 电机的控制方案 (2) 1.3 控制算法的方案 (3) 1.4 串口通讯的模拟 (3) 2 硬件的设计与实现 (4) 2.1 微处理器的选择 (4) 2.2 控制电路的实现 (4) 2.3 键盘和显示电路 (6) 3 软件的设计与实现 (6) 3.1 控制信号输入程序 (7) 3.2 步进电机控制程序设计 (8) 3.3 程序分析及说明 (9) 4 系统的仿真与调试 (10) 4.1 程序的调试 (11) 4.2 串口通信的调试 (11) 4.3 调试结果及分析 (11) 5 设计总结 (13) 参考文献 (14) 附录 (15)

步进电机速度控制系统设计报告 1 总体方案的确定 系统以单片机为核心,接收并分析来自键盘或串口的控制指令,经过CPU 的逻辑计算输出控制信息,让步进电机按要求转动。由于步进电机是开环元件,系统不需反馈环节,但也同时要求控制信号足够精确。此外,为实现单片机与电机之间信号对接,需要加入步进电机驱动单元。 1.1 对步进电机的分析 步进电机又叫脉冲电机,它是一种将电脉冲信号转化为角位移的机电式数模转换器。在开环数字程序控制系统中,输出控制部分常采用步进电机作为驱动元件。步进电机控制线路接收计算机发来的指令脉冲,控制步进电机做相应的转动,步进电机驱动数控系统的工作台或刀具。很明显,指令脉冲的总数就决定了数控系统的工作台或刀具的总位移量,指令脉冲的频率决定了移动的速度。因此,指令脉冲能否被可靠地执行,基本上取决于步进电机的性能。 步进电机的工作就是步进转动。在一般的步进电机工作中,其电源都是采用单极性的直流电源。要是步进电机转动,就必须对步进电机定子的各相绕组以适当的时序进行通电。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(即步进角)。通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲频率来控制电机转动的速度和加速度,即可达到调速的目的。本设计是用单片机输出可调脉冲作为单片机的控制信号,通过改写脉冲频率调节单片机转速。 常见的步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB),永磁式步进一般为两相,转矩和体积较小;反应式步进一般为三相,可实现大转矩输出,但噪声和振动都很大。混合式步进是指混合了永磁式和反应式的优点,它又分为两相和五相,应用最为广泛。单片机管脚输出电压一般不足以驱动步进电机转动,所以需要在单片机和步进电机之间加入驱动电路。

步进电机工作原理、驱动控制系统与选型

步进电机工作原理、驱动控制系统与选型 一、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て。 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A 相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,

电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力 F与(dФ/dθ)成正比 其磁通量Ф=Br*S ;Br为磁密;S为导磁面积; F与L*D*Br成正比;L为铁芯有效长度;D为转子直径;Br=N·I/RN·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态) 因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。 (二)感应子式步进电机

步进电机实验报告剖析

北华航天工业学院 课程设计报告(论文) 课程名称:微机控制技术课程设计 设计课题:步进电机的控制系统 专业班级: 学生姓名: 指导教师: 设计时间:2013年06月11日

北华航天工业学院电子工程系 微机控制技术课程设计任务书 姓名:专业:班级: 指导教师:职称:教授时间:2013.6.11 课程设计题目:步进电机的控制系统 设计步进电机单片机控制系统,其功能如下: 1.具有对步进电机的启停、正反转、加减速控制; 2.控制按钮分别为正转、反转、加速、减速、以及停止键; 3.能够通过三位LED数码管(或液晶显示器)显示当前的转动速度,并且由两只不同颜色的发光二极管分别指示正转和反转,因此可以清楚的显示当前转动方向和转速; 4.要求每组选择的步进电机控制字不同; 5.用单片机做控制微机; 应用软件:keil protues 成果验收形式: 1.课程设计的仿真结果 2.课程设计的报告书 参考文献: 【1】张家生. 电机原理与拖动基础【M】. 北京:北京邮电大学出版社,2006. 【2】马淑华,王凤文,张美金. 单片机原理与接口技术【M】.北京:北京邮电大学出版社,2007. 【3】顾德英,张健,马淑华.计算机控制技术【M】. 北京:北京邮电大学出版社,2006. 【4】张靖武,周灵彬. 单片机系统的PROTEUS设计与仿真【M】. 北京:电子工业出版社,2007 第16周 时间 安排 指导教师教研室主任: 2013年06 月11日

内容摘要 步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。 关键词:步进电机单片机数码管显示

步进电机调速系统的设计与实现

目录 摘要 (1) ABSTRACT (2) 第1章绪论 (1) 1.1课题研究的目的和意义 (1) 1.2国内外研究概况 (1) (2) 第2章步进电机系统设计方案 (2) 2.1步进电机的概述 (2) 2.2步进电机的驱动方式论证 (3) 2.3 步进电机运行控制 (6) 第3章系统硬件设计 (9) 3.1主控芯片介绍 (9) 3.2驱动电路 (11) (12) 3.4显示电路设计 (12) 3.5按键设计 (13)

第4章系统软件设计 (13) 4.1主程序设计 (13) 4.2按键子程序 (15) 第5章系统仿真与调试 (15) 5.1系统的仿真 (15) 5.2系统的调试 (16) 总结 (16) 参考文献 (17) 致谢 (18) 附录 (18)

摘要 步进电机有启动快、步进精确、定位准等特点。随着现在自动化的需求,步进电机的应用已经非常广泛,在现在的自动化工厂中,起着重要的作用。 利用Proteus软件,进行电路的搭建和仿真。以单片机为核心通过连接外围电路组成控制步进电机调速的控制系统,通过方向信号,改变步进电机的旋转方向,调节频率,从而改变速度。本文通过介绍驱动电路,从中选择驱动方式,从而实现步进电机的细分驱动功能,确定步进电机的运行方式,并详细介绍了细分驱动电流的计算方法,细分能使步进电机的运行更稳定可靠,减少运行噪音。其中驱动电路的核心是以TB6560AHQ芯片搭建的电路,转速能达到五个级别的调速范围,最高转速能达到500多转。最后进行仿真,然后画出相对应的PCB板进行焊接,完成相应的实物。整个设计思路还是比较简单,操作容易,成本也比较低。 关键词:步进电机;单片机;细分驱动

基于单片机控制的步进电动机调速系统设计

论文题目:基于单片机控制的步进电动机调速系统设计 摘要 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。步进电机的调速一般是改变输入步进电机的脉冲的频率来实现步进电机的调速,因为步进电机每给一个脉冲就转动一个固定的角度,这样就可以通过控制步进电机的一个脉冲到下一个脉冲的时间间隔来改变脉冲的频率,延时的长短来具体控制步进角来改变电机的转速,从而实现步进电机的调速。在本设计方案中采用AT89C51型单片机内部的定时器改变CP脉冲的频率从而实现对步进电机的转速进行控制,实现电机调速与正反转的功能。 关键词:步进电机,单片机,调速系统

Abstract: Step-by-step electric motor is the ring opening gating element changing electricity pulse signal into angular displacement or line displacement. Under the situation of must overload, the electric motor rotation rate , discontinuous location depend on pulse signal frequency and pulse number only , make free from being loaded with the effect changing ,but be that being added a pulse signal , the electric motor by electric motor is to have rotated a step spur angle. This gleam of the sexual relationships existence, adds step-by-step electric motor characteristics such as only having the cyclicity error but there being no accumulative error.Feasible simplicity controlling a field using step-by-step electric motor to come to control changeable extraordinary in speed , location etc.Step-by-step electric motor speed regulation general be change import step-by-step electric motor pulse frequency come true step-by-step electric motor speed regulation, because of step-by-step electric motor every be given to a pulse right away rotate one fixed angle, such right away not bad pass under the control of step-by-step electric motor a pulse arrive at next pulse period come to change pulse frequency,Come to control the speed regulation , realizing step-by-step electric motor thereby to come to change the electric motor rotation rate step-by-step angle concretely the deferred length. Frequency adopt the internal timer of AT89C51 type monolithic machine to change CP pulse in the design plan in realizes the speed regulation controlling , realizing an electric motor and the function that the positive and negative rotates being in progress to step-by-step electric motor rotation rate thereby. Key words:Step-by-step electric motor , monolithic machine , speed regulation system

自己做的四相八拍步进电机调速

1 引言 在工业控制系统里步进电动机是主要的控制元件之一。步进电机具有快速启动停止,精确定位和能够使用数字信号进行控制,能够实现脉冲-角度转换的特点,因此得到广泛的应用。在使用步进电机的控制系统里,脉冲分配器产生周期的控制脉冲序列,步进电机驱动器每接收一个脉冲就控制步进电机沿给定方向步进一步。 本实验旨在通过控制AT89S52芯片,实现对四相步进电机的转动控制。具体功能主要是控制电机正转、反转、加速与减速。 具体工作过程是:给试验箱上电后,拨动启动开关,步进电机按照预先设置的转速和转动方式转动。调整正反转按钮,步进电机实现正反转切换;拨动加速开关,步进电机转速加快,速度达到最大值,不再加速;拨动减速开关时,电机减速转动,速度减到最小速度,停止减速。 2 四相步进机 2.I 步进电机 步进电机是一种将电脉冲转化为角位移的执行机构。电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 2.2 步进电机的控制

1.换相顺序控制:通电换相这一过程称为脉冲分配。例如:混合式步进电机 的工作方式,其各相通电顺序为A-B-C-D,通电控制脉冲必须严格按照这一顺序分别控制A,B,C,D相的通断。 2.控制步进电机的转向控制:如果给定工作方式正序换相通电,步进电机正 转,如果按反序通电换相,则电机就反转。 3.控制步进电机的速度控制:如果给步进电机发一个控制脉冲,它就转一步, 再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。 2.3 步进电机的工作过程 图2.1步进电机设计图 开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。 而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。 依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 八拍工作方式的电源通电时序与波形如图所示:

基于单片机的步进电机调速系统设计论文

南京理工大学 课程设计说明书(论文) 姓名: 高建宽学号:0902030109 专业: 机电一体化 题目: 基于单片机的步进电机调速系统设计 张平 指导者: 2013 年 2 月

课程设计说明书(论文)中文摘要

课程设计说明书(论文)外文摘要

目次 1 绪论 (1) 2 步进电机简介 (2) 2.1 步进电机的概念 (2) 2.2 步进电机的分类 (2) 2.3 步进电机的基本参数 (2) 2.3.1 空载启动频率 (2) 2.3.2 电机固有步距角 (2) 2.3.3 步进电机的相数 (3) 2.3.4 保持转矩 (3) 2.4 步进电机动态指标及术语: (3) 2.5 步进电机的调速的控制原理 (4) 3 基本方案设定和硬件设计 (5) 3.1 基本方案确定 (5) 3.2 硬件设计 (5) 3.2.1 单片机的选择:AT89S52 (5) 3.2.2 驱动芯片的选择:ULN2003A (9) 3.3.3 步进电机的选择:四相反应式步进电机 (9) 4 软件设计 (10) 5 调试与仿真 (11) 5.1 keil调试 (11) 5.2 Proteus仿真 (12) 结论 (13) 致谢 (14) 参考文献 (15) 附录A (16) 附录B (17)

1 绪论 步进电动机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电动机的需求量与日俱增,在各个国民经济领域都有应用。1920年步进电机的实际应用才开始,称为VR(Variable Reluctance变磁阻)型步进电机,被英国海军用作定位控制和远程遥控。混合式HB(Hybrid 的缩写,是VR与PM复合的意思)型步进电机的产生,大约在1952年,由美国GE公司的Karl Feiertag 开发的发电机演变而来。步进电机的大规模应用是在1977年开始,两相步进电机被应用于FDD(floppy disk drive 软盘驱动器)输出轴的驱动上。在生产过程中要求自动化、省人力、效率高的机器中,我们很容易发现步进电机的踪迹,尤其以重视速度、位置控制、需要精确操作各项指令动作的灵活控制性场合步进电机用得最多。步进电机是将电脉冲信号变换成角位移或直线位移的执行部件。步进电机可以直接用数字信号驱动,使用非常方便。一般电动机都是连续转动的,而步进电动机则有定位和运转两种基本状态,当有脉冲输入时步进电动机一步一步地转动,每给它一个脉冲信号,它就转过一定的角度。步进电动机的角位移量和输入脉冲的个数严格成正比,在时间上与输入脉冲同步,因此只要控制输入脉冲的数量、频率及电动机绕组通电的相序,便可获得所需的转角、转速及转动方向。在没有脉冲输入时,在绕组电源的激励下气隙磁场能使转子保持原有位置处于定位状态。因此非常适合于单片机控制。步进电机还具有快速启动、精确步进和定位等特点,因而在数控机床,绘图仪,打印机以及光学仪器中得到广泛的应用。步进电动机已成为除直流电动机和交流电动机以外的第三类电动机。传统电动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的作用。步进电机可以作为一种控制用的特种电机,利用其没有积累误差精度为100的特点,广泛应用于各种开环控制。现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。

相关主题
文本预览
相关文档 最新文档