当前位置:文档之家› 浙江专用2021版新高考数学一轮复习第八章立体几何与空间向量2第2讲空间几何体的表面积与体积教学案

浙江专用2021版新高考数学一轮复习第八章立体几何与空间向量2第2讲空间几何体的表面积与体积教学案

浙江专用2021版新高考数学一轮复习第八章立体几何与空间向量2第2讲空间几何体的表面积与体积教学案
浙江专用2021版新高考数学一轮复习第八章立体几何与空间向量2第2讲空间几何体的表面积与体积教学案

第2讲空间几何体的表面积与体积

1.圆柱、圆锥、圆台的侧面展开图及其侧面积公式

圆柱圆锥圆台

侧面

展开图

侧面

积公式

S圆柱侧=2πrl S圆锥侧=πrl

S圆台侧=

π(r+r′)l

表面积体积柱体

(棱柱和圆柱)

S表面积=S侧+2S底V=S底h 锥体

(棱锥和圆锥)

S表面积=S侧+S底V=

1

3

S底h 台体

(棱台和圆台)

S表面积=S侧

+S上+S下

V=

1

3

(S上+S下

+S上S下)h 球S=4πR2V=

4

3

πR3

(1)正方体的棱长为a,外接球的半径为R,内切球的半径为r;

①若球为正方体的外接球,则2R=3a;

②若球为正方体的内切球,则2r=a;

③若球与正方体的各棱相切,则2R′=2a.

(2)长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.

(3)正四面体的棱长为a,外接球的半径为R,内切球的半径为r;

①外接球:球心是正四面体的中心;半径R=

6

4

a;

②内切球:球心是正四面体的中心;半径r=

6

12

a.

[疑误辨析]

判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( ) (3)球的体积之比等于半径比的平方.( )

(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( ) (5)长方体既有外接球又有内切球.( )

(6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2π

S .( )

答案:(1)√ (2)× (3)× (4)√ (5)× (6)× [教材衍化]

(必修2P27练习T1改编)已知圆锥的表面积等于12π cm 2

,其侧面展开图是一个半圆,则底面圆的半径为________.

解析:S 表=πr 2

+πrl =πr 2

+πr ·2r =3πr 2

=12π, 所以r 2

=4,所以r =2. 答案:2 cm [易错纠偏]

常见误区 (1)不能把三视图正确还原为几何体而错解表面积或体积; (2)考虑不周忽视分类讨论; (3)几何体的截面性质理解有误; (4)混淆球的表面积公式和体积公式.

1.已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m 3

.

解析:根据三视图可知该四棱锥的底面是底边长为2 m ,高为1 m 的平行四边形,四棱锥的高为3 m .故该四棱锥的体积V =13

×2×1×3=2(m 3

).

答案:2

2.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________.

解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2

,故所求的表面积是32π2

+8π或32π2

+32π.

答案:32π2

+8π或32π2

+32π

3.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为________.

解析:因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2

+22π×22=12π.

答案:12π

4.一个球的表面积是16π,那么这个球的体积为________.

解析:设球的半径为R ,则由4πR 2

=16π,解得R =2,所以这个球的体积为43πR 3=

323π.

答案:32

3

π

空间几何体的表面积

(1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半

径.若该几何体的体积是28π

3

,则它的表面积是( )

A .17π

B .18π

C .20π

D .28π

(2)某几何体的三视图如图所示,则该几何体的表面积等于( )

A .8+2 2

B .11+2 2

C .14+2 2

D .15

【解析】 (1)由三视图可得此几何体为一个球切割掉1

8

后剩下的几何体,设球的半径为

r ,故78×43πr 3=283π,所以r =2,表面积S =78×4πr 2+34

πr 2=17π,选A.

(2)由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示. 直角梯形斜腰长为12

+12

=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×1

2×1×(1+2)=3,所以该

几何体的表面积为8+22+3=11+2 2.

【答案】 (1)A (2)B

空间几何体表面积的求法

(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量关系.

(2)多面体的表面积是各个面的面积之和;组合体的表面积问题注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.

1.(2020·嘉兴期中)若圆锥的侧面展开图是圆心角为120°、半径为1的扇形,则这个圆锥的表面积与侧面积的比是( )

A .4∶3

B .2∶1

C .5∶3

D .3∶2

解析:选A.圆锥的侧面积S 侧=π×12

×120360=π3,

圆锥的底面半径r =2π×1×120360÷2π=1

3,

圆锥的底面积S 底=π·19=π

9,

圆锥的表面积=侧面积+底面积=4π

9

高中数学空间向量与立体几何测试题及答案

一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++ D.11111 ()2 AB CD AC ++ 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-, ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C 7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,,

的中点,则2a 等于( ) A.2BA AC · B.2AD BD · C.2FG CA · D.2EF CB · 答案:B 8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122 -,, C.51122 --,, D.51122 ,, 答案:A 9.若向量(12)λ=,,a 与(212)=-, ,b 的夹角的余弦值为8 9,则λ=( ) A.2 B.2- C.2-或 255 D.2或255 - 答案:C 10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412??- ???,, B.(241),, C.(2141)-,, D.(5133)-,, 答案:D 11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos 3 D.3arccos 6 答案:D 12.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···; ②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面; ③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( ) A.1 B.2 C.3 D.4 答案:C 二、填空题 13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055?? - ??? ,,

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

(三)立体几何与空间向量

(三)立体几何与空间向量 1.如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P A⊥平面ABCD,P A=AB,M是PC上一点,且BM⊥PC. (1)求证:PC⊥平面MBD; (2)求直线PB与平面MBD所成角的正弦值. (1)证明连接AC,由P A⊥平面ABCD, BD?平面ABCD,得BD⊥P A, 又BD⊥AC,P A∩AC=A, P A,AC?平面P AC, ∴BD⊥平面P AC,又PC?平面P AC,∴PC⊥BD. 又PC⊥BM,BD∩BM=B, BD,BM?平面MBD, ∴PC⊥平面MBD. (2)解方法一由(1)知PC⊥平面MBD, 即∠PBM是直线PB与平面MBD所成的角. 不妨设P A=1,则BC=1,PC=3,PB= 2. ∴PC2=PB2+BC2,∴PB⊥BC,又BM⊥PC, ∴sin∠PBM=cos∠BPC=PB PC=2 3 = 6 3, 故直线PB与平面MBD所成角的正弦值为 6 3. 方法二以A为原点,AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系A-xyz(如图所示),

不妨设P A =AB =1, 则P (0,0,1),B (1,0,0),C (1,1,0). 由(1)知平面MBD 的一个法向量为PC → =(1,1,-1), 而PB → =(1,0,-1). ∴cos 〈PB →,PC → 〉=(1,0,-1)·(1,1,-1)2×3=63, 故直线PB 与平面MBD 所成角的正弦值为 63 . 2.如图,已知△DEF 与△ABC 分别是边长为1与2的正三角形,AC ∥DF ,四边形BCDE 为直角梯形,且DE ∥BC ,BC ⊥CD ,点G 为△ABC 的重心,N 为AB 的中点,AG ⊥平面BCDE ,M 为线段AF 上靠近点F 的三等分点. (1)求证:GM ∥平面DFN ; (2)若二面角M -BC -D 的余弦值为 7 4 ,试求异面直线MN 与CD 所成角的余弦值. (1)证明 延长AG 交BC 于点O ,连接ON ,OF . 因为点G 为△ABC 的重心, 所以AG AO =2 3,且O 为BC 的中点. 又由题意知,AM →=23AF → , 所以AG AO =AM AF =23, 所以GM ∥OF . 因为点N 为AB 的中点,

空间向量与立体几何教案(强烈推荐)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处

理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量 叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当 我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a 同向, 当λ<0时与a 反向的所有向量。 (3)若直线l ∥a ,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导的表达式。

利用空间向量解立体几何 完整版

向量法解立体几何 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离

点()111,,P x y z 与()222,,Q x y z 的 距离为PQ =u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

高中数学必背公式——立体几何与空间向量(供参考)

高中数学必背公式——立体几何与空间向量 知识点复习: 1. 空间几何体的三视图“长对正、高平齐、宽相等”的规律。 2. 在计算空间几何体体积时注意割补法的应用。 3. 空间平行与垂直关系的关系的证明要注意转化: 线线平行 线面平行 面面平行,线线垂直 线面垂直 面面垂直。 4.求角:(1)异面直线所成的角: 可平移至同一平面;也可利用空间向量:cos |cos ,|a b θ=<>= 1212122 222 2 2 1 1 1 222 |||||| a b a b x y z x y z ?= ?++?++(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)。 (2)直线与平面所成的角: 在斜线上找到任意一点,过该点向平面作垂线,找到斜线在该平面上的射影,则斜线和射影所成的角便是直线与平面所成的角;也可利用空间向量,直线AB 与平面所成角sin |||| AB m AB m β?= (m 为平面α的法向量). (3)二面角: 方法一:常见的方法有三垂线定理法和垂面法; 方法二:向量法:二面角l αβ--的平面角cos |||| m n arc m n θ?=或cos ||||m n arc m n π?- (m ,n 为平面α,β 的法向量). 5. 求空间距离: (1)点与点的距离、点到直线的距离,一般用三垂线定理“定性”; (2)两条异面直线的距离:|| || AB n d n ?= (n 同时垂直于两直线,A 、B 分别在两直线上); (3)求点面距: || || AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈); (3)线面距、面面距都转化为点面距。 题型一:空间几何体的三视图、体积与表面积 例1:已知一个几何体是由上下两部分构成的组合体,

空间向量与立体几何知识点归纳总结52783

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1 )向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。 (3)三点共线:A 、B 、C 三点共线<=>λ= <=>)1(=++=y x OB y OA x OC 其中 (4)与共线的单位向量为a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数 ,x y 使p xa yb =+。 (3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组,,x y z ,使p xa yb zc =++。

专题06 平面向量 -2020年浙江省高考数学命题规律大揭秘

专题06 平面向量 【真题感悟】 1.(2018年浙江卷)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2?4e·b+3=0,则|a?b|的最小值是() A.B.C.2 D. 【★答案★】A 【解析】设, 则由得, 由得 因此的最小值为圆心到直线的距离减去半径1,为选A. 2.(2017年浙江卷)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记,,,则 A.I1

3.(2019年浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时, 123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______. 【★答案★】(1)0 (2) 25 【解析】 ()()12345613562456AB BC CD DA AC BD AB AD λ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λ 要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λ的最小,只需要 135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ= 此时123456min 0AB BC CD DA AC BD λ+λ+λ+λ+λ+λ= 等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正. 比如1234561,1,,1,1,11λλλ=-λλ=-=λ=== 则123456max 2025AB BC CD DA AC BD λ+λ+λ+λ+λ+λ= =4.(2017年浙江卷)已知向量a,b 满足1,2a b ==,则a b a b ++-的最小值是___________,最大值是______. 【★答案★】 4 5【解析】设向量,a b 的夹角为θ,由余弦定理有: 2 2 12212cos 54cos a b θθ-=+-???=- ()2212212cos 54cos a b πθθ+=+-???-=+,则: 54cos 54cos a b a b θθ++-=+-

2021高考数学立体几何专题

专题09立体几何与空间向量选择填空题历年考题细目表 题型年份考点试题位置 单选题2019 表面积与体积2019年新课标1理科12 单选题2018 几何体的结构特征2018年新课标1理科07 单选题2018 表面积与体积2018年新课标1理科12 单选题2017 三视图与直观图2017年新课标1理科07 单选题2016 三视图与直观图2016年新课标1理科06 单选题2016 空间向量在立体几何中的应 用2016年新课标1理科11 单选题2015 表面积与体积2015年新课标1理科06 单选题2015 三视图与直观图2015年新课标1理科11 单选题2014 三视图与直观图2014年新课标1理科12 单选题2013 表面积与体积2013年新课标1理科06 单选题2013 三视图与直观图2013年新课标1理科08 单选题2012 三视图与直观图2012年新课标1理科07 单选题2012 表面积与体积2012年新课标1理科11 单选题2011 三视图与直观图2011年新课标1理科06 单选题2010 表面积与体积2010年新课标1理科10 填空题2017 表面积与体积2017年新课标1理科16 填空题2011 表面积与体积2011年新课标1理科15 填空题2010 三视图与直观图2010年新课标1理科14 历年高考真题汇编 1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为() A.8πB.4πC.2πD.π 2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()

立体几何与空间向量

中档大题规范练2 立体几何与空间向量 1.如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点. (1)求证:PO ⊥平面ABCD ; (2)求B 点到平面PCD 的距离; (3)线段PD 上是否存在一点Q ,使得二面角Q —AC —D 的余弦值为 63?若存在,求出PQ QD 的值;若不存在,请说明理由. (1)证明 因为P A =PD =2,O 为AD 的中点, 所以PO ⊥AD ,因为侧面P AD ⊥底面ABCD , 所以PO ⊥平面ABCD . (2)解 以O 为原点,OC ,OD ,OP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,则B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1). PB →=(1,-1,-1),设平面PDC 的法向量为u =(x ,y ,z ),CP →=(-1,0,1),PD →=(0,1,- 1). 则????? u · CP →=-x +z =0,u · PD →=y -z =0,取z =1,得u =(1,1,1), B 点到平面PDC 的距离d =|BP →·u ||u |=33 . (3)解 假设存在,则设PQ →=λPD → (0<λ<1), 因为PD →=(0,1,-1),所以Q (0,λ,1-λ), 设平面CAQ 的法向量为m =(a ,b ,c ),

则????? m ·AC →=0,m ·AQ →=0,即????? a + b =0, (λ+1)b +(1-λ)c =0, 所以取m =(1-λ,λ-1,λ+1), 平面CAD 的法向量n =(0,0,1), 因为二面角Q —AC —D 的余弦值为 63 , 所以|m·n||m||n |=63 , 所以3λ2-10λ+3=0, 所以λ=13或λ=3(舍去),所以PQ QD =12 . 2.如图,在长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE . (1)证明:平面DFC ⊥平面D 1EC ; (2)求二面角A —DF —C 的大小. (1)证明 以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系, 则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2). ∵E 为AB 的中点, ∴E 点坐标为(1,1,0), ∵D 1F =2FE , ∴D 1F →=23D 1E →=23 (1,1,-2) =(23,23,-43 ), DF →=DD 1→+D 1F →=(0,0,2)+(23,23,-43 )

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式 cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求 两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的范围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补. 7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距

立体几何与空间向量

10 第七部分 立体几何与空间向量 一、知识梳理 (一)基本知识梳理:见《步步高》文科P123—124 ;理科P135—137 . (二)要点梳理: 1。平面的基本性质是高考中立体几何的重点容.要掌握平面的基本性质,特别注意:不共线的三点确定一个平面.考察点和平面的位置关系时,要注意讨论点在平面的同侧还是两侧,会根据不同的情况作出相应的图形. [例]已知线段AB 长为3,A 、B 两点到平面α的距离分别为1与2,则AB 所在直线与平面α所成角的大小为_____; 解析:要注意到点A 、B 是平面α同侧还是在平面α的两侧的情况.当A 、B 在平面α的同侧时,AB 所在直线与平面α所成角大小为31arcsin ;当A 、B 在平面α的两侧时,AB 所在直线与平面α所成角为 2 π. 2。线面关系中三类平行的共同点是“无公共点”;三类垂直的共同点是“成角90°”.线面平行、面面平行,最终化归为线线平行;线面垂直、面面垂直,最终化归为线线垂直. [例]已知平面βα,,直线b a ,.有下列命题:(1) βαβα////a a ?????;(2)αββα//a a ?? ?? ⊥⊥ (3)βαβα////??????⊥⊥b a b a ;(4)βαβα////??? ? ?? ??b a b a .其中正确的命题序号是______. 解析:立体几何中的符号语言所描述的问题是高考命题中的重点,基本上每年的高考在选择或填空题中都会有涉及,要充分理解符号语言所体现的几何意义.(1)体现的是两平面平行的一个性质:若两平面平行,则一个平面的任一直线与另一平面平行.(2)要注意的是直线a 可能在平面α.(3)注意到直线与平面之间的关系:若两平行直线中的一条与一个平面垂直,则另一条也与这个平面垂直.且垂直于同一直线的两个平面平行.(4)根据两平面平行的判定知,一个平面两相交直线与另一个平面平行,两平面才平行.由此知:正确的命题是(1)与(3). 3。直线与平面所成角的围是]2, 0[π ;两异面直线所成角的围是]2 ,0(π .一般情况下,求二面角往往是指定 的二面角,若是求两平面所成二面角只要求出它们的锐角(直角)情况即可. [例]设A 、B 、C 、D 分别表示下列角的取值围:(1)A 是直线倾斜角的取值围;(2)B 是锐角;(3)C 是直线与平面所成角的取值围;(4)D 是两异面直线所成角的取值围.用“?”把集合A 、B 、C 、D 连接起来得到___. (答案:A C D B ???) 4。立体几何中的计算主要是角、距离、体积、面积的计算.两异面直线所成角、直线与平面所成角的计算是重点.求两异面直线所成角可以利用平移的方法将角转化到三角形中去求解,也可以利用空间向量的方法,特别要注意的是两异面直线所成角的围.当求出的余弦值为a 时,其所成角的大小应为||arccos a . [例]正方体ABCD -A 1B 1C 1D 1中,E 是AB 中点,则异面直线DE 与BD 1所成角的大小为_____. (答案:515 arccos ) 特别需要注意的是:两向量所成的角是两向量方向所成的角,它与两向量所在的异面直线所成角的概念是 不一样的.本题中的向量1BD 与所成的角大小是两异面直线DE 与BD 1所成角的补角. 5。直线与平面所成角的求解过程中,要抓住直线在平面上的射影,转化到直角三角形中去求解.点到平面的距离的求解可以利用垂线法,也可以利用三棱锥的体积转化. C A 1 B 1 C 1 E

利用空间向量解立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为(PQ x =2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ 在法向量 (),n A B =上的射影PQ n n ?= 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

2015年浙江高考数学(理科)试卷(含答案)

2015年浙江省高考数学试卷(理科) 一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科) 1.(5分)(2015?浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(?R P)∩Q=() A .[0,1)B . (0,2]C . (1,2)D . [1,2] 2.(5分)(2015?浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是() A .8cm3B . 12cm3C . D . 3.(5分)(2015?浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则() A .a1d>0,dS4 >0 B . a1d<0,dS4 <0 C . a1d>0,dS4 <0 D . a1d<0,dS4 >0 4.(5分)(2015?浙江)命题“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.?n∈N*,f(n)?N*且f(n)>n B.?n∈N*,f(n)?N*或f(n)>n C.?n0∈N*,f(n0)?N*且f(n0)>n0D.?n0∈N*,f(n0)?N*或f(n0)>n0 5.(5分)(2015?浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()

A .B . C . D . 6.(5分)(2015?浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数() 命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件; 命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C) A.命题①和命题②都成立B.命题①和命题②都不成立 C.命题①成立,命题②不成立D.命题①不成立,命题②成立 7.(5分)(2015?浙江)存在函数f(x)满足,对任意x∈R都有() A .f(sin2x)=sinx B . f(sin2x) =x2+x C . f(x2+1)=|x+1| D . f(x2+2x) =|x+1| 8.(5分)(2015?浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则() A .∠A′DB≤αB . ∠A′DB≥αC . ∠A′CB≤αD . ∠A′CB≥α 二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9.(6分)(2015?浙江)双曲线=1的焦距是,渐近线方程 是. 10.(6分)(2015?浙江)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.

高职高考数学课程初步立体几何

第四编 立体几何初步 第九章 立体几何初步 第一节 简单几何体的表面积和体积 1. 圆柱、圆锥、圆台的侧面展开图及侧面积的计算公式如下: 2. 球、柱、锥、台的表面积及体积计算公式: 名 称 表面积S 体积V 棱 柱 底侧S S 2+ h S 底 棱 锥 底侧S S + h S 底3 1 棱 台 下底上底侧S S S ++ h S S S S )(3 1 下底上底下底上底?++ 球 24R π 33 4 R π 圆 柱 )(2r l r +π h r 2π 圆 锥 )(r l r +π h r 23 1π 圆 台 )()(222121r r l r r +++ππ )(3 1 222121r r r r h ++π 第二节 三视图 1. 柱、锥、台、球的结构特征 (1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体. (2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体. (3)棱台:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分. (4)圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体. l r r π2r l r π2l ' r r ' 2r πr π2rl s π2=侧rl S π=侧()l r r S '+=π侧

(5)圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体. (6)圆台:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分. (7)球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体. 2. 空间几何体的三视图和直观图: (1)三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) (2)画三视图的原则:长对正,高齐平,宽相等. (3)直观图:斜二侧画法. ①在已知图形中取相互垂直的x 轴和y 轴,两轴相交于点O ,画直观图时,把它们画成对应的'x 轴和'y 轴,两轴相交于点'O ,且使)135(45??='''∠或y O x ,它们确定的平面表示水平面. ②原来与x 轴平行的线段仍然与x 平行且长度不变; ③原来与y 轴平行的线段仍然与y 平行,长度为原来的一半. 第三节 空间几何体的平行问题 1. 线线平行的判断: ①平行于同一条直线的两条直线互相平行。 ②平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 ③如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线 和交线平行。 l b a l b l a // //?b a // α b a α α ?b b a //?α //a ? b a a =?βαβα // b a //

2016年浙江省数学高考模拟精彩题选——平面向量含答案

2016浙江精彩题选——平面向量 【一、数量积的余弦定理式】 1.(2016名校联盟第一次)15.空间四点A ,B ,C ,D 满足|→AB |=2,|→BC |=3,|→ CD |=4,|→DA |=7,则→AC ·→ BD 的值为___19____. 分 析 : 应 用 数 量 积 的 余 弦 定 理 版 , AC BD=AB+BC)BD AB BD +BC BD)??=??u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r (()(= 222222|AB||||||BC||||C |22 BD AD BD D +-+--+=19 2.(2016大联考13).如图,在三棱锥ABC 中,已知2AB AD ==,1BC =, 3AC BD ?=-u u u r u u u r ,则CD = 7 . 分析: 22222||||||||||1()3 22 AC AD DC AC AB AC BD AC AD AB AC AD AC AB +-+-?=?-=?-?=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 3.(2016镇海最后卷15)如图,在平面四边形ABCD 中,已知E 、F 、G 、H 分别是棱AB 、BC 、CD 、DA 的中点,若2 2 |EG ||HF |1-=,设|AD|=x,|BC|=y,|AB|=z,|CD|=1,则228 x y z ++的最大值是 1 2 H G F E A D

相关主题
文本预览
相关文档 最新文档