当前位置:文档之家› 数学分析第十三章函数列与数项级数的复习题

数学分析第十三章函数列与数项级数的复习题

数学分析第十三章函数列与数项级数的复习题
数学分析第十三章函数列与数项级数的复习题

第十三章函数列与函数项级数的复习题

一、 判断题。

1. 函数项级数∑u n ()x 在数集D 上一致收敛的充分必要条件是函数列{u n

()

x }在D 上一致收敛于零。

( )

2. 函数列{f (X )}在数集D 上一致收敛的充要条件是:对任给正数ε,总存在正数N ,使得当n ,m ﹥N 时,对一切X ∈D ,都有|f n

(X )﹣

f m

(X )|﹤ε。

( )

3. 若函数列{ f n }在区间Ⅰ上一致收敛,且每一项都连续,则其

极限

函数

f

在Ⅰ上也连续。

( )

4. 若函数项级数∑u n (X )在区间[a,b]上一致收敛,且每一项

不都连续,则其和函数在[a,b]上是连续的。 ( )

5. 若函数列{ f n }在区间[a,b]上一致收敛, 且每一项都连续,

?∞

→b

a

n lim f n

(X )dx =

?

→b

a

n lim f n

(X )dx 。

( ) 二、 填空题。

6.默写M 判别法: 。

7. 设{s n ()x }是函数项级数∑u n ()x 的部分和函数列。若{s n ()x }在数集D 上一致收敛于函数S ()x ,则称函数项级数∑u n ()

x

在D 上

于函数S ()x ,或称∑u n

()x 在D 上

8. 若函数项级数∑

n

ns

2

sin 在(∞+,)∞-上一致收敛,

则∑

n

nx

2

cos 在(∞+,)∞-上 。

9. 若函数项级数∑u n ()x 在[a,b]上一致收敛,且每一项u n ()x 都连续,则()x b

a n u ∑?dx = 。

三、 判别下列函数项级数在所示区间上的一致收敛性。 10.∑

+x

n

x 2

4

1,x ∈[1,10]

11. ∑n x n

2,x ∈[0,1]

12. ∑!

2

n x ,x

∈[-a,a]

13.

()x f n =n

x 2

2

1

+

,n =1,2,3…,D=(-1,1)

四、 设s ()x =∑∞=-1

21

n n n

x ,x ∈[-1,1],计算积分?x

s 0()t dt.

五、 证明:设

f n

()x f →()x ,x ∈D ,→a

n

0(→n ∞)

(a n >0)。 若对每一个正整数n 有∣f n

()x f -()x ∣≦a n

,x

∈D ,则{

f

n

}

在D 上一致收敛于f

答案

一、 判断题。

1.(×);

2.( √ ) ;

3.( √ );

4.( × );

5.( √ )。 二、 填空题。

6.M 判别法:设函数项级数∑u n ()x 定义在数集D 上,∑M n 为收敛的正项级数,若对一切∈x D,有∣()x u n ∣≦M n ,n =1,2,3…,则函数项级数∑u n ()x 在D 上一致收敛。 7.一致收敛,一致收敛。 8. 一致收敛。 9. ()x b

a n u ?∑dx

三、 判别下列函数项级数在所示区间上的一致收敛性。 10.解:∈x [1,10],∣x

n

x 2

4

1+∣≦n

4

10

∵∑

n

2

10

收敛

∴根据M 判别法可知:∑

x

n x 2

4

1+在∈x [1,10]上一致收敛。

11.解:x ∈[0,1],∣n x n

2∣≦

n

2

1

∵∑

n

2

1

收敛

∴根据M 判别法可知:∑n

x n

2在[0,1] 上一致收敛。

12. 解:x ∈[-a,a],而∣

!n x n

∣≦!

n a n

∵∑!

n a n 收敛

∴根据M 判别法可知:∑!

n x n

在[-a,a]上一致收敛。

13. 解:()x f n n lim

→=n

x n 2

2

1

lim +

→ =

x

2

=∣x ∣

()

x f n

→→

∣x ∣,∞→n ,()εN

N =,()1,1-∈?x

ε?﹥0,要使∣

()x f n

-∣x ∣∣﹤ε

n

x

2

2

1

+

-∣x ∣∣=x

n

x

n +

+

2

2

2

1

1

≦n

n 1

1

2

=

n

1

﹤ε

n ﹥

ε

1

,则取=

N ε

1

﹥0

ε?﹥0,?=

N ε

1

﹥0,?n ﹥N , ()

1,1-∈?x

有∣

()x f n

-∣x ∣∣﹤ε

所以

()x f n

在(-1,1)是一致收敛的。

四、 解:∈x [-1,1],而∣n x n 21

-∣≦

n

2

1

∵∑

n

2

1

收敛

∴根据M 判别法可知:∑∞

=-1

21

n n n

x 在[-1,1]上一致收敛,

又n

x n 21

-在[-1,1]上连续,从而由逐项求积可知

()∑∑??∞

=∞

=-==1

31

0210n n

n x

n x

n

x n

t s dt dt t

五、 证明:=∞

→a n n lim 0? ε?﹥0,N N +∈?,?n ﹥N 时,

有∣0-a n ∣﹤εa n ?﹤ε

()x f n

()x f → ,D

x ∈,∣

()x f n

-()x f ∣≦a

n

﹤ε

即证()x f n

()x f (∞→n )

,D x ∈。

高一数学函数练习题及答案

数学高一函数练习题(高一升高二衔接) 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x = +-+ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y = ⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x ; ⑸21)52()(-=x x f , 52)(2-=x x f 。

[推荐学习]2019年中考数学复习专题复习五函数的实际应用题练习

专题复习(五) 函数的实际应用 题 类型1 一次函数的图象信息题 1.求函数解析式的方法有两种:一种是直接利用两个变量之间的等量关系建立函数模型;另一种是采用待定系数法,用待定系数法解题,先要明确解析式中待定系数的个数,再从已知中得到相应个数的独立条件(一般来讲,最直接的条件是点的坐标),最后代入求解.当解析式中的待定系数只有一个时,代入已知条件后会得到一个一元一次方程;当解析式中的待定系数为两个或两个以上时,代入独立条件后会得到方程组.正因如此,能正确地解方程(组)成为运用待定系数法求解析式的前提和基础. 2.用函数探究实际中的最值问题,一种是对于一次函数解析式,分析自变量的取值范围,得出最值问题的答案;另一种是对于二次函数解析式,首先整理成顶点式,然后结合自变量取值范围求解,最值不一定是顶点的纵坐标,画出函数在自变量取值范围内的图象,图象上的最高点的纵坐标是函数的最大值,图象上的最低点的纵坐标是函数的最小值.3.在组合函数中,若有一个函数是分段函数,则组合后的函数也必须分段. 1.(2018·吉林)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30 min.小东骑自行车以300 m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示: (1)家与图书馆之间的路程为4__000 m,小玲步行的速度为100m/min; (2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围; (3)求两人相遇的时间.

解:(1)结合题意和图象可知,线段CD 为小东路程与时间的函数图象,折线O —A —B 为小玲路程与时间的函数图象, 则家与图书馆之间路程为 4 000m ,小玲步行速度为(4 000-2 000)÷(30-10)=100 m /min . 故答案为:4 000,100. (2)∵小东从离家4 000 m 处以300 m /min 的速度返回家, 则x min 时,他离家的路程y =4 000-300x , 自变量x 的范围为0≤x≤40 3 . (3)当x =10时,y 玲=2 000,y 东=1 000,即两人相遇是在小玲改变速度之前, ∴令4 000-300x =200x ,解得x =8. ∴两人相遇时间为第8分钟. 2.(2018·成都)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花 卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m 2 )之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元. (1)直接写出当0≤x≤300和x >300时,y 与x 的函数关系式; (2)广场上甲、乙两种花卉的种植面积共1 200 m 2,若甲种花卉的种植面积不少于200 m 2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元? 解:(1)y =错误! (2)设甲种花卉种植为a m 2,则乙种花卉种植(1 200-a)m 2 . ∴a≤2(1 200-a),解得a≤800. 又a≥200,∴200≤a≤800. 当200≤a<300时, W 1=130a +100(1 200-a)=30a +120 000.

数学分析教案(华东师大版)第十三章函数列与函数项级数

第十三章函数列与函数项级数 教学目的:1.使学生理解怎样用函数列(或函数项级数)来定义一个函数;2.掌握如何利用函数列(或函数项级数)来研究被它表示的函数的性质。 教学重点难点:本章的重点是函数列一致收敛的概念、性质;难点是一致收敛的概念、判别及应用。 教学时数:20学时 §1 一致收敛性 函数列及极限函数:对定义在区间I上的函数列,介绍概念: 一. 收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念. ”定义. 逐点收敛( 或称为“点态收敛”)的“ 例1 对定义在 义验证其收敛域为 例2 .用“”定义验证在内. 例3 考查以下函数列的收敛域与极限函数: .

⑴. . ⑵. . ⑶设 为区间上的全体有理数所成数列. 令 , . ⑷. , . ⑸ 有 , , . (注意.) 二. 函数列的一致收敛性: 问题: 若在数集D上, . 试问: 通项 的解析性质是否必遗传给极限函数 ? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但 .

用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一种手段. 对这种函数, 就是其表达式.于是,由通项函数的解析性 质研究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓“整体收敛”的结果. 定义( 一致收敛) 一致收敛的几何意义. 在数集D上一致收敛, Th1 (一致收敛的Cauchy准则) 函数列 . , ( 介绍另一种形式.) 证( 利用式) ,……,有 易见逐点收敛. 设 , 对D成立, . 令 , ,D. 即 , ,. 推论1 在D上 D , 推论2 设在数集D上, . 若存在数列 使, 则函数列 应用系2 判断函数列

《数学分析》10第三章-函数极限

《数学分析》10第三章-函数极限

第三章 函数极限 引言 在《数学分析》中,所讨论的极限基本上分两 部分,第一部分是“数列的极限”,第二部分是“函数的极限”。二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例。 通过数列极限的学习。应有一种基本的观念:“极 限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”。例如,数列{}n a 这种变量即是研究当n →+∞时,{}n a 的变化趋势。 我们知道,从函数角度看,数列{}n a 可视为一种特殊的函数f ,其定义域为N +,值域是{}n a ,即 :() n f N R n a +→→; 或 (),n f n a n N +=∈或()n f n a =. 研究数列{}n a 的极限,即是研究当自变量n →+∞时, 函数()f n 变化趋势。 此处函数()f n 的自变量n 只能取正整数!因此自变 量的可能变化趋势只有一种,即n →+∞。但是,如果代之正整数变量n 而考虑一般的变量为x R ∈,那么情况又如何呢?具体地说,此时自变量x 可能的变化趋势是否了仅限于x →+∞一种呢? 为此,考虑下列函数:

1,0;()0,0.x f x x ≠?=?=? 类似于数列,可考虑自变量x →+∞时,()f x 的变化趋 势;除此而外,也可考虑自变量x →-∞时,()f x 的变化趋势;还可考虑自变量x →∞时,()f x 的变化趋势;还可考虑自变量x a →时,()f x 的变化趋势, L 由此可见,函数的极限较之数列的极限要复杂得 多,其根源在于自变量性质的变化。但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同。而在各类极限的性质、运算、证明方法上都类似于数列的极限。 下面,我们就依次讨论这些极限。 §1 函数极限的概念 一、x →+∞时函数的极限 1. 引言 设函数定义在[,)a +∞上,类似于数列情形,我们研 究当自变量x →+∞时,对应的函数值能否无限地接近于某个定数A。这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质。 例如 1(),f x x x =无限增大时,()f x 无限地接近于 0;(),g x arctgx x =无限增大时,()f x 无限地接近于2 π;(),h x x x =无限增大时,()f x 与任何数都不能无限地接近。正因为如此,所以才有必要考虑x →+∞时,()f x 的变化趋势。

高一数学函数试卷及答案

高一数学函数试卷及答 案 SANY GROUP system office room 【SANYUA16H-

函数测试题 班级 姓名 学号 成绩 一、选择题:(本题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数y = ) A )4 3 ,21(- B ]4 3,21[- C ),4 3[]2 1,(+∞?-∞ D ),0()0,2 1(+∞?- 2.下列对应关系f 中,不是从集合A 到集合B 的映射的是( ) A A=}{是锐角x x ,B=(0,1),f :求正弦; B A=R ,B=R ,f :取绝对值 C A=+R ,B=R ,f :求平方; D A=R ,B=R ,f :取倒数 3二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 7- B 1 C 17 D 25 4.已知???<+≥-=)6()2()6(5 )(x x f x x x f ,则f(3)为( ) A 2 B 3 C 4 D 5 5.二次函数2y ax bx c =++中,0a c ?<,则函数的零点个数是( ) A 0个 B 1个 C 2个 D 无法确定 6.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 3-≤a B 3-≥a C 5≤a D 5≥a 7.若132 log

中考数学函数总复习习题1

中考数学函数总复习习题1 [典型例题与练习] 平面直角坐标系 例1(1)已知a

(完整版)高一数学函数试题及答案

(数学1必修)函数及其表示 一、选择题 1.判断下列各组中的两个函数是同一函数的为( ) ⑴3 ) 5)(3(1+-+= x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 3.已知集合{}{} 421,2,3,,4,7,,3A k B a a a ==+,且* ,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5 4.已知2 2(1)()(12)2(2)x x f x x x x x +≤-??=-<

中考数学专题练习函数含答案

中考数学专题练习函数含 答案 The document was prepared on January 2, 2021

《函数》 一、选择题(每小题3分,共24分) 1.在平面直角坐标系中,点A(-2,3)在第( )象限. A.一 B.二 C.三 D.四 2.线段EF 是由线段PQ 平移得到的,点P (﹣1,4)的对应点为E (4,7),则点Q (﹣3,1)的对应点F 的坐标为( ) A .(﹣8,﹣2) B .(﹣2,﹣2) C .(2,4) D .(﹣6,﹣1) 3.函数1 x y x = +中的自变量x 的取值范围是( ) A .x ≥0 B .1x ≠- C .0x > D .x ≥0且1x ≠- 4. 若点 在函数 的图象上,则 的值是( ) B.-2 D. -1

5. 对于一次函数24y x =-+,下列结论错误的是( ) A .函数值随自变量的增大而减小 B .函数的图象不经过第三象限 C .函数的图象与x 轴的交点坐标是(0,4) D .函数的图象向下平移4个单位长度,可以得到2y x =-的图象 6. 对于函数x y 6 = ,下列说法错误的是 ( ) A. 图像分布在一、三象限 B. 图像既是轴对称图形又是中心对称图形 C. 当x >0时,y 的值随x 的增大而增大 D. 当x <0时,y 的值随x 的增大而减小 7. 关于抛物线2(1)2y x =--,下列说法错误的是( ) A .顶点坐标为(1,2-) B .对称轴是直线1x = C .开口方向向上 D .当x >1时,y 随x 的增大而减小

8. 设点()11,y x A 和()22,y x B 是反比例函数x k y = 图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 二、填空题(每小题3分,共24分) 9. 点 P (a ,a -3)在第四象限,则a 的取值范围是 . 10.在平面直角坐标系中,与点M (-2,1)关于y 轴对称的点的坐标是 . 11.一次函数62+=x y 的图象与x 的交点坐标是 . 12.反比函数k y x =的图象经过点(2,-1),则k 的值为 . 13.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为 . 14.小明放学后步行回家,如果他离家的路程s (米)与步行时间(t 分钟)的函数图象如图,他步行回家的平均速度是 米/分钟. 15.如图,已知A 点是反比例函数(0)k y k x =≠的图象上一点,AB y ⊥轴于 B ,且ABO △的面积为3,则k 的值为 .

函数列与函数项级数

Ch 13 函数列与函数项级数 ( 1 2 时 ) § 1 一致收敛性( 6 时 ) 一. 函数列及极限函数:对定义在区间I 上的函数列)}({x f n ,介绍概念: 收敛点,收敛域( 注意定义域与收敛域的区别 ),极限函数等概念. 逐点收敛 ( 或称为“点态收敛” )的“N -ε”定义. 例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n x , 用“N -ε”定义 验证其收敛域为] 1 , 1 (-, 且 ∞→n lim )(x f n = ∞→n lim n x =? ??=<. 1 , 1 , 1 || , 0 x x 例2 )(x f n =n nx sin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0. 例3 考查以下函数列的收敛域与极限函数: ) (∞→n . ⑴ )(x f n =x x x x n n n n --+-. )(x f n →,sgn x R ∈x . ⑵ )(x f n =1 21+n x . )(x f n →,sgn x R ∈x . ⑶ 设 ,,,,21n r r r 为区间] 1 , 0 [上的全体有理数所成数列. 令 )(x f n =???≠∈=. ,,, ] 1 , 0 [ , 0, ,,, , 12121n n r r r x x r r r x 且 )(x f n →)(x D , ∈x ] 1 , 0 [. ⑷ )(x f n =2 22 2x n xe n -. )(x f n →0, R ∈x .

156 ⑸ )(x f n =?? ? ? ? ? ???≤≤<≤-<≤--+ . 121 , 0 ,2121 ,42,210 ,41 11x x x x x n n n n n n n 有)(x f n →0, ∈x ] 1 , 0 [, ) (∞→n . ( 注意 ? ≡1 1)(dx x f n .) 二. 函数列的一致收敛性: 问题: 若在数集D 上 )(x f n →)(x f , ) (∞→n . 试问: 通项)(x f n 的解析性质是否必遗传给极限函数)(x f ? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但 ∞ →n lim () ? ?∞ →≠1 1 0)(lim )(dx x f dx x f n n n . 用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一 种手段. 对这种函数, ∞ →n lim )(x f n 就是其表达式.于是,由通项函数的解析性质研究极限 函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极 限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓 “整体收敛”的结果. 定义 ( 一致收敛 ) 一致收敛的几何意义. Th1 (一致收敛的Cauchy 准则 ) 函数列}{n f 在数集D 上一致收敛,? N , 0?>?ε, , , N n m >?? ε<-n m f f . ( 介绍另一种形式ε<-+n p n f f .) 证 )? ( 利用式 .f f f f f f n m n m -+-≤-)

高一数学函数习题(练习题以及答案

一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)111 y x x =+-++ - 2、 _ _ _; ________; 3、若函数(1)f x +(21)f x -的定义域是 ;函数1 (2)f x +的定义域为 。 4、 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y ⑽ 4y = ⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4 、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _

()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1 ()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y = ⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸2 1)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3 44 2 ++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3 ) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2 (2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞U D 、{2,2}- 14、函数1 ()(0)f x x x x =+ ≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数

中考数学函数探究专题复习试题含解析

函数探究 【例1】 1.抛物线y=ax 2 +bx+c 的图象如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系内的图象大致为( ) A . B . C . D . 2.已知x=2m+n+2和x=m+2n 时,多项式x 2 +4x+6的值相等,且m ﹣n+2≠0,则当x=3(m+n+1)时,多项式x 2 +4x+6的值等于 . 3.已知二次函数y=ax 2 ﹣2ax+1(a <0)图象上三点A (﹣1,y 1),B (2,y 2)C (4,y 3),则y 1、y 2、y 3的大小关系为( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 1<y 3<y 2 D .y 3<y 1<y 2 方法总结 1.将抛物线解析式写成y =a(x -h)2 +k 的形式,则顶点坐标为(h ,k),对称轴为直线x =h ,也可应用对称轴公式x =-,顶点坐标(-, )来求对称轴及顶点坐标. 2.比较两个二次函数值大小的方法: (1)直接代入自变量求值法; (2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断; (3)当自变量在对称轴同侧时,根据函数值的增减性判断. 举一反三 1.已知点A (a ﹣2b ,2﹣4ab )在抛物线y=x 2 +4x+10上,则点A 关于抛物线对称轴的对称点坐标为( ) A .(﹣3,7) B .(﹣1,7) C .(﹣4,10) D .(0,10) 2.已知关于x 的函数y=(2m ﹣1)x 2 +3x+m 图象与坐标轴只有2个公共点,则m= . 3.设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( ) A .312y y y >> B .312y y y >> C .321y y y >> D .213y y y >> 考点二、二次函数系数的符号及其之间的关系 【例2】 二次函数y=ax 2 +bx+c 的图象如图所示,给出下列结论: ①2a +b >0;②b>a >c ;③若﹣1<m <n <1,则m+n <﹣;④3|a|+|c|<2|b|. 其中正确的结论是 (写出你认为正确的所有结论序号).

第十三章函数列和函数项级数

第十三章 函数列与函数项级数 目的与要求:1.掌握函数序列与函数项级数一致收敛性的定义,函数列与函数项级数一致收敛性判别的柯西收敛准则,函数项级数一致收敛性的判别法. 2. 掌握一致收敛函数序列与函数项级数的连续性、可积性、可微性的结论. 重点与难点:本章重点是函数序列与函数项级数一致收敛性的定义,判别法和性质;难点则是利克雷判别法和阿贝尔判别法. 第一节 一致收敛性 我们知道,可以用收敛数列(或级数)来表示或定义一个数,在此,将讨论如何用函数列(或函数项级数)来表示或定义一个函数. 一 函数列及其一致收敛性 设 ,,,,21n f f f (1) 是一列定义在同一数集E 上的函数,称为定义在E 上的函数列.也可简记为: }{n f 或 n f , ,2,1=n . 设E x ∈0,将0x 代入 ,,,,21n f f f 得到数列 ),(,),(),(00201x f x f x f n (2) 若数列(2)收敛,则称函数列(1)在点0x 收敛,0x 称为函数列(1)的收敛点. 若数列(2)发散,则称函数列(2)在点0x 发散. 若函数列}{n f 在数集E D ?上每一点都收敛,则称}{n f 在数集D 上收敛.

这时对于D x ∈?,都有数列)}({x f n 的一个极限值与之对应,由这个对应法则就确定了D 上的一个函数,称它为函数列}{n f 的极限函数.记作f .于是有 )()(lim x f x f n n =∞ →, D x ∈,或 )()(x f x f n →)(∞→n ,D x ∈. 函数列极限的N -ε定义是: 对每一个固定的D x ∈,对0>?ε,0>?N (注意:一般说来N 值的确定与ε和x 的值都有关),使得当N n >时,总有 ε<-)()(x f x f n . 使函数列}{n f 收敛的全体收敛点的集合,称为函数列}{n f 的收敛域. 例1 设n n x x f =)(, ,2,1=n 为定义在),(∞-∞上的函数列,证明它的收敛域是]1,1(-,且有极限函数 ? ??=<=1,11 ,0)(x x x f (3) 证明:因为定义域为),(∞-∞,所以根据数列收敛的定义可以将),(∞-∞分为四部分 (i) 10<ε(不妨设1<ε),当10<时,就有ε<-)()(x f x f n . (ii)0=x 和1=x 时,则对任何正整数n ,都有 ε<=-0)0()0(f f n ,ε<=-0)1()1(f f n . (iii) 当1>x 时,则有)(∞→+∞→n x n , (iv) 当1-=x 时,对应的数列为 ,1,1,1,1--,它显然是发散的. 这就证得{}n f 在]1,1(-上收敛,且有(3)式所表示的极限函数.所以函数列{}n x 在区

数学分析 数项级数

第十二章数项级数 教学目的:1.明确认识级数是研究函数的一个重要工具;2.明确认识无穷级数的收敛问题是如何化归为部分和数列收敛问题的;3.理解并掌握收敛的几种判别法,记住一些特殊而常用的级数收敛判别法及敛散性。 教学重点难点:本章的重点是级数敛散性的概念和正项级数敛散性的判别;难点是一般级数敛散性的判别法。 教学时数:18学时 § 1 级数的收敛性 一.概念: 1.级数:级数,无穷级数 ; 通项 ( 一般项 , 第项 ), 前项部分和等概念 ( 与中学的有关概念联系 ). 级数常简记为 . 2.级数的敛散性与和 : 介绍从有限和入手, 引出无限和的极限思 想 . 以在中学学过的无穷等比级数为蓝本 , 定义敛散性、级数的 和、余和以及求和等概念 . 例1讨论几何级数的敛散性.(这是一个重要例题!)解时, . 级数收敛 ; 时, 级数发散 ;

时, , , 级数发散 ; 时, , , 级数发散 . ( 注意从 综上, 几何级数当且仅当时收敛, 且和为 0开始 ). 例2讨论级数的敛散性. 解(利用拆项求和的方法) 例3讨论级数的敛散性. 解设, , = , . , . 例4 讨论级数的敛散性.

解, . 级数发散. 3.级数与数列的关系 : }, 收敛 {}收敛; 对应部分和数列{ }, 对应级数, 对该级数, 有=. 对每个数列{ }收敛级数收敛. 于是,数列{ 可见 , 级数与数列是同一问题的两种不同形式 . 4. 级数与无穷积分的关系 : , 其中. 无穷积分可化为级数 ; 对每个级数, 定义函数 , 易见有 =.即级数可化为无穷积分. 综上所述 , 级数和无穷积分可以互化 , 它们有平行的理论和结果 . 可以用其中的一个研究另一个 . 级数收敛的充要条件——Cauchy准则:把部分和数列{} 二. 收敛的Cauchy准则翻译成级数的语言,就得到级数收敛的Cauchy准则 . 和N, Th ( Cauchy准则 ) 收敛

高一数学函数的表示法测试题及答案

高一数学函数的表示法测试题及答案 1.下列关于分段函数的叙述正确的有() ①定义域是各段定义域的并集,值域是各段值域的并集;②尽管在定义域不同的部分有不同的对应法则,但它们是一个函数;③若D1、D2分别是分段函数的两个不同对应法则的值域,则D1∩D2=?. A.1个B.2个 C.3个D.0个 【解析】①②正确,③不正确,故选B. 【答案】 B 2.设函数f(x)=x2+2(x≤2),2x(x>2),则f(-4)=________,若f(x0)=8,则x0=________. 【解析】f(-4)=(-4)2+2=18. 若x0≤2,则f(x0)=x02+2=8,x=±6. ∵x0≤2,∴x0=-6. 若x0>2,则f(x0)=2x0=8,∴x0=4. 【答案】18-6或4 3.已知:集合A={x|-2≤x≤2},B={x|-x≤x≤1}.对应关系f:x→y=ax.若在f的作用下能够建立从A到B的映射f:A→B,求实数a的取值范围. 【解析】①当a≥0时,集合A中元素的象满足-2a≤ax≤2a. 若能够建立从A到B的映射, 则[-2a,2a]?[-1,1], 即-2a≥-12a≤1,∴0≤a≤12. ②当a<0时,集合A中元素的象满足2a≤ax≤-2a, 若能建立从A到B的映射, 则[2a,-2a]?[-1,1], 即2a≥-1-2a≤1,∴0>a≥-12. 综合①②可知-12≤a≤12. 一、选择题(每小题5分,共20分) 1.函数y=x+|x|x的图象,下列图象中,正确的是() 高?考¥资%源~网 【答案】 C 2.设集合P={x|0≤x≤4},Q={y|0≤y≤2},下列的对应不表示从P到Q的映射的是() A.f:x→y=12x B.f:x→y=13x C.f:x→y=23x D.f:x→y=x 【解析】根据映射的概念,对于集合P中的每一个元素在对应法则f的作用下,集合Q 中有唯一的元素和它对应.选项A、B、D均满足这些特点,所以可构成映射.选项C中f:x→y=23x,P中的元素4按照对应法则有23×4=83>2,即83?Q,所以P中元素4在Q中无对应元素.故选C. 【答案】 C 3.设函数f(x)=1-x2(x≤1)x2+x-2 (x>1),则f1f(2)的值为() A.1516 B.-2716 C.89 D.18

历年初三数学中考函数复习试题

) 中考数学函数复习 第11课 函数的基本概念(含直角坐标系) 1.函数是研究( ) A .常量之间的对应关系的 B .常量与变量之间的对应关系的 C .变量与常量之间对应关系的 D.变量之间的对应关系的 2.点M (-3,-5)向上平移7个单位到点M 1的坐标为( ) A.(-3,2) B.(-2,-12) C.(4,-5 ) D.(-10,-5) 3.点M 在y 轴的左侧,到x 轴、y 轴的距离分别是3和5,则点M 的坐标是( ) A.(-5,3) B .(-5,-3) C .(5,3)或(-5,3) D.-5,3)或(-5,-3) 4.△DEF 是由△ABC 平移得到的,点A (-1,-4)的对应点为D (1,-1),则点B (1,1)的对应点E 、点C (-1,4)的对应点F 的坐标分别为( ) A .(2,2),(3,4) B .(3,4),(1,7) C .(-2,2),(1,7) D .(3,4),(2,-2) 5.已知M (1,-2),N(-3,-2)则直线MN 与x 轴,y 轴的位置关系分别为( ) A.相交,相交 B.平行,平行 C.垂直相交,平行 D.平行,垂直相交 6.点A (m ,n )满足=mn 0,则点A 在( )上 A .原点 B .坐标轴 C .x 轴 D .y 轴 7.在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______. 8 .函数y = x 的取值范围是___________. 9.拖拉机开始工作时,油箱中有油40升,如果每小时耗油5升,如图是拖拉机工作时,油箱中的余油量Q (升)与工作时间 t (小时)的函数关系图像,那么图中?应是______. 10.王华和线强同学在合作电学实验时,记录下电流I (安培)与电阻R (欧)有如下对应关系.观察下表: 你认为I 与R 间的函数关系式为________;当电阻R =5欧时,电流I =____安培. 11.在某公用电话亭打电话时,需付电话费y (元)与通话时间 x (分钟)之间的函数关系用图象表示如图.小明打了2分钟需付费______元;小莉打了8分钟需付费_______元. 第11题图)

第十二讲函数列与函数项级数

第十二讲函数列与函数项级数 12 . 1 函数列与函数项级数的收敛与一致收敛 一、函数列 (一)函数列的收敛与一致收敛 1 .逐点收敛 函数列(){}I x x f n ∈,,若对I x ∈?,数列(){}x f n 都收敛,则称函数列在区间 I 上逐点收敛,记 ()()I x x f x f n n ∈=∞ →,lim ,称()x f 为(){}x f n 的极限函数.简记为 ()()()I x n x f x f n ∈∞→→, 2 .逐点收敛的N -ε定义 对I x ∈? ,及 0>?ε,()0,>=?εx N N ,当N n > 时,恒有()()ε<-x f x f n 3 .一致收敛 若函数列(){}x f n 与函数()x f 都定义在区间 I 上,对 0,0>?>?N ε,当N n > 时,对一切I x ∈恒有()()ε<-x f x f n ,则称函数列(){}x f n 在区间 I 上一致收敛于()x f .记为()()()I x n x f x f n ∈∞→?, . 4 .非一致收敛 00>?ε,对N n N >?>?0,0,及I x ∈?0,使得 ()()0000ε≥-x f x f n 例 12 . 1 证明()n n x x f =在[]1,0逐点收敛,但不一致收敛. 证明:当[]1,0∈x 时,()0lim lim ==∞ →∞ →n x n n x x f ,当1=x 时,()11lim =∞ →n n f ,即极限函数 为()[)???=∈=1 ,11,0,0x x x f .但 ()x f n 非一致收敛,事实上,取031 0>=ε。对0>?N ,取 N N n >+=10,取()1,02101 0∈? ? ? ??=n x · 此时()()00002100ε>==-n x x f x f n , 即()()()[]1,0,∈∞→≠>x n x f x f n 5 .一致收敛的柯西准则 函数列(){}x f n 在 I 上一致收敛?对 0,0>?>?N ε,当 n , m > N 时,对一切I x ∈,

2020中考数学函数总复习习题

中考数学函数总复习习题 (3)如图是三个反比例函数y = x k 1、y = x k 2、y = x k 3在 x 轴上方的图像,由此观察得到k 1、k 2、k 3的大小关系为( ) (A) k 1 > k 2 > k 3 (B) k 2 > k 3 > k 1 (C) k 3 > k 2 >k 1 (D) k 3 > k 1 > k 2 3. 反比例函数的应用 例31如图,点P 是反比例函数y = x 2 上的一点,PD ⊥x 轴 于点D ,则△POD 的面积为_______.

4. 相关的综合题 例32 (1)已知一次函数 y = kx + b 的图象经过第一、二、 四象限,则反比例函数 y = x kb 的图象是 ( ). (A) 第一、二象限 (B) 第三、四象限 (C) 第一、三象限 (D) 第二、四象限 (2)(贵阳市课改实验区2004)如图,一次函数y = ax + b 的图像与反比例函数y = x k 的图象交于M 、N 两点 1)求反比例函数和一次函数的解析式; 2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围。 (3)已知一次函数y = kx + k 的图象与反比例函数y = 8 x 的图象交于点P (4,n )。 1)求n 的值。 2)求一次函数的解析式。 二次函数 1. 二次函数解析式与它图象上的点【用方程思想】

例33(1)抛物线y = 2x2 + bx– 5 过点A ( - 2, 9 ),则关于“b”的方程为,此抛物线的解析 式为 . (2)(安徽省2003年)已知函数y = x2 + bx– 1 的 图象经过点(3,2). 1)求这个函数的解析式; 2)画出它的图象,并指出图象的顶点坐标; (3)抛物线y = 2x2 - 3x– 5 过点A ( n, 9 ),则关于“n”的方程为,解得n = . (4)抛物线y = 2x2 + bx– 5 过点A ( - 2, y A ),则y A= (5)二次函数y = ax2 + bx+ c的图象的顶点A的坐标为( 1, - 3 ),且经过点B ( -1, 5 ),则设y= , 得方程为,解得,此函数解析式为 . (优选顶点式) (6)二次函数y = ax2 + bx + c的图象与x 轴交于点A ( - 3, 0 ),对称轴x = -1,顶点C到x轴的距离为2,则设y = , 得方程为,解得,此函数解析式为 .(优选顶点式) 例34(1)y = -2x2 + 5x – 3 与y轴的交点的坐标

相关主题
文本预览
相关文档 最新文档