当前位置:文档之家› 土的压缩系数和压缩模量计算

土的压缩系数和压缩模量计算

土的压缩系数和压缩模量计算
土的压缩系数和压缩模量计算

土得压缩系数与压缩模量计算

1、2土得力学性质指标计算

第一章1、2、1土得压缩系数与压缩模量计算

第一节一、土得压缩系数计算

第二节二、土得压缩模量计算

第一小节【例1-8】

第三节三、土得变形模量与压缩模量之间得关系

第一小节【例1-9】

弹性模量与变形模量以及压缩模量的的区别是什么

土的变形模量是土体在无侧限条件下应力与应变之比值,相当于弹性模量。由于土体不是理 想的弹性体,故称为变形模量。土的变形模量反映了土体抵抗弹塑性变形的能力,可用于弹 塑性问题分析,通常可以通过三轴试验或现场试验进行测定。如果现场原位试验未进行,可 以通过其他方法进行估算、假定或理论计算。 E--弹性模量Es--压缩模量Eo--变形模量 在工程中土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。但在勘察报告中却只提供变形模量,在模拟计算的时侯我们要用弹性模量。 变形模量的定义在表达式上和弹性模量是一样的E=ζ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe。压缩模量指的是侧限压缩模量,通过固结试验可以测定。如果土体是理想弹性体,那么E=Es(1-2μ^2/(1-μ))=E0。 在土体模拟分析时,如果时一维压缩问题,选用Es;如果是变形问题,一般用E0;如果是瞬时变形,或弹性变形用E。 土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。 为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的側压力系数ξ和側膨胀系数μ。 側压力系数ξ:是指側向压力δx与竖向压力δz之比值,即: ξ=δx/δz 土的側膨胀系数μ(泊松比):是指在側向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即 μ=εx/εz 根据材料力学广义胡克定律推导求得ξ和μ的相互关系, ξ=μ/(1-μ)或μ=ε/(1+ε) 土的側压力系数可由专门仪器测得,但側膨胀系数不易直接测定,可根据土的側压力系数,按上式求得。 在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量Es之间的关系。 ,令β= 则Eo=βEs 当μ=0~0.5时,β=1~0,即Eo/Es的比值在0~1之间变化,即一般Eo小于Es。但很多情况下Eo/Es 都大于1。其原因为:一方面是土不是真正的弹性体,并具有结构 性;另一方面就是土的结构影响;三是两种试验的要求不同; μ、β的理论换算值 土的种类μβ

弹性模量、压缩模量、变形模量

E--弹性模量Es--压缩模量Eo--变形模量 在工程中土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。但在勘察报告中却只提供变形模量,在模拟计算的时侯我们要用弹性模量。 变形模量的定义在表达式上和弹性模量是一样的E=ζ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe。压缩模量指的是侧限压缩模量,通过固结试验可以测定。如果土体是理想弹性体,那么E=Es(1-2μ^2/(1-μ))=E0。 在土体模拟分析时,如果时一维压缩问题,选用Es;如果是变形问题,一般用E0;如果是瞬时变形,或弹性变形用E。 土的变形模量与压缩模量的关系 土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。 为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的側压力系数ξ和側膨胀系数μ。 側压力系数ξ:是指側向压力δx与竖向压力δz之比值,即: ξ=δx/δz 土的側膨胀系数μ(泊松比):是指在側向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即 μ=εx/εz 根据材料力学广义胡克定律推导求得ξ和μ的相互关系, ξ=μ/(1-μ)或μ=ε/(1+ε) 土的側压力系数可由专门仪器测得,但側膨胀系数不易直接测定,可根据土的側压力系数,按上式求得。 在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量Es之间的关系。 ,令β= 则Eo=βEs 当μ=0~0.5时,β=1~0,即Eo/Es的比值在0~1之间变化,即一般Eo小于Es。但很多情况下Eo/Es 都大于1。其原因为:一方面是土不是真正的弹性体,并具有结构 性;另一方面就是土的结构影响;三是两种试验的要求不同;

压缩模量与变形模量的区别

一、压缩模量与变形模量的区别 (一)、第一种 压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 变形模量:是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。 结论:从上述定义来看,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0.25~2.0);而变形模量是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法的差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验的特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。 结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、易于试验,是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据和数据更充分,这或许就是采用压缩模量计算沉降的公式和经验更多的原因;而变形模量的测定由于其高成本和高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石土)和不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。 变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层他就有显著的优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土的地层。 4、试验条件差异: 压缩模量:在勘察阶段通过大量取样来获得,勘察报告在用压缩模量来计算沉降时通常有充分的数据支持。 变形模量:现场载荷试验通常难以在勘察阶段完成,载荷试验一般依据设计需要由设计人员提出在基坑开挖后在基底进行,且数量有限(当然对于重要工程和地层条件许可,也可在勘察阶段进行大量深层螺旋板载荷试验等来获取),目前用其他非载荷试验间接(经验)估算变形模量的方法仍显经验不足。 结论:上述差异决定了,大量工程(特殊工程除外)在勘察阶段,甚至在建筑基坑开挖前我们不得不采用压缩模量来计算沉降,当基坑开挖后,对于重要工程,并进行了一定数量载荷试验之后,我们才真正基本具备用实测变形模量来计算沉降的条件,故本人认为,在现阶段我们要真正意义上实现用实测变形模量来准确计算沉降,通常是难以实现的理论期望。总结:采用压缩模量还是变形模量来计算沉降哪种更合适?主要受三方面的因素制约:

压缩模量变形模量弹性模量

压缩模量与变形模量的区别 (一)、第一种 压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 变形模量:就是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。 结论:从上述定义来瞧,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0、25~2、0);而变形模量就是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法的差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验的特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别就是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。 结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、易于试验,就是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据与数据更充分,这或许就就是采用压缩模量计算沉降的公式与经验更多的原因;而变形模量的测定由于其高成本与高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石土)与不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层她就有显著的优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土的地层。 4、试验条件差异: 压缩模量:在勘察阶段通过大量取样来获得,勘察报告在用压缩模量来计算沉降时通常

压缩模量与变形模量的区别

一、压缩模量与变形模量得区别 (一)、第一种 压缩模量:在完全侧限条件下,土得竖向附加应力增量与相应得应变增量之比值,它可以通过室内压缩试验获得。 变形模量:就是通过现场载荷试验求得得压缩性指标,即在部分侧限条件下,其应力增量与相应得应变增量得比值。 结论:从上述定义来瞧,由于压缩模量附带了完全侧限条件,与实际地基得部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0、25~2、0);而变形模量就是现场原位测试指标(载荷试验计算指标),较好得模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板得尺寸越接近基础尺寸,计算得精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高得准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法得差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验得特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别就是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当得宽度级别,因而变形模量得测定属于高成本得测试。 结论:从上述两试验测定方法得不同可见,压缩模量得测定通常更容易、成本低廉、易于试验,就是勘察报告必须完成得工作,故设计用压缩模量计算沉降依据与数据更充分,这或许就就是采用压缩模量计算沉降得公式与经验更多得原因;而变形模量得测定由于其高成本与高精度,更适合于大型、高荷载、大基础得重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本得载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土得地层(如碎石土)与不能切环刀得岩土(如大部分岩石),显然我们难以获得压缩模量。 变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量得测定几乎适合任何岩土类别,对于不能获取原状土得地层她就有显著得优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土得地层。 4、试验条件差异: 压缩模量:在勘察阶段通过大量取样来获得,勘察报告在用压缩模量来计算沉降时通常有充分得数据支持。 变形模量:现场载荷试验通常难以在勘察阶段完成,载荷试验一般依据设计需要由设计人员提出在基坑开挖后在基底进行,且数量有限(当然对于重要工程与地层条件许可,也可在勘察阶段进行大量深层螺旋板载荷试验等来获取),目前用其她非载荷试验间接(经验)估算变形模量得方法仍显经验不足。 结论:上述差异决定了,大量工程(特殊工程除外)在勘察阶段,甚至在建筑基坑开挖前我们不得不采用压缩模量来计算沉降,当基坑开挖后,对于重要工程,并进行了一定数量载荷试验之后,我们才真正基本具备用实测变形模量来计算沉降得条件,故本人认为,在现阶段我们要真正意义上实现用实测变形模量来准确计算沉降,通常就是难以实现得理论期望。 总结:采用压缩模量还就是变形模量来计算沉降哪种更合适?主要受三方面得因素制约:

土的压缩系数和压缩模量计算讲课讲稿

土的压缩系数和压缩 模量计算

土的压缩系数和压缩模量计算 1.2 土的力学性质指标计算 第一章1.2.1 土的压缩系数和压缩模量计算 1.2 土的力学性质指标计算 1,2.1 土的压端系數和压编模量计算 第一节一、土的压缩系数计算 一、土的坯系数计算 压堀系数表示土在单位压力下孔隸比的变化。適常用压蝠系數来表示土的压缩性,其 值由原状土的压端性试鑒輪定。上的压缩系数町按下式计算* d 二 100() X ? - ? (L-46) P1 - >i 式中i ---- 土的压端系数(MP H -1 ); 1000一单位换算系数; Pl\ ----- 固结压力(kPi)j “、吐 -- 相对应于叶pi 时的孔陳出口 由式(1-46)知,压第系数1ft 大” 土的压箱注亦愈大。但土的压缩系数并不是常数, 而是随压力仞、加的数值的变牝而变化-在评价地基压缩性时,一般取= lOOkPa. 角=200虹抵并将相应的压缩慕数记柞引亦在《建策地基基础设计规范〉(GBJ 7-39) 中按厲“的尢小将地基的压蜡性划分为低、中、冑压第性三类: 1.当时,为低压蜡性土: 2.当 0.10.5时,为高压缩性土。 【例卜升 工程地基土由室内压缩性试验知,当囲结压力^^lOOkPa 时.孔隙比“ -0.62矢^ = 2(?kP a 时,t a = 0.548,试求土的压第杲数,并评价谨土层的压缩性高低◎ (解】根据已知试验数据由式(W6)可求得土的压蜡系数为: 1000 x P2 - Pl 0.623-0,545 1WUX 200- LOO

压缩模量、变形模量、弹性模量

压缩模量与变形模量的区别(一)、第一种 压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它 可以通过室内压缩试验获得。 变形模量:是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增 量与相应的应变增量的比值。 结论:从上述定义来看,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限 条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0.25~2.0);而变形模量是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由 变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法的差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大 量取样试验的特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别是深层 载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。 结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、 易于试验,是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据和数据更充分,这或许就是采用压缩模量计算沉降的公式和经验更多的原因;而变形模量的测定由于其高成本 和高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载 较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板 愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石 土)和不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。变形模量:由于 我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层他就有显著的优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别, 而压缩模量法一般仅适用于可以获取原状土的地层。 4、试验条件差异:

压缩模量与变形模量的区别

压缩模量与变形模量的区 别 Prepared on 24 November 2020

一、压缩模量与变形模量的区别 (一)、第一种 压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 变形模量:是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。 结论:从上述定义来看,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达~);而变形模量是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法的差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验的特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。 结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、易于试验,是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据和数据更充分,这或许就是采用压缩模量计算沉降的公式和经验更多的原

因;而变形模量的测定由于其高成本和高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石土)和不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。 变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层他就有显着的优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土的地层。 4、试验条件差异: 压缩模量:在勘察阶段通过大量取样来获得,勘察报告在用压缩模量来计算沉降时通常有充分的数据支持。 变形模量:现场载荷试验通常难以在勘察阶段完成,载荷试验一般依据设计需要由设计人员提出在基坑开挖后在基底进行,且数量有限(当然对于重要工程和地层条件许可,也可在勘察阶段进行大量深层螺旋板载荷试验等来获取),目前用其他非载荷试验间接(经验)估算变形模量的方法仍显经验不足。 结论:上述差异决定了,大量工程(特殊工程除外)在勘察阶段,甚至在建筑基坑开挖前我们不得不采用压缩模量来计算沉降,当基坑开挖后,对于重要工

土的经验参数(物理指标、压缩、变形模量、剪切强度)

有关土的经验参数一、原状土物理性质指标变化围 原状土物理性质指标变化围,见表3-3-28。 注:粘砂土3<I p≤7;砂粘土 7<I p≤17 二、土的平均物理、力学性质指标,见表3-3-29。土的平均物理、力学性质指标,见表3-3-29。

注:①平均比重采取:砂——2.66;粘砂土——2.70;砂粘土——2.71;粘土——2.74; ②粗砂和中砂的E 0值适用于不均匀系数C u = = 3者,当C u >5时应按表中所列值减少 。C u 为中间值时E 0 值按插法确定; ③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。 10 60d d 32

三、土的压缩模量一般围值 土的压缩模量一般围值,见表3-3-3-。 注:砂粘土7<I p≤7;粘土I p>17 四、粘性土剪强度参考值 粘性土抗剪强度参考值,见表3-3-31。 注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17 五、土的侧压力系数(ξ)和泊松比(u)参考值

注:粘土I p>17;粉质粘土10<I p≤17;I p≤10 五、变形模量于压缩模量的关系 变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。 压缩模量Es是在侧限条件下应力与应变的比值,是通过室试验获取的参数。 两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。

变形模量与压缩模量区别

变形模量 定义:土的变形模量是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。 能较真实地反映天然土层的变形特性。其缺点是载荷试验设备笨重、历时长和花钱多,且深层土的载荷试验在技术上极为困难,故常常需要根据压缩模量的资料来估算土的变形模量。 与压缩模量、弹性模量的区别 土的压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 土的弹性模量:土的弹性模量根据测定方法不同,可分为“静弹模”和“动弹模”。静弹模采用静三轴仪测定。弹性模量为加卸载该曲线上应力与应变的比值。动弹模,可用室内动三轴仪测得,当土样固结后,分级施加动应力,进行不排水的振动试验,一般保持动应力幅值不变,振动次数视工程实际条件而定可用双曲线方程来描述,也称切线弹模。 土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。由于两者在压缩时所受的侧限条件不同,对同一种土在相同压应力作用下两种模量的数值显然相差很大。三种模量的试验方法不同,反映在应力条件、变形条件上也不同。压缩模量是在室内有侧限条件下的一维变形问题,变形模量则是在现场的三维空间问题;另外土体变形包括了可恢复的(弹性)变形和不可恢复的(塑性)变形两部分。压缩模量和变形模量是包括了残余变形在内的,与弹性模量有根本区别,而压缩模量与变形模量的区别又在于是否有侧限。在工程应用上,我们应根据具体问题采用不同的模量。 为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的侧压力系数ξ和侧膨胀系数μ。 侧压力系数ξ:是指侧向压力δx与竖向压力δz之比值,即: ξ=δx/δz 土的侧膨胀系数μ(泊松比):是指在侧向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即 μ=εx/εz 根据材料力学广义胡克定律推导求得ξ和μ的相互关系, ξ=μ/(1-μ)或μ=ε/(1+ε) 土的侧压力系数可由专门仪器测得,但侧膨胀系数不易直接测定,可根据土的侧压力系数,按上式求得。 在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量Es之间的关系。 令β=1-2μ^2/(1-μ)则Eo=βEs

变形模量、弹性模量、压缩模量的关系

岩土地弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量.弹性模量>压缩模量>变形模量. 弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变地比值)压缩模量是有侧限地,杨氏模量是无侧限地.同样地土体,同样地荷载,有侧限地土体应变小,所以压缩模量更大才对.这只是弹性理论上地关系,对土体这种自然物不一定适用.土体计算中所用地称为“弹性模量”不一定是在弹性限度内.——弹性模量;——压缩模量;——变形模量.文档收集自网络,仅用于个人学习 弹性模量=应力弹性应变,它主要用于计算瞬时沉降. 压缩模量和变形模量均=应力总应变.压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出地,而变形模量则是通过现场地原位载荷试验得出地,它是无侧限地.弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量.地堪报告中,一般给出地是土地压缩模量与变形模量,而一般不会给出弹性模量.文档收集自网络,仅用于个人学习数值模拟中一般用,(),达到峰值应力(应变)%时地割线模量. (勘查报告中提供),有侧限,=~(看别人这么弄地).具体请查阅资料. 应该是变形模量是弹性模量是压缩模量,弹性模量与压缩模量应该有上百倍地关系吧,不应该只有五倍,一般;根据结果调整参数;问题是地质报告上只会提供压缩模量;文档收集自网络,仅用于个人学习 工程上,土地弹性模量就是指变形模量,因为土发生弹性变形地时间非常短,变形模量与压缩模量是一个量级,但是由于土体地泊松比小于,所以土地变形模量(弹性模量)总是小于压缩模量地.在钱家欢主编地《土力学》中有公式:(^()) 为变形模量,为变形模量(弹性模量).文档收集自网络,仅用于个人学习 上边地说法有点问题呀.变形模量与压缩模量之间有换算关系.=〔*()〕,而不是弹性模量与压缩模量之间有换算关系,弹性模量一般比,要大很多地.一般要大一个数量级地.再者土体进行弹性地数值模拟时要取地是那一个参数.一般工程地质报告中只提供一个. 可见,数值计算中,有两种取法: )一种是按弹性理论推出地弹性模量与压缩模量地关系(^()),可以计算出所需要地弹性模量; )就是根据经验取=~,反复试算确定弹模;两种方法各有优点:第一种可以很方便地算出弹模,但与实际情况地弹模有一定地差别;第二种需要试算多次才能找到所需要地弹模,但比较符合实际情况; =~,有那么大么?应该是(~)* (^()). 土地弹性模量是土抵抗弹性变形地能力,压缩模量是土在侧限条件下地,竖向附加应力与竖向应变地比值,土工试验得到和勘察报告提地是压缩模量.变形模量是无侧限条件下地应力与应变地比值.=〔*()〕公式是变形模量和压缩模量地理论公式,实际工程并不符合这个公式.至于弹性模量和变形模量地关系,土在弹性阶段地变形模量等于弹性模量.一般情况下比压缩模量要大,大多少,视具体工程而论.三轴试验得到弹性模量取得是轴向应力与轴向应变曲线中开始直线段(即弹性阶段)地斜率. 看看高大钊编地《土质力学与土力学》(正文页),该书是提到压缩模量、变形模量、弹性模量三者关系及使用方法为数不多地教材.这本书超星上有,朋友们想弄清楚就找这本书看看,我也是刚弄明白地,讲压缩模量、变形模量地书是多,但讲到土地弹性模量地书就少了先由压缩模量转化为变形模量,再转化为体积模量 岩石取弹性模量打折成岩体模量,土体取压缩模量. 弹性模量一般可取为压缩模量地~倍 上海地区经验一般为~倍(见同济大学杨敏教授相关论文),数值分析时可以适当加大一些. 在土力学中变形模量就是杨氏模量.压缩模量变形模量*()()() 高大钊编地《土质力学与土力学》(正文页),该书是提到压缩模量、变形模量、弹性模量三者关系及使用方法为数不多地教材. 土地变形模量和压缩模量,是判断土地压缩性和计算地基压缩变形量地重要指标. 为了建立变形模量和压缩模量地关系,在地基设计中,常需测量土地側压力系数ξ和側膨胀系数μ.側压力系数ξ:是指側向压力δ与竖向压力δ之比值,即: ξ=δδ 土地側膨胀系数μ(泊松比):是指在側向自由膨胀条件下受压时,测向膨胀地应变ε与竖向压缩地应变ε之比值,即μ=εε 根据材料力学广义胡克定律推导求得ξ和μ地相互关系,ξ=μ(-μ)或μ=ε(+ε),土地側压力系数可由专门仪器测得,但側膨胀系数不易直接测定,可根据土地側压力系数,按上式求得.在土地压密变形阶段,假定土为弹性材料,

土的经验参数(物理指标、压缩、变形模量、剪切强度)

有关土的经验参数 一、原状土物理性质指标变化范围 原状土物理性质指标变化范围,见表3-3-28。 注:粘砂土3<I p≤7;砂粘土7<I p≤17 二、土的平均物理、力学性质指标,见表3-3-29。 土的平均物理、力学性质指标,见表3-3-29。

注:①平均比重采取:砂——2.66;粘砂土——2.70;砂粘土——2.71;粘土——2.74; ②粗砂和中砂的E 0值适用于不均匀系数C u ==3者,当C u >5时应按表中所列值减少。C u 为中间值 时E 0值按内插法确定; ③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。 三、土的压缩模量一般范围值 土的压缩模量一般范围值,见表3-3-3-。 10 60d d 32

注:砂粘土7<I p≤7;粘土I p>17 四、粘性土剪强度参考值 粘性土抗剪强度参考值,见表3-3-31。 注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17 五、土的侧压力系数(ξ)和泊松比(u)参考值 注:粘土I p>17;粉质粘土10<I p≤17;I p≤10 五、变形模量于压缩模量的关系

变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。 压缩模量Es是在侧限条件下应力与应变的比值,是通过室内试验获取的参数。 两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。

土的压缩模量,变形模量,弹性模量

土体弹性模量,压缩模量及变形模量是常用的也是很容易混淆的三个概念。压缩模量也叫侧限压缩模量是土在完全侧限条件下竖向附加应力与相应竖向应变的比值。变形模量是在现场原位测得的,是无侧限条件下应力与应变的比值,可以比较准确地反映土在天然状态下的压缩性,这也是为什么砂土要用变形模量指标的缘故。压缩模量和变形模量之间可以互相换算,两者间是倍数的关系,土越坚硬倍数越大,软土则两者比较接近。弹性模量是正应力与弹性(即可恢复)正应变的比值。}&p8{;GT:z-S 压缩模量E s 是土在完全侧限的条件下得到的,为竖向正应力与相应的正应变的比值。该参数将用于 地基最终沉降量计算的分层总和法、应力面积法等方法中。 变形模量E 0 是根据现场载荷试验得到的,它是指土 在侧向自由膨胀条件下正应力与相应的正应变的 比值。该参数将用于弹性理论法最终沉降估算中,但载荷试验中所规定的沉降稳定标准带有很大的近似性。 弹性模量E i 可通过静力法或动力法测定,它是指正 应力s 与弹性(即可恢复)正应变e 的比值 该参数常用于用弹性理论公式估算建筑物的初始瞬时沉降。

根据上述三种模量的定义可看出:压缩模量和变形模 量的应变为总的应变,既包括可恢复的弹性应变, 又包括不可恢复的塑性应变。而弹性模量的应变只包含弹性应变。 从理论上可以得到压缩模量与变形模量之间的换算关系: 1-刈 上式给出了变形模量与压缩模量之间的理论关系,由于0W卩 < 0.5,所以0 < B < 1。 由于土体不是完全弹性体,加上二种试验的影响因素 较多,使得理论关系与实测关系有一定差距。实 测资料表明,E 0与E s的比值并不象理论得到的在0?I 间变化,而可能出现E 0 / E s 超过1 的情况,且土的结构性越强或压缩性越小,其比值越大。 土的弹性模量要比变形模量、压缩模量大得多,可能是 它们的十几倍或者更大

压缩模量与变形模量的区别

一、压缩模量与变形模量的区别 (一)、第一种 压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 变形模量:就是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。 结论:从上述定义来瞧,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0、25~2、0);而变形模量就是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法的差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验的特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别就是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。 结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、易于试验,就是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据与数据更充分,这或许就就是采用压缩模量计算沉降的公式与经验更多的原因;而变形模量的测定由于其高成本与高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石土)与不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。 变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层她就有显著的优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土的地层。 4、试验条件差异: 压缩模量:在勘察阶段通过大量取样来获得,勘察报告在用压缩模量来计算沉降时通常有充分的数据支持。 变形模量:现场载荷试验通常难以在勘察阶段完成,载荷试验一般依据设计需要由设计人员提出在基坑开挖后在基底进行,且数量有限(当然对于重要工程与地层条件许可,也可在勘察阶段进行大量深层螺旋板载荷试验等来获取),目前用其她非载荷试验间接(经验)估算变形模量的方法仍显经验不足。 结论:上述差异决定了,大量工程(特殊工程除外)在勘察阶段,甚至在建筑基坑开挖前我们不得不采用压缩模量来计算沉降,当基坑开挖后,对于重要工程,并进行了一定数量载荷试验之后,我们才真正基本具备用实测变形模量来计算沉降的条件,故本人认为,在现阶段我们要真正意义上实现用实测变形模量来准确计算沉降,通常就是难以实现的理论期望。 总结:采用压缩模量还就是变形模量来计算沉降哪种更合适?主要受三方面的因素制约:

压缩模量与变形模量的换算体会

压缩模量与变形模量 土的压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 土的弹性模量:土的弹性模量根据测定方法不同,可分为“静弹模”和“动弹模”。静弹模采用静三轴仪测定。弹性模量为加卸载该曲线上应力与应变的比值。动弹模,可用室内动三轴仪测得,当土样固结后,分级施加动应力,进行不排水的振动试验,一般保持动应力幅值不变,振动次数视工程实际条件而定可用双曲线方程来描述,也称切线弹模。 土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。由于两者在压缩时所受的侧限条件不同,对同一种土在相同压应力作用下两种模量的数值显然相差很大。三种模量的试验方法不同,反映在应力条件、变形条件上也不同。压缩模量是在室内有侧限条件下的一维变形问题,变形模量则是在现场的三维空间问题;另外土体变形包括了可恢复的(弹性)变形和不可恢复的(塑性)变形两部分。压缩模量和变形模量是包括了残余变形在内的,与弹性模量有根本区别,而压缩模量与变形模量的区别又在于是否有侧限。在工程应用上,我们应根据具体问题采用不同的模量。 公式 为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的侧压力系数ξ和侧膨胀系数μ。 侧压力系数ξ:是指侧向压力δx与竖向压力δz之比值,即: ξ=δx/δz 土的侧膨胀系数μ(泊松比):是指在侧向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即 μ=εx/εz 根据材料力学广义胡克定律推导求得ξ和μ的相互关系,

ξ=μ/(1-μ)或μ=ε/(1+ε) 土的侧压力系数可由专门仪器测得,但侧膨胀系数不易直接测定,可根据土的侧压力系数,按上式求得。 在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量Es 之间的关系。 令β= 1-2μ^2/(1-μ)则Eo =βEs 当μ=0~0.5时,β=1~0,即Eo/Es 的比值在0~1之间变化,即一般Eo 小于Es 。但很多情况下Eo/Es 都大于1。其原因为:一方面是土不是真正的弹性体,并具有结构性;另一方面就是土的结构影响;三是两种试验的要求不同。 μ、β的理论换算值 土的种类和状态 k 0 μ β 碎石土 0.18~0.25 0.15~0.20 0.95~0.90 砂土 0.25~0.33 0.20~0.25 0.90~0.83 粉土 0.33 0.25 0.83 硬塑状态 0.33 0.25 0.83 可塑状态 0.43 0.30 0.74 粉质粘土 软塑及流塑状态 0.53 0.35 0.62 硬塑状态 0.33 0.25 0.83 可塑状态 0.53 0.35 0.62 粘土 软塑及流塑状态 0.72 0.42 0.39 注:E 0与E s 之间的关系是理论关系,实际上,由于各种因素的影响,E 0值可能是βE s 值的几倍 1、你的问题是:根据理论分析,Es ≥E 。;但实际上可能是压缩模量比变形模量小一些。 2、变形模量与压缩模量之间的理论关系和经验关系有很大的差别。产生差别的原因在于土的结构性,结构性越强的土,差别越大。老粘性土和红粘土的结构性很强,其 E 0 / E s 的经验平均值都大于2;新近沉积粘性土和塑性指数小于

土体压缩模量、变形模量和弹性模量的讨论

土体压缩模量、变形模量和弹性模量的讨论 陈勇华 中国地质大学(武汉)工程学院广州地铁设计研究院有限公司广东广州510010 摘要:本文通过论述土体压缩模量、变形模量和弹性模量的概念、区别及联系及各种模量的适用范围,重点推导了压缩模量和变形模量之间的换算公式及经验换算关系,并提出通过经验试算找出合适的三轴压缩试验变形模量的方法。 关键词:土体;压缩模量;变形模量;弹性模量 0引言 目前,深基坑开挖、地基处理、隧道工程等岩土工程项目大规模开展,计算理论也在不断发展和完善。特别是随着有限单元法、有限差分法、边界元法等数值方法引入到岩土工程的计算理论中,加之各种计算软件的广泛应用,使岩土工程的计算可以考虑到更多更复杂的实际边界条件,使得三维分析变得可能。但在此计算中,岩土本构模型和土体参数的选取依然是个关键。土体参数中,压缩模量、变形模量和弹性模量的概念往往容易混淆,例如,勘察报告里面多提供压缩模量(Es),但这是实验室在完全侧限条件下得到的土体变形指标,若用于实际中计算土体压缩,则误差较大;又如,计算建筑物加载的瞬时沉降时,应选用弹性模量,若采用压缩模量或者变形模量,则会计算结果偏大很多。为此,本文着重讨论上述三种模量的区别与联系以及合理的选用方法。 1三种模量的概念 1.1压缩模量 土体的压缩模量是由室内侧限压缩试验的e~p曲线得到,其定义为土在完全侧限的条件下竖向应力增量Δp与相应的变形稳定情况下应变增量Δε的比值: Es=Δp/Δε(1-1) 两种表达式: Es=(1+e0)/a(1-2) Es=(1+ei)/a(1-3) 式(1-2)的应变增量是变形增量与试验土样原始长度之比.式(1-3)的应变增量是变形增量与试验土样在 压力段范围初始压力下的长度之比。 1.2变形模量 变形模量通过现场载荷试验的p~s曲线求的,当荷载小于某数值时,荷载p与载荷板沉降之间呈直线关系,根据弹性理论计算沉降的公式,可反求出地基的变形模量: E0=ωpb(1-?2)/s(1-4) 式中:E0—土的变形模量(MPa); P—直线段的荷载强度(kPa); s—相应于p的载荷板下沉量; b—载荷板的宽度或直径; —土的泊松比; —沉降影响系数。 需要指出的是,根据弹性力学公式计算的变形模量,就是弹性模量,取近似弹性段进行计算,不考虑多孔介质的压硬性,即模量随应力状态而变化的特性。 1.3弹性模量 弹性模量是指正应力σ与弹性(即可恢复)正应变εd的比值,通常用E来表示。一般采用三轴仪进行三轴重复压缩试验,得到的 应力应变曲线上的初始切线模量Ei或再加荷模量Er作为弹性模量(我们也可分别称为初始模量、卸荷模量)。弹性模量的测定方法有两大类:静力法和动力法,在静三轴仪中测定的方法为静力法,得到的弹性模量为静弹模,一般用E来表示;动力法的仪器是动三轴仪,测得的弹性模量为动弹模,一般用Ed来表示。 2三种模量的区别及适用范围 压缩模量的室内试验操作比较简单,但要得到保持天然结构状态的原状土样很困难,更重要的一点是试验在土体完全侧向受限的条件下进行,因此试验得到的压缩性规律和指标理论上只适应于刚性侧限条件下的沉降计算,其实际运用具有很大的局限性。现行规范中,压缩模量一般用于分层总和法、应力面积法的地基最终沉降计算。 变形模量是根据现场载荷试验得到的,它是指土在侧向自由膨胀条件下正应力与相应的正应变的比值。相比室内侧限压缩试验,现场载荷试验排除了取样和试样制备等过程中应力释放及机械人为扰动的影响,更接近于实际工作条件,能比较真实地反映土在天然埋藏条件下的压缩性。该参数用于弹性理论法最终沉降估算中,但在载荷试验中所规定的沉降稳定标准带有很大的近似性。 弹性模量的概念在实际工程中有一定的意义。在计算高耸结构物在风荷载作用下的倾斜时发现,如果用土的压缩模量或变形模量指标进行计算,将得到实际上不可能那么大的倾斜值。这是因为风荷载是瞬时重复荷载,在很短的时间内土体中的孔隙水来不及排出或不完全排出,土的体积压缩变形来不及发生,这样荷载作用结束之后,发生的大部分变形可以恢复,因此用弹性模量计算就比较合理一些。再比如,在计算饱和粘性土地基上瞬时加荷所产生的瞬时沉降时,同样也应采用弹性模量。该常数常用于弹性理论公式估算建筑物的初始瞬时沉降。 根据上述三种模量的论述,可看出:压缩模量和变形模量的应变为总的应变,既包括可恢复的弹性应变,又包括不可恢复的塑性应变;而弹性模量的应变只包含弹性应变。在一般工程中,土的弹性模量就是指土体开始变形阶段的模量,因为土发生弹性变形的时间非常短,土在弹性阶段的变形模量等于弹性模量,变形模量更能适合土体的实际情况。常规三轴试验得到的弹性模量是轴向应力与轴向应变曲线中开始的直线段(即弹性阶段)的斜率。 这些模量各有适用范围,本质上是为了在实验室或者现场模拟为再现实际工况而获取的值。一般情况下土的弹性模量是压缩模量、变形模量的十几倍或者更大。 3压缩模量与变形模量之间的换算 从理论上可以得到压缩模量与变形模量之间的换算关系。 在侧限压缩试验中,σz为竖向应力,由于侧向完全侧限,所以:εx=εy=0(3-1) σx=σy=K0σz(3-2) m w

相关主题
文本预览
相关文档 最新文档