当前位置:文档之家› 控制系统的采样与仿真

控制系统的采样与仿真

控制系统的采样与仿真
控制系统的采样与仿真

前言

连续系统数字仿真方法是指用数字计算机对连续系统进行仿真的方法。采用这种方法时首先将连续系统的数学模型转变为适合在数字计算机上进行试验的仿真模型,实现这种转变的计算方法主要有微分方程数值解法和离散相似法。

MATLAB 产品家族是美国 MathWorks公司开发的用于概念设计、算法开发、建模仿真、实时实现的理想的集成环境。是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和SIMULINK两大部分。

MATLAB由于其完整的专业体系和先进的设计开发思路,使得 MATLAB 在多种领域都有广阔的应用空间,特别是在科学计算、建模仿真以及系统工程的设计开发上已经成为行业内的首选设计工具,它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

MATLAB软件工具在自动化专业、测控技术与仪器和电气工程及其自动化等专业的本科生学习中,经常用来计算、仿真和设计,尤其是MATLAB软件的仿真功能,能使我们对所学知识有更加深入的理解和分析。

目录

一、系统分析: ..................................................................................................................... 3 1. 绘制碾磨控制系统开环根轨迹图、BODE 图和奈奎斯特图,并判断稳定性; ....... 4 2.当控制器为()

()()

c K s a G s s b +=

+,试设计一个能满足要求的控制器(要求用根轨迹法

和频率响应法进行设计); ................................................................................................... 7 2.1进行根轨迹校正: .................................................................................................... 8 2.2频率校正: ................................................................................................................. 11 3.将采样周期取为0.02T

s =,试确定与()c G s 对应的数字控制器()c G z (要求用多

种方法进行离散化,并进行性能比较); ......................................................................... 16 4、5、6:连续,离散单位阶跃输入响应比较 ................................................................. 24 6.比较并讨论4和5的仿真结果; .................................................................................... 26 7.讨论采样周期的不同选择对系统控制性能的影响; .................................................... 27 8.如控制器改为PID 控制器,请确定满足性能指标的PID 控制器参数。 ................... 32 8.1用最优PID 控制法设计: ......................................................................................... 32 9.如希望尽可能的缩短系统的调节时间,请设计相对应的最小拍控制器,并画出校正后系统的阶跃响应曲线。 ................................................................................................... 36 9.1采用无纹波最少拍系统设计 ..................................................................................... 36 10.课程设计总结: .. (39)

11.参考资料: (40)

采样控制系统分析与仿真 专业课程设计 11计算机应用技术 石王魁

一、系统分析:

某工业碾磨系统的开环传递函数为

10()(5)G s s s =

+

要求用数字控制器D(z)来改善系统的性能,使得相角裕度大于45o

,调节时间小于1s(2%准则)

1. 绘制碾磨控制系统开环根轨迹图、Bode 图和奈奎斯特图,并判断稳定性;

2.当控制器为

()

()()c K s a G s s b +=

+,试设计一个能满足要求的控制器(要求用根轨迹

法和频率响应法进行设计);

3.将采样周期取为0.02T s =,试确定与()c G s 对应的数字控制器()c G z (要求用

多种方法进行离散化,并进行性能比较); 4.仿真计算连续闭环系统对单位阶跃输入的响应; 5.仿真计算数据采样系统对单位阶跃输入的响应; 6.比较并讨论4和5的仿真结果;

7.讨论采样周期的不同选择对系统控制性能的影响;

8.如控制器改为PID 控制器,请确定满足性能指标的PID 控制器参数。

9.如希望尽可能的缩短系统的调节时间,请设计相对应的最小拍控制器,并画出校正后系统的阶跃响应曲线。

采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁

1. 绘制碾磨控制系统开环根轨迹图、Bode 图和奈奎斯特图,并判断稳定性:

G=zpk([],[0 -5],10);sisotool(G);margin(G);

根轨迹图

采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁

Bode图:截止频率为1.88rad/s,相角裕度为69

采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁

N=0;R=0;Z=P-R=0;该系统稳定。

采样控制系统分析与仿真 专业课程设计 11计算机应用技术 石王魁

2.当控制器为()()()

c K s a G s s b +=+,试设计一个能满足要求的控

制器(要求用根轨迹法和频率响应法进行设计):

调节前

Gs=tf(10,[1 5 0]); Close_S=feedback(Gs,1); Step(Close_S,'b'); hold on

设计前调节时间为1.18s

采样控制系统分析与仿真 专业课程设计 11计算机应用技术 石王魁

设计前截止频率为1.88rad/s,相角裕度为69°(第一问中)

2.1进行根轨迹校正:

1,2=70=0.8

4.4

2.55/.25/5

3.75

s n n n

n arctg t w rad s w rad s w p w jw j γγξξξ==

==-±=-±取度由,求得=5,取=6要求的主导极点为

要使得根轨迹向左转,要加入零点。考虑到校正装置的物理 可实现性,加入超前校正装置。

111111111a ()b (a)()(2)(b)

,a 2b 1804050c g o o o o o

o

c s G s s K s G s s s s p p p p p p p p p ?+=++=

++∠∠∠∠=-∠∠∠∠==K ()()

开环传递函数为为了使得根轨迹通过根据相角条件

(-)-(-0)-(-)-(-)求得

(-0)=140,(-2)=90(-a )-(-b )超前装置提供的超前相角为

111111115 3.75

16.5121

0+511.499

0+511.499

1006.512

=10

g

g p j p K p p p p p p K p K =-++=++++=

≈+根据根轨迹的幅值条件系统的开环增益为

采样控制系统分析与仿真 专业课程设计 11计算机应用技术 石王魁

333 6.512()11.499 6.5126.499

c c c s G s s z p p z p +=+==-10()所以()

加校正装置后,除要求的主导极点,还有一个闭环零点和一个非主导极点。

根据(-5+j3.75)+(-5-j3.75)+=0+(-5)+(-11.499)-第八法则、对系统的影响,例如超调量可能会变大等,但闭环系统的性能主要由复数极点确定。

()100( 6.512)

()()(5 3.75)(5 3.75)( 6.499)

1()()()()

C s s s R s s j s j s C s s R s s s

+Φ=

=

+-+++Φ=Φ加校正装置后,系统的闭环传递函数为系统的单位阶跃响应为=

检验性能:

>> Ds=tf(10*[1 6.512],[1 11.499]); Gs=tf(10,[1 5 0]);

Close_S=feedback(Ds*Gs,1); Step(Close_S,'b'); hold on

采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁

调节时间为0.863s,符合要求。

>> G=zpk([-6.512],[0,-5,-11.499],10);

>> margin(G);

>> G=zpk([-6.512],[0,-5,-11.499],100);

margin(G);

采样控制系统分析与仿真 专业课程设计 11计算机应用技术 石王魁

相角裕度为48°,符合要求。

2.2频率校正:

详细设计

要求:静态速度误差为20,相角裕度不小于45°,调节时间小于1s (2%)。 A. 根据静态误差指标确定开环增益

10

110

lim ()()lim 220

1(5)

10

v c s s Ts K s G s G s s K

K Ts s s K α→→+=?=??==++= B. 据确定的增益 K ,画出如下增益经调整后的未校正系统的Bode 图

G=zpk([],[0,-5],100); margin(G);

采样控制系统分析与仿真 专业课程设计 11计算机应用技术 石王魁

校正前的相角裕度为28°

C. 计算为满足设计要求所需增加的相位超前角度

从图可知为满足设计要求,还须25度左右的超前相角。即令

25=m ?

D. 计算α

1sin 1sin 2.4638

m m ?α?+=

-= E. 选定最大超前角发生频率

因为校正环节在最大超前相角处有 10log a 的幅值提升,所以把

m m 10log 10log(2.4638) 3.916()=12rad /dB s

αωω-=-=-处选为:

F. 据式T

m αω1

=

采样控制系统分析与仿真 专业课程设计 11计算机应用技术 石王魁

计算超前环节的时间常数因子 T 和校正环节的交接频率

1

1218.36

p T ωω=

=== 1

7.645z T

ωα=

= H. 对以上设计所得)()(s G s G c 进行检验,看是否满足设计要求。

/1110

10()()1(5)/1(5)

z c p s Ts K G s G s K

Ts s s s s s ωααω++=?=?++++

(7.65)

()24.638(18.836)

c s G s s +=?

+

I .性能验证:

Ds=tf(24.638*[1 7.65],[1 18.836]); Gs=tf(10,[1 5 0]);

Close_S=feedback(Ds*Gs,1); Step(Close_S,'b'); hold on

采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁

调节时间为0.573,满足设计要求。

G=zpk([-7.65],[0,-5,-18.836],240.638);

margin(G);

采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁

相角裕度为48°,满足设计要求。

采样控制系统分析与仿真 专业课程设计 11计算机应用技术 石王魁

3.将采样周期取为0.02T s =,试确定与()c G s 对应的数字控制器()c G z (要求用多种方法进行离散化,并进行性能比较):

A .选用根轨迹所得到的控制器函数:

10( 6.512)

11.499

s Gs s +=

+

B .采用脉冲响应不变法,零阶保持器法,一阶保持器法,双线性变涣法,零极点匹配方法确定数字控制器Gc (z );

Gc=zpk([-6.512],[-11.499],10);

Gimp=c2d(Gc,0.02,'imp')%脉冲响应不变法 Gzoh=c2d(Gc,0.02,'zoh') %零阶保持器 Gfod=c2d(Gc,0.02,'fod') %一阶保持器 Gtustin=c2d(Gc,0.02,'tustin') %双线性

Gmatched=c2d(Gc,0.02,'matched') %零极点匹配方法

性能比较:

G0=zpk([],[0 -5],10);Gc=zpk([-6.512],[-11.499],10); G=series(G0,Gc);

G1=c2d(G,0.02,'zoh');%零阶保持器 G2=c2d(G,0.02,'fod');%一阶保持器 G3=c2d(G,0.02,'tustin'); %双线性

G4=c2d(G,0.02,'matched');%零极点匹配方法

采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁

G5=c2d(G,0.02,'imp');%脉冲响应不变法

Gk1=feedback(G1,1);Gk2=feedback(G2,1);

Gk3=feedback(G3,1);Gk4=feedback(G4,1);

Gk5= feedback(G5,1);

figure;margin(G1);grid

figure;margin(G2);grid

figure;margin(G3);grid

figure;margin(G4);grid

figure;margin(G5);grid

figure;step(Gk1,Gk2,Gk3,Gk4,Gk5);legend('zoh','fod','tustin',' matched','imp');grid

采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁

零阶保持器

采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁

一阶保持器

采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁

双线性

控制系统仿真课程设计报告.

控制系统仿真课程设计 (2011级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2014年6月

控制系统仿真课程设计一 ———交流异步电机动态仿真 一 设计目的 1.了解交流异步电机的原理,组成及各主要单元部件的原理。 2. 设计交流异步电机动态结构系统; 3.掌握交流异步电机调速系统的调试步骤,方法及参数的整定。 二 设计及Matlab 仿真过程 异步电机工作在额定电压和额定频率下,仿真异步电机在空载启动和加载过程中的转速和电流变化过程。仿真电动机参数如下: 1.85, 2.658,0.2941,0.2898,0.2838s r s r m R R L H L H L H =Ω=Ω===, 20.1284Nm s ,2,380,50Hz p N N J n U V f =?===,此外,中间需要计算的参数如下: 21m s r L L L σ=-,r r r L T R =,22 2 s r r m t r R L R L R L +=,10N m TL =?。αβ坐标系状态方程: 其中,状态变量: 输入变量: 电磁转矩: 2p m p s r s L r d ()d n L n i i T t JL J βααωψψβ=--r m r r s r r d 1d L i t T T ααβαψψωψ=--+r m r r s r r d 1d L i t T T ββαβψψωψ=-++22s s r r m m m s r r s s 2r r r r d d i R L R L L L L i u t L T L L ααβαα σψωψ+=+-+22 s s r r m m m s r r s s 2 r r r r d d i R L R L L L L i u t L T L L ββαββ σψωψ+=--+[ ] T r r s s X i i αβαβωψψ=[ ] T s s L U u u T αβ=()p m e s s s s r n L T i i L βααβ ψψ=-

控制系统仿真与CAD 实验报告

《控制系统仿真与CAD》 实验课程报告

一、实验教学目标与基本要求 上机实验是本课程重要的实践教学环节。实验的目的不仅仅是验证理论知识,更重要的是通过上机加强学生的实验手段与实践技能,掌握应用 MATLAB/Simulink 求解控制问题的方法,培养学生分析问题、解决问题、应用知识的能力和创新精神,全面提高学生的综合素质。 通过对MATLAB/Simulink进行求解,基本掌握常见控制问题的求解方法与命令调用,更深入地认识和了解MATLAB语言的强大的计算功能与其在控制领域的应用优势。 上机实验最终以书面报告的形式提交,作为期末成绩的考核内容。 二、题目及解答 第一部分:MATLAB 必备基础知识、控制系统模型与转换、线性控制系统的计算机辅助分析 1. >>f=inline('[-x(2)-x(3);x(1)+a*x(2);b+(x(1)-c)*x(3)]','t','x','flag','a','b','c');[t,x]=ode45( f,[0,100],[0;0;0],[],0.2,0.2,5.7);plot3(x(:,1),x(:,2),x(:,3)),grid,figure,plot(x(:,1),x(:,2)), grid

2. >>y=@(x)x(1)^2-2*x(1)+x(2);ff=optimset;https://www.doczj.com/doc/c410604369.html,rgeScale='off';ff.TolFun=1e-30;ff.Tol X=1e-15;ff.TolCon=1e-20;x0=[1;1;1];xm=[0;0;0];xM=[];A=[];B=[];Aeq=[];Beq=[];[ x,f,c,d]=fmincon(y,x0,A,B,Aeq,Beq,xm,xM,@wzhfc1,ff) Warning: Options LargeScale = 'off' and Algorithm = 'trust-region-reflective' conflict. Ignoring Algorithm and running active-set algorithm. To run trust-region-reflective, set LargeScale = 'on'. To run active-set without this warning, use Algorithm = 'active-set'. > In fmincon at 456 Local minimum possible. Constraints satisfied. fmincon stopped because the size of the current search direction is less than twice the selected value of the step size tolerance and constraints are satisfied to within the selected value of the constraint tolerance. Active inequalities (to within options.TolCon = 1e-20): lower upper ineqlin ineqnonlin 2 x = 1.0000 1.0000 f =

控制系统仿真课程设计

控制系统仿真课程设计 (2010级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2013年7月

控制系统仿真课程设计(一) ——锅炉汽包水位三冲量控制系统仿真1.1 设计目的 本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。 1.2 设计原理 锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。 常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。 图1-1 锅炉汽水系统图

在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示: (1)汽包水位在给水流量作用下的动态特性 汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为 ()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性 在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ (1.2) 常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。为此,可将给水流量信号引入,构成三冲量调节系统,如图1-2所示。图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。

实验七-对汽车控制系统的设计与仿真

实验七 对汽车控制系统的设计与仿真 一、实验目的: 通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab 和Simulink 进行系统仿真的基本方法。 二、实验学时:4 个人计算机,Matlab 软件。 三、实验原理: 本实验是对一个汽车运动控制系统进行实际设计与仿真,其方法是先对汽车运动控制系统进行建摸,然后对其进行PID 控制器的设计,建立了汽车运动控制系统的模型后,可采用Matlab 和Simulink 对控制系统进行仿真设计。 注意:设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。然后再按照仿真结果进行PID 控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。 1. 问题的描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ? ??==+v y u bv v m & 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2、系统的模型表示

《控制系统计算机仿真》实验指导书

实验一 Matlab使用方法和程序设计 一、实验目的 1、掌握Matlab软件使用的基本方法; 2、熟悉Matlab的数据表示、基本运算和程序控制语句 3、熟悉Matlab绘图命令及基本绘图控制 4、熟悉Matlab程序设计的基本方法 二、实验内容 1、帮助命令 使用help命令,查找sqrt(开方)函数的使用方法; 2、矩阵运算 (1)矩阵的乘法 已知A=[1 2;3 4]; B=[5 5;7 8]; 求A^2*B (2)矩阵除法 已知A=[1 2 3;4 5 6;7 8 9]; B=[1 0 0;0 2 0;0 0 3]; A\B,A/B (3)矩阵的转置及共轭转置 已知A=[5+i,2-i,1;6*i,4,9-i]; 求A.', A' (4)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9]; 求A中第3列前2个元素;A中所有列第2,3行的元素; (5)方括号[] 用magic函数生成一个4阶魔术矩阵,删除该矩阵的第四列 3、多项式 (1)求多项式p(x) = x3 - 2x - 4的根 (2)已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] , 求矩阵A的特征多项式; 求特征多项式中未知数为20时的值; 4、基本绘图命令 (1)绘制余弦曲线y=cos(t),t∈[0,2π] (2)在同一坐标系中绘制余弦曲线y=cos(t-0.25)和正弦曲线y=sin(t-0.5),t∈[0,2π] 5、基本绘图控制 绘制[0,4π]区间上的x1=10sint曲线,并要求: (1)线形为点划线、颜色为红色、数据点标记为加号; (2)坐标轴控制:显示范围、刻度线、比例、网络线 (3)标注控制:坐标轴名称、标题、相应文本; 6、基本程序设计 (1)编写命令文件:计算1+2+?+n<2000时的最大n值; (2)编写函数文件:分别用for和while循环结构编写程序,求2的0到n次幂的和。 三、预习要求 利用所学知识,编写实验内容中2到6的相应程序,并写在预习报告上。

控制系统设计与仿真实验报告

阅读使人充实,会谈使人敏捷,写作使人精确。——培根 控制系统设计与仿真上机实验报告 学院:自动化学院 班级:自动化 姓名: 学号: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 一、第一次上机任务 1、熟悉matlab软件的运行环境,包括命令窗体,workspace等,熟悉绘图命令。 2、采用四阶龙格库塔法求如下二阶系统的在幅值为1脉宽为1刺激

下响应的数值解。 2?,??n10?0.5,??(s)G n22?????2ss nn3、采用四阶龙格库塔法求高阶系统阶单位跃响应曲线的数值解。 2?,,??5T?n100.5,???Gs)( n22???1)?s(?2s)(Ts?nn4、自学OED45指令用法,并求解题2中二阶系统的单位阶跃响应。 程序代码如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根

;曲线如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 二、第二次上机任务 试用simulink方法解微分方程,并封装模块,输出为。得到各、1x i 状态变量的时间序列,以及相平面上的吸引子。 ?x?x??xx?3121? ??xx?x???322 ??xx?xx??x??32321参数入口为的值以及的初值。(其中,以及??????x28?10,?8/,,3,?i1模块输入是输出量的微分。)初值分别为提示:0.001xxx?0,?0,?312s:Simulink

采样控制系统的分析讲解

东南大学自动控制实验室 实验报告 课程名称:热工过程自动控制原理 实验名称:采样控制系统的分析 院(系):能源与环境学院专业:热能动力姓名:范永学学号:03013409 实验室:实验组别: 同组人员:实验时间:2015.12.15 评定成绩:审阅教师:

实验八 采样控制系统的分析 一、实验目的 1. 熟悉并掌握Simulink 的使用; 2. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法; 3. 研究开环增益K 和采样周期T 的变化对系统动态性能的影响; 二、实验原理 1. 采样定理 图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(*t x 。 图2-1 连续信号的采样与恢复 香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为: max 2ωω≥S 式中S ω为采样的角频率,max ω为连续信号的最高角频率。由于T S πω2= ,因而式可为 m ax ωπ≤ T T 为采样周期。 2. 采样控制系统性能的研究 图2-2为二阶采样控制系统的方块图。 图2-2 采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。 由图2-2所示系统的开环脉冲传递函数为: ]2 5.05.01[)1(25])2(2[)1(25])15.0()1(25[)(21212++--=+-=+-==---S S S Z Z S S Z Z S S e Z z G S T ]5.015.0)1([)1(25221T e Z Z Z Z Z TZ Z Z ---+----=

控制系统仿真课程设计

控制系统数字仿真课程设计 1.课程设计应达到的目的 1、通过Matlab仿真熟悉课程设计的基本流程; 2、掌握控制系统的数学建模及传递函数的构造; 3、掌握控制系统性能的根轨迹分析; 4、学会分析系统的性能指标; 2.课程设计题目及要求 设计要求 1、进行系统总体设计,画出原理框图。(按给出的形式,自行构造数学模型,构造成1 个零点,三个极点的三阶系统,主导极点是一对共轭复根) G(s)=10(s+2)/(s+1)(s2+2s+6) 2、构造系统传递函数,利用MATLAB绘画系统的开环和闭环零极点图;(分别得 到闭环和开环的零极点图)参考课本P149页例题4-30 clear; num = [10,20]; den =[1 3 8 6]; pzmap(num,den) 3、利用MATLAB绘画根轨迹图,分析系统随着根轨迹增益变化的性能。并估算超 调量=16.3%时的K值(计算得到)。参考课本P149页例题4-31 clear num=[10,20]; den=[1 3 8 6]; sys=tf(num,den); rlocus(sys) hold on jjx(sys); s=jjx(sys); [k,Wcg]=imwk(sys)

set(findobj('marker','x'),'markersize',8,'linewidth',1.5,'Color','k'); set(findobj('marker','o'),'markersize',8,'linewidth',1.5,'Color','k'); function s=jjx(sys) sys=tf(sys); num=sys.num{1}; den=sys.den{1}; p=roots(den); z=roots(num); n=length(p); m=length(z); if n>m s=(sum(p)-sum(z))/(n-m) sd=[]; if nargout<1 for i=1:n-m sd=[sd,s] end sysa=zpk([],sd,1); hold on; [r,k]=rlocus(sysa); for i=1:n-m plot(real(r(i,:)),imag(r(i,:)),'k:'); end end else disp; s=[]; end function [k,wcg]=imwk(sys) sys=tf(sys) num=sys.num{1} den=sys.den{1}; asys=allmargin(sys); wcg=asys.GMFrequency; k=asys. GainMargin;

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

采样控制系统分析

北京联合大学 实验报告 实验名称:采样控制系统分析 学院:自动化专业:物流工程姓名:学号: 同组人姓名:学号: 班级:成绩: 实验日期:2014年12月18日

完成报告日期:2014年12月21日 实验5 采样控制系统分析 一.实验目的 1. 掌握判断采样控制系统稳定性的充要条件。 2. 掌握采样周期T对系统的稳定性的影响及临界值的计算。 3. 观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。 二、实验内容及步骤 1.闭环采样系统构成电路如图5-1所示。掌握采样周期T对系统的稳定性的影响及临界值的计算,观察和分析采样控制系统在不同采样周期T 时的瞬态响应曲线,填入表中。 2. 改变采样控制系统的被控对象,计算和测量系统的临界稳定采样周期T,填入表中。 图5-1 闭环采样系统构成电路 [a].闭环采样系统实验构成电路如图5-1所示,其中被控对象的各环节 参数: 积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S, 惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。 实验步骤:注:(B5)单元的‘S ST’不能用‘短路套’短接! (1)用函数发生器(B5)单元的方波输出作为系统振荡器的采样周期信号。 (D1)单元选择“方波”,(B5)“方波输出”孔输出方波。调节“设定电位器1”控制相应的输出频率。

(2 ) 用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号R(t): B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V 阶跃)。阶跃信号输出(B1单元的Y测孔)调整为2.5V(调节方法:调节电位器,用万用表测量Y测孔)。 (3)构造模拟电路:按图5-1安置短路套及测孔联线,表如下。 (4)运行、观察、记录: 三、数据处理(现象分析) ①运行LABACT程序,选择自动自动控制菜单下的采样系统分析实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。 ②调节“设定电位器1”,D1单元显示方波频率,将采样周期T(B5方波输出)依次调整为15ms(66.6Hz) 、30ms(33.3Hz)和90ms(11.1Hz),按下信号发生器(B1)阶跃信号按钮(0→+2.5V阶跃),使用虚拟示波器CH1观察A6单元输出点OUT(C)的波形。观察相应实验现象,记录波形,并判断其稳定性,填入表5-1。 T=66.6Hz

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

控制系统仿真实验报告1

昆明理工大学电力工程学院学生实验报告 实验课程名称:控制系统仿真实验 开课实验室:年月日

实验一 电路的建模与仿真 一、实验目的 1、了解KCL 、KVL 原理; 2、掌握建立矩阵并编写M 文件; 3、调试M 文件,验证KCL 、KVL ; 4、掌握用simulink 模块搭建电路并且进行仿真。 二、实验内容 电路如图1所示,该电路是一个分压电路,已知13R =Ω,27R =Ω,20S V V =。试求恒压源的电流I 和电压1V 、2V 。 I V S V 1 V 2 图1 三、列写电路方程 (1)用欧姆定律求出电流和电压 (2)通过KCL 和KVL 求解电流和电压

四、编写M文件进行电路求解(1)M文件源程序 (2)M文件求解结果 五、用simulink进行仿真建模(1)给出simulink下的电路建模图(2)给出simulink仿真的波形和数值

六、结果比较与分析

实验二数值算法编程实现 一、实验目的 掌握各种计算方法的基本原理,在计算机上利用MATLAB完成算法程序的编写拉格朗日插值算法程序,利用编写的算法程序进行实例的运算。 二、实验说明 1.给出拉格朗日插值法计算数据表; 2.利用拉格朗日插值公式,编写编程算法流程,画出程序框图,作为下述编程的依据; 3.根据MATLAB软件特点和算法流程框图,利用MATLAB软件进行上机编程; 4.调试和完善MATLAB程序; 5.由编写的程序根据实验要求得到实验计算的结果。 三、实验原始数据 上机编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算(0.6) f,写出程序源代码,输出计算结果: 四、拉格朗日插值算法公式及流程框图

【自控原理实验】实验九 采样控制系统动态性能和稳定性

实验九采样控制系统动态性能和稳定性 分析的混合仿真研究 一.实验目的 1.学习用混合仿真方法研究采样控制系统。 2.深入理解和掌握采样控制的基本理论。 二.实验内容 1.利用实验设备设计并实现已知被控对象为典型二阶连续环节的采样控制混合仿真系统。 2.改变数字控制器的采样控制周期和放大系数,研究参数变化对采样控制系统的动态性能和稳定性的影响。 三.实验步骤 1.采样控制系统的混合仿真研究方法 (1)参阅本实验附录1(1)以及图9.1.1和图9.1.2,利用实验箱上的电模拟单元电路U9和U11,设计并连接已知传递函数的连续被控对象的模拟电路。 (2)将实验箱上的数据处理单元U3模拟量输出端“O1”与被控对象的模拟电路的输入端(对应图9.1.2的r(t)端)相连,同时将该数据处理单元U3的模拟量输入端口“I1”与被控对象的模拟电路的输出端(对应图9.1.2的c(t)端)相连。再将运放的锁零端“G”与电源单元U1的“-15V”相连。注意,实验中运放没有锁零,而模拟电路中包含“电容”,故每次实验启动前,必须对电容短接放电,以免影响实验结果。 (3)接线完成,经检查USB通讯线是否接好,再给实验箱上电后,启动上位机程序,进入主界面。界面上的操作步骤如下: ①通道接线设置”:将环节的输出端Uo接到U3单元的A/D输入端I1,U3单元的D/A信号发生端接到环节的输入端Ui。 ②硬件按上述接线完后,检查USB通讯连线是否接好和检查实验箱电源是否正常后,点击LabVIEW上位机界面程序中的“RUN”按钮运行实验界面,如果有问题则请求指导教师帮助。 ③进入实验界面后,先对实验类别进行设置(选择实验九或实验十),通过对界面下边开关来选择,点击开关向上(对应紫色信号灯亮)即选择采样控制混合仿真研究(即实验九);点击开关向下(对应绿色信号灯亮)即选择采样控制系统串联校正混合研究(即实验十)。选择“采样时间”为“200Hz/5ms”。 ④完成实验类别设置,然后设置“测试信号设置”框内的参数项,设置“信号幅值”为“1”(根据实验曲线调整大小),设置“采样时间”为“200Hz/5ms”,“采样开关T”为“1 ms”,然后选择“采样控制系统混合仿真研究”,此时数字控制器是一比例放大器,可先设置Kp=1。 注意允许的采样周期最小值为1ms。小于此值即不能保证系统运行正常。 ⑤以上设置完成后,按“启动/暂停”键启动实验或暂停实验,动态波形得到显示,如上述参数设置合理就可以在主界面中间得到系统的“阶跃响应”。

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

控制系统数字仿真实验报告

控制系统数字仿真实验报告 班级:机械1304 姓名:俞文龙 学号: 0801130801

实验一数字仿真方法验证1 一、实验目的 1.掌握基于数值积分法的系统仿真、了解各仿真参数的影响; 2.掌握基于离散相似法的系统仿真、了解各仿真参数的影响; 3.熟悉MATLAB语言及应用环境。 二、实验环境 网络计算机系统(新校区机电大楼D520),MATLAB语言环境 三实验内容 (一)试将示例1的问题改为调用ode45函数求解,并比较结果。 实验程序如下; function dy = vdp(t,y) dy=[y-2*t/y]; end [t,y]=ode45('vdp',[0 1],1); plot(t,y); xlabel('t'); ylabel('y');

(二)试用四阶RK 法编程求解下列微分方程初值问题。仿真时间2s ,取步长h=0.1。 ?????=-=1 )0(2y t y dt dy 实验程序如下: clear t0=0; y0=1; h=0.1; n=2/h; y(1)=1; t(1)=0; for i=0:n-1 k1=y0-t0^2; k2=(y0+h*k1/2)-(t0+h/2)^2; k3=(y0+h*k2/2)-(t0+h/2)^2;

k4=(y0+h*k3)-(t0+h)^2; y1=y0+h*(k1+2*k2+2*k3+k4)/6; t1=t0+h; y0=y1; t0=t1; y(i+2)=y1; t(i+2)=t1; end y1 t1 figure(1) plot(t,y,'r'); xlabel('t'); ylabel('y'); (三)试求示例3分别在周期为5s的方波信号和脉冲信号下的响应,仿真时间20s,采样周期Ts=0.1。

matlab控制系统仿真课程设计

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称机电工程学院专业 班级 学生姓名 学号 课程设计地点 课程设计学时 指导教师 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。 (d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应

曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统 无积分作用单回路控制系统

大比例作用单回路控制系统 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;增大积分时间有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长,加入微分环节,有利于加快系统的响应速度,使系统超调量减小,稳定性增加。 (2).串级控制系统的设计及仿真。 (a)已知主被控对象传函W 01(s) = 1 / (100s + 1),副被控对象传函W 02 (s) = 1 / (10s + 1),副环干扰通道传函W d (s) = 1/(s2 +20s + 1)。 (b)画出串级控制系统方框图及相同控制对象下的单回路控制系统的方框图。(c)用MatLab的Simulink画出上述两系统。

《MATLAB与控制系统。。仿真》实验报告

《MATLAB与控制系统仿真》 实验报告 班级: 学号: 姓名: 时间:2013 年 6 月

目录实验一MATLAB环境的熟悉与基本运算(一)实验二MATLAB环境的熟悉与基本运算(二)实验三MATLAB语言的程序设计 实验四MATLAB的图形绘制 实验五基于SIMULINK的系统仿真 实验六控制系统的频域与时域分析 实验七控制系统PID校正器设计法 实验八线性方程组求解及函数求极值

实验一MATLAB环境的熟悉与基本运算(一) 一、实验目的 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本原理 1.熟悉MATLAB环境: MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。 2.掌握MATLAB常用命令 表1 MATLAB常用命令 变量与运算符 3.1变量命名规则 3.2 MATLAB的各种常用运算符 表3 MATLAB关系运算符 表4 MATLAB逻辑运算符

| Or 逻辑或 ~ Not 逻辑非 Xor逻辑异或 符号功能说明示例符号功能说明示例 :1:1:4;1:2:11 . ;分隔行.. ,分隔列… ()% 注释 [] 构成向量、矩阵!调用操作系统命令 {} 构成单元数组= 用于赋值 的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 三、主要仪器设备及耗材 计算机 四.实验程序及结果 1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。 3、学习使用help命令。

控制系统建模、分析、设计和仿真

北京理工大学珠海学院 《计算机仿真》课程设计说明书题目: 控制系统建模、分析、设计和仿真 学院:信息学院 专业班级:自动化四班 学号: 学生姓名: 指导教师: 2012年 6 月 9 日

北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第2学期 学生姓名:专业班级: 指导教师:范杰工作部门:信息学院 一、课程设计题目 《控制系统建模、分析、设计和仿真》 本课程设计共列出10个同等难度的设计题目,编号为:[0号题]、[1号题]、[2号题]、[3号题]、[4号题]、[5号题]、[6号题]、[7号题]、[8号题]、[9号题]。 学生必须选择与学号尾数相同的题目完成课程设计。例如,学号为09xxxxxxxx2的学生必须选做[2号题]。 二、课程设计内容 (一)《控制系统建模、分析、设计和仿真》课题设计内容 最少拍有波纹控制系统

[8号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取0.02秒,分别设计一单位加速度信号输入时的最少拍有波纹 控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 (二)《控制系统建模、分析、设计和仿真》课题设计要求及评分标准【共100分】 1、求被控对象传递函数G(s)的MATLAB 描述。(2分) 2、求被控对象脉冲传递函数G(z)。(4分) 3、转换G(z)为零极点增益模型并按z-1形式排列。(2分) 4、确定误差脉冲传递函数Ge(z)形式,满足单位加速度信号输入时闭环稳态误差为零和实际闭环系统稳 定的要求。(6分) 5、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dy(z)可实现、最少拍和实际闭环系统稳定的要求。 (8分) 6、根据4、5、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。(12分) 7、求针对单位加速度信号输入的最少拍有波纹控制器Dy(z)并说明Dy(z)的可实现性。(3分) 8、用程序仿真方法分析加速度信号输入时闭环系统动态性能和稳态性能。(7分) 9、用图形仿真方法(Simulink)分析单位加速度信号输入时闭环系统动态性能和稳态性能。(8分) 10、确定误差脉冲传递函数Ge(z)形式,满足单位速度信号输入时闭环稳态误差为零和实际闭环系统稳 定的要求。(6分) 11、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dw(z)可实现、无波纹、最少拍和实际闭环系统稳 定的要求。(8分) 12、根据10、11、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。(12分) 13、求针对单位速度信号输入的最少拍无波纹控制器Dw(z)并说明Dw(z)的可实现性。(3分) 14、用程序仿真方法分析单位速度信号输入时闭环系统动态性能和稳态性能。(7分) 15、用图形仿真方法(Simulink)分析单位速度信号输入时闭环系统动态性能和稳态性能。(8分) 16、根据8、9、14、15、的分析,说明有波纹和无波纹的差别和物理意义。(4分) ) 7)(5)(2()6)(1(879)(2+++++= s s s s s s s G

相关主题
文本预览
相关文档 最新文档