当前位置:文档之家› 自控实验-采样控制系统分析

自控实验-采样控制系统分析

自控实验-采样控制系统分析
自控实验-采样控制系统分析

实验名称 采样控制系统的分析 实验序号 5 实验时间 2011-12-19 学生姓名 学号

专业 自动化 班级 (1)班 年级 09级 指导教师 实验成绩

一、实验目的:

1.通过本实验进一步理解香农采样定理和零阶保持器ZOH 的原理及其实现方法。

2.利用组件LF398组成一个采样控制系统,并研究采样周期T 的大小对该系统性能的影响。 二、实验原理:

图5—1为信号的采样与恢复的方块图。图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号X *(t)。

图5-1 连续信号的采样与恢复

香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为:

ωs ≥2ωmax ………………………①

式中ωs 为采样的角频率,ωmax 为连续信号的最高角频率。由于ωs=T

2π,因而式①可改写为

T ≤

m ax

ωπ …………………………②

T 为采样周期。

采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以作标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。

三、实验内容:

1.信号的采样与恢复

本实验采用“采样—保持器”组件LF398,它具有将连续信号离散后的零阶保持器输出信号的功能。图5—2为采样—保持电路。图中MC1555为产生方波的多谐振荡,MC14538为单稳态电路。改变多谐振荡器的周期,即改变采样周期T。图5—3为LF398的接线图。

2.闭环采样控制系统的研究

图5—4为采样控制系统的方块图,图中

s

e Ts-

-

1为零阶保持器ZOH的传递函数,图5—5为该系统的模拟电路图。

图5—4 采样控制系统方块图

图5—3 LF398连接图

图5—2 采样保持电路

图5—5 闭环采样系统的电路模拟图

图5—4所示系统的开环脉冲传递函数为: G(z)=Z[

)

15.0()1(252

+--s s e Ts ]=(1-z -1)Z[

)

2(22

+s s ]

25(1-z -1)Z[25

.05.012++

-

s s s ]=25(1-z -1)[T e z z z z z Tz 225.015.0)

1(--+---]

=

)

)(1()

21(]12[5.122222T T T T e z z Te e z e T --------++-

闭环脉冲传递函数为:

)Te 25e 5.115.12(z )e 5.115.13T 25(z )]

Te 2e 1(z )e 1T 2[(5.12)z (R )z (C T 2T 2T 22T 2T 2T 2--------++-+--++-= )

Te 25e 5.115.12(z )e 5.115.13T 25(z )]

Te 2e 1(z )e 1T 2[(5.12)z (R )z (C T 2T 2T 22T 2T 2T 2--------++-+--++-= 根据上式可判别该采样控制系统是否稳定,并可用迭代法求出该系统的阶跃输出响应。 四、实验内容及步骤:

准备:将信号发生器单元U1的ST 端和+5V 端用“短路块”短接。

实验步骤:

(1)信号的采样保持与采样周期的关系

①按图5—2接线。

②将U2正弦信号发生器单元的频率为2Hz的正弦信号接至LF398的输入端。

③将U1信号发生器单元的波段开关S12 置于“T2”档,调节调频电位器W11使采样周期T=50ms。

④用示波器同时观测LF398的输出波形和输入波形。此时输出波形和输入波形一致。

⑤改变采样周期,直至250ms,观测输出波形。此时输出波形仍为输入波形的采样波形,还未失真,但当T>250ms时,没有输出波形,即系统采样失真,从而验证了香农定理。

(2)采样系统的稳定性及瞬态响应

①按图5—5接线。

②取T=3ms。

③加阶跃信号r(t),观察并记录系统的输出波形C(t),测量超调量Mp。

④将信号发生器单元的波段开关S12置于“T2”档,调节调频电位器W11使采样周期T=30ms,系统加入阶跃信号,观察并记录系统输出波形,测出超调量Mp。

⑤调节电位器W11使采样周期T=150ms,观察并记录系统的输出波形。

五、实验记录结果:

T=18ms时:

Simulink实验结果:

T=50ms时:

Simulink实验结果:

补充的matlab语句实验结果:

六、实验讨论和总结:

UML学生的信息管理系统__实验报告

面向对象分析与设计期末实验 设计题目 : 学生信息管理系统 姓名 学院:电子信息工程学院 系别: 计算机科学与技术 班级:网络工程1班

页眉内容 A部分需求分析 一、实验目的 利用所学的UML建模知识设计学生信息管理系统。由于信息技术的急 剧发展和配合管理的思想的出现,各种网络化,自动化,配合技术在各自的业界的管理实践中迅速得到应用。学生的信息的管理系统的开发非常有必要。学生的信息管理系统的目标是在学生的信息管理中,使用计算机的网络技术,通讯技术和信息处理技术,使学生的信息得到加工,依次传达及保存。 根据学生的信息管理的电子化和网络化,来实现全面改善学生信息的管理环境,提高管理效率。系统要对使用要求不同的用户群体,设置不同的权限,设置系统的不同功能。管理员能有效管理学生的信息,同时,学生可以随时大量检索查询多种信息。 二、实验仪器或设备 学生用计算机一台 三、设计原理、系统业务及功能 设计原理: 系统要对使用要求不同的用户群体,设置不同的权限,设置系统的不同 功能。管理员能有效管理学生的信息,同时,学生可以随时大量检索查 询多种信息。 设计方案及流程: 1.这个项目从结构上分。 ①管理员:通过已有学生信息仓库,管理学生的信息,还可以管理教师 的信息,管理课程的信息,管理班级的信息; ②学生:可以修改学生的信息,选择课程,检索成绩等; ③教师:修改教师的信息,检索学生的成绩,登记授课的学生状况等。 2.系统功能模块

(1)学生功能:查询课表,选课,成绩,修改学生个人信息。 (2)教师功能:录入成绩,查询教授学生状况,修改老师个人信息。 3.管理员功能模块 (1)学生管理:学生用户的追加,学生信息的浏览,修改,删除。 (2)教师管理:教师用户的追加,教师信息的浏览,修改,删除。 (3)课程管理:课程查询,添加,修改,删除,公布课表等。 (4)班级管理:班级的查询,添加,修改,删除 B部分系统UML建模 1.用况图 (1)系统用况图:

验实验报告离散控制系统的性能分析及设计

实验报告 离散控制系统的性能分析及设计 一.实验目的:熟悉MATLAB环境下的离散控制系统性能分析;二.实验原理及实验内容 1. 数学模型的确定及系统分析: 已知采样控制系统,如图所示,若采样周期T=1s,K=10,(1)求闭环z传函;(2)求单位阶跃响应;(3)判定系统稳定性;(4)确定系统的临界放大系数; 图1 (1)计算闭环Z传函 ds1=tf(10,[1 1 0]);Ts=1; dg1=c2d(ds1,Ts,'zoh') dgg=feedback(dg1,1) Transfer function: 3.679 z + 2.642 ---------------------- z^2 - 1.368 z + 0.3679 3.679 z + 2.642 -------------------- z^2 + 2.311 z + 3.01 (2)求系统单位阶跃响应 C(z)=R*G Y= 3.6788 -2.1802 0.28517 12.225 -22.789 22.182 23.66 -115.13

201.15 -111.95 -1.1555 + 1.2943i -1.1555 - 1.2943i ans = 1.7350 1.7350 (4)临界稳定

将上述系统改变采样周期,T=0.1s,确定系统稳定的K 值范围; Root Locus Real Axis I m a g i n a r y A x i s -6 -5-4-3 -2-101 -2-1.5 -1 -0.5 0.5 1 1.5 2

附录: 最小拍系统设计原理及实例:

采样控制系统的分析讲解

东南大学自动控制实验室 实验报告 课程名称:热工过程自动控制原理 实验名称:采样控制系统的分析 院(系):能源与环境学院专业:热能动力姓名:范永学学号:03013409 实验室:实验组别: 同组人员:实验时间:2015.12.15 评定成绩:审阅教师:

实验八 采样控制系统的分析 一、实验目的 1. 熟悉并掌握Simulink 的使用; 2. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法; 3. 研究开环增益K 和采样周期T 的变化对系统动态性能的影响; 二、实验原理 1. 采样定理 图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(*t x 。 图2-1 连续信号的采样与恢复 香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为: max 2ωω≥S 式中S ω为采样的角频率,max ω为连续信号的最高角频率。由于T S πω2= ,因而式可为 m ax ωπ≤ T T 为采样周期。 2. 采样控制系统性能的研究 图2-2为二阶采样控制系统的方块图。 图2-2 采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。 由图2-2所示系统的开环脉冲传递函数为: ]2 5.05.01[)1(25])2(2[)1(25])15.0()1(25[)(21212++--=+-=+-==---S S S Z Z S S Z Z S S e Z z G S T ]5.015.0)1([)1(25221T e Z Z Z Z Z TZ Z Z ---+----=

UML学生的信息管理系统 实验报告

计算机与信息技术学院综合性实验报告 专业:Java 年级/班级:10级计科1班 2010—2011学年第学2期课程名称Uml统一建模指导教师 本组成员 学号姓名 实验地点过街楼实验室实验时间第十一周 项目名称学生的信息管理系统实验类型综合性 一、实验目的 利用所学的UML建模知识设计学生信息管理系统。由于信息技术的急剧发展和配合管理的思想的出现,各种网络化,自动化,配合技术在各自的业界的管理实践中迅速得到应用。学生的信息的管理系统的开发非常有必要。学生的信息管理系统的目标是在学生的信息管理中,使用计算机的网络技术,通讯技术和信息处理技术,使学生的信息得到加工,依次传达及保存。根据学生的信息管理的电子化和网络化,来实现全面改善学生信息的管理环境,提高管理效率。系统要对使用要求不同的用户群体,设置不同的权限,设置系统的不同功能。管理员能有效管理学生的信息,同时,学生可以随时大量检索查询多种信息。 这个项目从结构上分。 ①管理员:通过已有学生信息仓库,管理学生的信息,还可以管理教师的信息,管理 课程的信息,管理班级的信息; ②学生:可以修改学生的信息,选择课程,检索成绩等; ③教师:修改教师的信息,检索学生的成绩,登记授课的学生状况等。 二、实验仪器或设备 学生用计算机一台 三、总体设计(设计原理、设计方案及流程等) 设计原理: 系统要对使用要求不同的用户群体,设置不同的权限,设置系统的不同功能。管理 员能有效管理学生的信息,同时,学生可以随时大量检索查询多种信息。 设计方案及流程: 1.这个项目从结构上分。

①管理员:通过已有学生信息仓库,管理学生的信息,还可以管理教师的信息,管 理课程的信息,管理班级的信息; ②学生:可以修改学生的信息,选择课程,检索成绩等; ③教师:修改教师的信息,检索学生的成绩,登记授课的学生状况等。 2.系统功能 (1)学生功能:查询课表,选课,成绩,修改学生个人信息。 (2)教师功能:录入成绩,查询教授学生状况,修改老师个人信息。 3.管理员功能 (1)学生管理:学生用户的追加,学生信息的浏览,修改,删除。 (2)教师管理:教师用户的追加,教师信息的浏览,修改,删除。 (3)课程管理:课程查询,添加,修改,删除,公布课表等。 (4)班级管理:班级的查询,添加,修改,删除 四、实验步骤(包括主要步骤、用例图、时序图等) 1、用例模型是把应满足用户需求的基本功能聚合起来表示的强大工具,用例反映了系 统能够完成什么样的功能,因此,用例图占据重要位置。 (1)系统用例图: 系统登录 查询课程表 选课 查询成绩 修改学生个人信息 修改教师个人信息 登记授课的学生状况 检索学生成绩 学生 老师 学生信息的管理教师信息的管理 课程信息的管理班级信息的管理 管理员 用户 该用例图中的用例分析如下:

电力系统分析实验报告

本科生实验报告 实验课程电力系统分析 学院名称核技术与自动化工程学院 专业名称电气工程及其自动化 学生姓名 学生学号 指导教师顾民 实验地点6C901 实验成绩

二〇一五年十月——二〇一五年十二月 实验一MATPOWER软件在电力系统潮流计算中的应用实例 一、简介 Matlab在电力系统建模和仿真的应用主要由电力系统仿真模块(Power System Blockset 简称PSB)来完成。Power System Block是由TEQSIM公司和魁北克水电站开发的。PSB是在Simulink环境下使用的模块,采用变步长积分法,可以对非线性、刚性和非连续系统进行精确的仿真,并精确地检测出断点和开关发生时刻。PSB程序库涵盖了电路、电力电子、电气传动和电力系统等电工学科中常用的基本元件和系统仿真模型。通过PSB可以迅速建立模型,并立即仿真。PSB程序块程序库中的测量程序和控制源起到电信号与Simulink程序之间连接作用。PSB程序库含有代表电力网络中一般部件和设备的Simulink程序块,通过PSB 可以迅速建立模型,并立即仿真。 1)字段baseMVA是一个标量,用来设置基准容量,如100MVA。 2)字段bus是一个矩阵,用来设置电网中各母线参数。 ①bus_i用来设置母线编号(正整数)。 ②type用来设置母线类型, 1为PQ节点母线, 2为PV节点母线, 3为平衡(参考)节点母线,4为孤立节点母线。 ③Pd和Qd用来设置母线注入负荷的有功功率和无功功率。 ④Gs、Bs用来设置与母线并联电导和电纳。 ⑤baseKV用来设置该母线基准电压。 ⑥Vm和Va用来设置母线电压的幅值、相位初值。 ⑦Vmax和Vmin用来设置工作时母线最高、最低电压幅值。 ⑧area和zone用来设置电网断面号和分区号,一般都设置为1,前者可设置范围为1~100,后者可设置范围为1~999。 3)字段gen为一个矩阵,用来设置接入电网中的发电机(电源)参数。 ①bus用来设置接入发电机(电源)的母线编号。 ②Pg和Qg用来设置接入发电机(电源)的有功功率和无功功率。 ③Pmax和Pmin用来设置接入发电机(电源)的有功功率最大、最小允许值。 ④Qmax和Qmin用来设置接入发电机(电源)的无功功率最大、最小允许值。 ⑤Vg用来设置接入发电机(电源)的工作电压。 1.发电机模型 2.变压器模型 3.线路模型 4.负荷模型 5.母线模型 二、电力系统模型 电力系统中输送和分配电能的部分称为电力网,它包括升降压变压器和各种电压等级的输电线路、动力系统、电力系统和电力网简单示意如图

UML实验报告

本科实验报告 课程名称:系统分析与设计实验项目:《网上书店系统》实验地点: 专业班级:学号:20110 学生姓名: 指导教师: 2013年月日

实验一用例图 一、实验目的 初步掌握UML用例图的创建方法及其用例的描述。 二、实验要求 1.结合工具StartUML,熟悉UML用例图的模型元素。 2.使用StartUML工具建模网上书店系统的用例图。 三、实验主要设备:台式或笔记本计算机 四、实验内容: 根据下面给出的网上书店问题陈述,分析该系统总体需求,建模网上书店系统的用例图并提供一个主要用例的事件流文档。 网上书店陈述: 书店经理:我们原本是一个传统的实体书店,顾客要买书都是亲自到书店里来的,这样挺不方便。面且随着书店销售图书种类和数量的增加以及顾客的增长,尤其是大量顾客到书店选购图书,使得书店场地不足,工作人员也很忙碌。其实,还有一点就是,有不少人进入书店后并不买书,只是查找一些资料。有的甚至会在这呆上很长的时间直到把书免费看完。这种行为,工作人员一般是不阻止的,结果最后这些被看过的书会因为有阅读过的痕迹而影响销售。而且现在电子商务已经发展起来了,所以我们想到借助网络,让顾客通过网上书店购买图书。这样我们书店可以省掉大量的场地维护和工作人员成本支出,同时计算机可以方便的检索图书信息,让顾客可以足不出户以更优惠的价格买到需要的书。 系统分析员:能谈谈您对网上书店的要求吗? 书店经理:网上书店要能实现对外和对内的功能,对外是顾客能在网上书店订购图书,提交订单。对内,书店工作人员能够通过网上书店及时的看到这些订单,并进行处理。为了把书送到顾客手里,我们已经联系了快递公司,初步达成协议,由他们往返场客和书店之间把图书送到顾客手里。书店管理员受理订单后,就会通知快递公司送货。当然,书店的图书上架和下架也应该由网上书店完成了。 工作人员甲:实体店中,图书是按照不同种类放置的,方便顾客挑选。网上书店的图书也应该能够按照这种模式分类显示。这样,图书的信息和种类要由网上书店设置和管理。已有种类的新书或新种类的图书上架,网上书店能够保存这些信息。如果信息输入错误,能够进行修改。 工作人员乙:另外书店会搞一些促销,推出一些特价图书。以前这些特价书的信息,都是我们根据促销活动整理出来,贴在书店的醒目位置。促销活动过后,特价图书会恢复原来的价格。希望网上书店也能够管理这些特价图书。 系统分析员:能谈谈平时买书的经过吗? 顾客甲:一般都是先在书店里看看图书的简要介绍,或者先找找看有没有自己需要的书,有时是没有目标的寻找,有时直奔一类图书而去。找到我想买的书或者觉得看的书不错,就会去柜台结帐。 工作人员丙:不过有时在结帐的时候,顾客会突然改变主意,不买一些书或者又回去挑选图书了。

采样控制系统分析

北京联合大学 实验报告 实验名称:采样控制系统分析 学院:自动化专业:物流工程姓名:学号: 同组人姓名:学号: 班级:成绩: 实验日期:2014年12月18日

完成报告日期:2014年12月21日 实验5 采样控制系统分析 一.实验目的 1. 掌握判断采样控制系统稳定性的充要条件。 2. 掌握采样周期T对系统的稳定性的影响及临界值的计算。 3. 观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。 二、实验内容及步骤 1.闭环采样系统构成电路如图5-1所示。掌握采样周期T对系统的稳定性的影响及临界值的计算,观察和分析采样控制系统在不同采样周期T 时的瞬态响应曲线,填入表中。 2. 改变采样控制系统的被控对象,计算和测量系统的临界稳定采样周期T,填入表中。 图5-1 闭环采样系统构成电路 [a].闭环采样系统实验构成电路如图5-1所示,其中被控对象的各环节 参数: 积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S, 惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。 实验步骤:注:(B5)单元的‘S ST’不能用‘短路套’短接! (1)用函数发生器(B5)单元的方波输出作为系统振荡器的采样周期信号。 (D1)单元选择“方波”,(B5)“方波输出”孔输出方波。调节“设定电位器1”控制相应的输出频率。

(2 ) 用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号R(t): B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V 阶跃)。阶跃信号输出(B1单元的Y测孔)调整为2.5V(调节方法:调节电位器,用万用表测量Y测孔)。 (3)构造模拟电路:按图5-1安置短路套及测孔联线,表如下。 (4)运行、观察、记录: 三、数据处理(现象分析) ①运行LABACT程序,选择自动自动控制菜单下的采样系统分析实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。 ②调节“设定电位器1”,D1单元显示方波频率,将采样周期T(B5方波输出)依次调整为15ms(66.6Hz) 、30ms(33.3Hz)和90ms(11.1Hz),按下信号发生器(B1)阶跃信号按钮(0→+2.5V阶跃),使用虚拟示波器CH1观察A6单元输出点OUT(C)的波形。观察相应实验现象,记录波形,并判断其稳定性,填入表5-1。 T=66.6Hz

数据采集系统的历史与发展

数据采集系统的历史与发展 数据采集系统起始于20设计50年代,1956年美国首先研究了用在军事上的测试系统,目标是测试中不依靠相关的测试文件,由非熟练人员进行操作,并且测试任务是由测试设备高速自动控制完成的。由于该种数据采集测试系统具有高速性和一定的 灵活性可以满足众多传统方法不能完成的数据采集和测试任务,因而得到了初步的认可。大约在60年代后期,国外就有成套的数据采集设备产品进入市场,此阶段的数据采集设备和系统多属于专业的系统。 20世纪70年代中后期,随着微型的发展,诞生了采集器,仪表同计算机溶于一 体的数据采集系统。由于这种数据采集系统的性能优良,超过了传统的自是这一类的 典型代表。这种接口系统采用积木式结构,把相应的接口卡装在专用的机箱内,然后 由一台计算机控制。第二类系统在工业现场应用较多。这两种系统中,如果采集测试 任务改变,只需将新的仪用电缆接入系统,或将新卡在添加的专业的机箱里即可完成 硬件平台中建,如果采集测试任务改变,只需将新的仪用电缆接入系统,或将新卡再 添加到专用的机箱即可完成硬件平台重建,显然,这种系统比专用系统灵活得多。20 世纪80年代后期,数据采集系统发生了极大的变化,工业计算机,单片机和大规模集成电路的组合,用软件管理,使系统的成本降低,体积减小,功能成倍增加,数据处 理能力大大加强。 20世纪90年代至今,在国际上技术先进的国家,数据采集技术已经在军事,航 空电子设备及宇航技术,工业等领域被广泛应用。由于集成电路制造技术的不断提高,出现了高性能,高可靠性的单片数据采集系统(DAS)。目前有的DAS产品精度已达16位,采集速度每秒达到几十万次以上。数据采集技术已经成为一种专门的技术,在工业领域得到了广泛的应用。该阶段数据采集系统采用更先进的模块式结构,根据不 同的应用要求,通过简单的增加和更改模块,并结合系统编程,就可扩展或修改系统,迅速地组成一个新的系统。该阶段并行总线数据采集系统高速,模块化和即插即用方 向发展,典型系统有VXI总线系统,PCI,PXI总线系统等,数据位以达到32位总线宽度,采用频率可以达到100MSps。由于采用了高密度,屏蔽型,针孔式的连接器和卡 式模块,可以充分保证其隐定性急可靠性,但其昂贵的价格是阻碍它在自动化领域取 得了成功的应用。 串行总线数据采集系统向分布式系统结构和智能化方向发展,可靠性不断提高。 数据采集系统物理层通信,由于采用RS485双绞线,电力载波,无线和光纤,所以其技术得到了不断发展和完善。其在工业现场数据采集和控制等众多领域得到了广泛的 应用。由于目前局域网技术的发展,一个工厂管理层局域网,车间层的局域网和底层 的设备网已经可以有效地连接在一起,可以有效地把多台数据采集设备联在一起,以 实现生产环节的在线实时数据采集与监控。

信号与系统实验报告六

一.实验目的 1.复习采样定理 2.掌握应用matlab 函数设计模拟滤波器的方法 3.掌握系统性能分析的方法 4.结合实际综合应用信号与系统的基础理论 二.实验原理 在数字语音系统中,需首先对语音信号(模拟信号)采样,语音信号频率范围[-fh ,fh],信号中一般含有干扰噪声,其频带宽度远大于fh 。本次实验以电话系统中的语音信号采样系统为对象,设计语音信号采样前滤波器。数字电话系统结构框图如图8.1,电话系统中一般要保证4kHz 的音频带宽,即取fh =4kHz ,但送话器发出的信号的带宽比fh 大很多。因此在A/D 转换之前需对其进行模拟预滤波,以防止采样后发生频谱混叠失真。为使信号采集数量尽量少,设模数转换器的采样频率为8kHz 。 图8.1 数字电话系统结构框图 滤波器的定义 在信号处理时,通常都会遇到有用信号中混入(叠加)噪声的问题,消除或减弱噪声对信号的干扰,是信号处理中的一种最基本且重要的技术。根据有用信号与噪声不同的特性,抑制不需要的噪声或干扰, 提取出有用信号的过程称为滤波,实现滤波功能的装置称为滤波器。 在A/D 变换前,常常需要设置一个模拟滤波器进行预滤波以限 制信号带宽,去掉高于1/2抽样频率以上的高频分量,防止频谱 混叠现象的发生,称为抗混叠滤波器或预抽样滤波器 模拟滤波器的设计 模拟滤波器的理论和设计方法已发展得相当成熟,且有若干典型的模拟滤波器供我们选择,这些滤波器都有严格的设计公式、现成的曲线和图表供设计人员使用。 典型的模拟滤波器

巴特沃斯 Butterworth 滤波器 幅频特性单调下降 切比雪夫 Chebyshev 滤波器 幅频特性在通带或者在阻带有波动 贝塞尔 Bessel 滤波器 通带内有较好的线性相位持性 椭圆 Ellipse 滤波器 以这些数学函数命名的滤波器是低通滤波器的原型 模拟滤波器按幅度特性可分成低通、高通、带通和带阻滤波器,它们的理想幅度特性如图所示。 模拟低通滤波器的设计指标有αp, Ωp,αs 和Ωs 。 Ωp ;通带截止频率 Ωs :阻带截止频率 αp :通带中最大衰减系数 αs ;阻带最小衰减系数 αp 和αs 一般用dB 数表示。对于单调下降的幅度特性,可表示成: 222 2 (0) (0) 10lg 10lg () () a a p s a s a p H j H j H j H j αα==ΩΩ 三.实验内容

UML实验报告全

《系统分析与建模》实验指导书__2011__/__2012__年第__二__学期 姓名:____钱秀梅_________ 学号:__ 10030117_____ 班级:_ 10计一_______ 指导教师:___殷凯__________ 计算机科学与技术系编写

系统分析与建模实验指导书―1―计算机科学与技术系 目录 实验0 熟悉软件开发环境 (1) 实验1 用例图设计………………………………………………… 实验2 类和对象图设计 (3) 实验3 交互图设计 (7) 实验4 状态图设计 (9) 实验5 活动图设计 (12) 实验6 包图设计 (15) 实验7 物理图设计 (17) 附录考核登记表 (23)

实验0 熟悉软件开发环境 一、实验目的 学习使用EA开发环境创建模型的一般方法,理解EA界面布局和元素操作的一般技巧。 二、实验环境 软件平台:Microsoft Windows2000 /XP。软件工具:EA 7.5。 三、实验内容与要求 1.学会启动和关闭EA 7.5开发环境。 2.使用目标项目(Project)的向导创建一个项目。 3.了解EA 7.5界面的六大组成部分(菜单Menu、浏览器Browser、文档窗口Document Window、图窗口Diagram Window、日值窗口Log Window和工具栏。 4.在浏览器中实现如下操作:增加模型元素(包括角色、用例、类、组建、图等); 查看现有模型元素;查看现有模型元素之间的关系;移动模型元素;更名模型元 素;访问元素的详细规范。 5.分别在在图中增加删除图元素和在浏览器中增加删除图元素。 四、实验预习和准备 参考相关书籍,能够熟练地安装和使用EA 7.5软件建立模型。 五、实验过程与结果 读者 借书 还书 续借图0-1 用例图

采样控制系统的分析

东南大学自动化学院 实验报告 课程名称:自动控制原理 实验名称:串联校正研究、采样控制系统的分析 院(系):电气工程学院专业:电气工程及其自动化姓名:学号: 同组人员:实验时间:2011.12.16 评定成绩:审阅教师:

实验八采样控制系统的分析 一、实验目的 (1) 熟悉用LF398组成的采样控制系统; (2) 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理 及其实现方法; (3) 研究开环增益K 和采样周期T 的变化对系统动态性能的影 响; 二、实验仪器 THBDC-1实验平台 THBDC-1虚拟示波器 三、实验原理 (1) 采样定理即香农采样定理,其证明要使被采样后的离散信号 X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为: max 2ωω≥S 式中S ω为采样的角频率,max ω为连续信号的最高角频率。由于T S πω2=,因而式可为 max ωπ≤T T 为采样周期。 (2)采样控制系统稳定的充要条件是其特征方程的根均位于Z 平 面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。根据上式可判别该采样控制系

统否稳定,并可用迭代法求出该系统的阶跃输出响应。 四、实验内容 (1)利用实验平台设计一个对象为二阶环节的模拟电路,并与采 样电路组成一个数-模混合系统。 (2)分别改变系统的开环增益K 和采样周期T S ,研究它们对系统 动态性能及稳态精度的影响。 五、实验结果及分析 (1)零阶保持器 模拟电路图如下: 其中输入的连续波形图的信号为: c ω=2π×10=10π≈31.4 rad/s 以下通过改变采样周期T ,来观察比较输出信号的变化。 ① T S =0.003s ,即S ω=2π× 31000≈2094.4 rad/s ,远远大于输入信号的。 输入输出波形图如下:可见此时输入波形图得到完全复现。

图书管理系统uml实验报告.doc

面向对象分析与设计大作业 学院:计算机科学与工程学院 班级:计算机软件 3 学生姓名:陈俊伟 学号:2174 指导老师:苏锦钿 提交日期:

华南理工大学 面向对象分析与设计大作业课程实验报告 实验题目 :_____ 图书管理系统 uml 图__________________________ 姓名 :___ 陈俊伟 ________学号:_ 2174_____ 班级 : ___09 软件 3 班________ 组别 : ________ 合作者 : __________________ 指导教师 : ______ 苏锦钿 __________ 实验概述 【实验目的及要求】 一.目的 1.掌握面向对象技术的基本原理和各种相关概念; Rational Rose 2003 、 IBM 2. 熟练掌握 UML的基本知识和9 种常见的 UML图形 , 并能够利 用 Software Architecture、或trufun UML工具进行建模; 3.根据问题进行学习,拓广、深化; 4.独立完成一个应用程序的分析、设计和建模,为以后软件项目的开发打下实践基础。 【实验原理】 UML建模,就是用模型元素来组建整个系统的模型,模型元素包括系统中的类、类和类 之间的关联、类的实例相互配合实现系统的动态行为等。UML提供了多种图形可视化描 述模型元素,同一个模型元素可能会出现在多个图中对应多个图形元素,人们可以从多 个视图来考察模型。UML建模主要分为结构建模、动态建模和模型管理建模 3 个方面,第 1 个方面是从系统的内部结构和静态角度来描述系统的,在静态视图、用例视图、实施视 图和配置视图中适用,采用了类图、用例图、组件图和配置图等图形。例如类图用于描述系 统中各类的内部结构(类的属性和操作)及相互间的关联、聚合和依赖等关系, 包图用于描述系统的分层结构等;第 2 个方面是从系统中对象的动态行为和组成对象间的相互 作用、消息传递来描述系统的,在状态机视图、活动视图和交互视图中适用,采 用了状态机图、活动图、顺序图和合作图等图形,例如状态机图用于一个系统或对象从 产生到结束或从构造到清除所处的一系列不同的状态;第 3 个方面描述如何将模型自身组织到高层 单元,在模型管理视图中适用,采用的图形是类图。建模的工作集中在前两 方面,而且并非所有图形元素都适用或需要采用

模态分析实验报告(DOC)

模态分析实验报告 姓名: 学号: 任课教师: 实验时间: 指导老师: 实验地点:能源与动力工程学院 柴油机拆装实习一楼振动测试实验室

实验1 传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1)掌握锤击激振法测量传递函数的方法; 2)测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3)分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4)比较原点传递函数和跨点传递函数的特征; 5)考察激励点和响应点互换对传递函数的影响; 6)比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,LMS LMS-SCADAS Ⅲ测试系统,具体型号和参数见表1-1。 仪器名称型号序列号灵敏度备注 数据采集和分析系统LMS-SCADAS Ⅲ比利时力锤LC 3164 4 mV/N 加速度传感器100 mV/g 丹麦B&K 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字信号处理技术获得频率响应函数(Frequency Response Function, FRF),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时LMS公司SCADAS采集前端及Modal Impact测量分析软件组成。力锤及加速度传感器通过信号线与SCADAS采集前端相连,振动传感器及力锤为ICP

UML实验报告

中南民族大学管理学院学生实验报告 课程名称:UML面向对象分析与设计教程 年级: 专业:信息管理与信息系统 学号: 姓名: 指导教师: 实验地点:管理学院综合实验室 2013 学年至 2014 学年度第 2 学期

目录 实验一 UML建模基础实验二用例图 实验三 UML类图 实验四对象图 实验五包图 实验六动态模型图

实验(一) UML建模基础 实验时间: 实验目的 1.熟悉UML建模工具Rational Rose的基本菜单及操作。 2.掌握UML的三大组成部分及各部分作用。 3.掌握UML的可见性规则和构造型的作用。 实验内容 1.练习使用建模工具建立各种UML图形,并对图形进行相应编辑 和修改。 2.认识各种UML关系及可见性符号,并用工具表示出来。

分析与讨论 1.总结UML在软件工程中的作用以及使用UML建模的必要性。 答:统一建模语言(UML)是用来对软件密集系统进行可视化建模的一种语言,也是为面向对象开发系统的产品进行说明、可视化、构造和编制文档的一种语言。 UML作为一种模型语言,它使开发人员专注于建立产品的模型和结构,而不是选用什么程序语言和算法实现。当模型建立之后,模型可以被UML工具转化成指定的程序语言代码。 UML可以贯穿软件开发周期中的每一个阶段,最适于数据建模、业务建模、对象建模、组件建模。UML展现了一系列最佳工程实践,这些最佳实践在对大规模、复杂系统进行建模方面,特别是在软件架构层次方面已经被验证有效。 UML是一种功能强大的,面向对象的可视化系统分析的建模语言,它的各个模型可以帮助开发人员更好地理解业务流程,建立更可靠,更完善的系统模型,从而使用户和开发人员对问题的描述达到相同的理解,以减少语义差异,保障分析的正确性。 指导教师批阅:

第三章数据采集系统基本原理

第三章数据采集系统基本原理 第一节数据采集系统基本组成 ⒈传感器:将被测的物理量转换成电压信号送至仪器输入电路。 ⒉仪器输入电路:传感器与仪器之间的匹配电路,它作为传感器的输出负载必须具有足够高的输入阻抗,同时它的输出信号作为仪器的输入信号,要求它具有非常小的输出阻抗。仪器输入电路对共模干扰信号具有很强的抑制能力,即具有很高的共轭抑制比。 图3-1 数据采集系统的基本组成框图 ⒊低噪声前置放大器:对检测到的微弱电信号给以固定增益的放大,由于该放大器位于仪器一系列电路的前端,它的噪声是仪器整体系统噪声的主要提供者,因此任何电子仪器测量系统的前置放大器都必须是低噪声电路。 ⒋电模拟滤波器 ①低切滤波器:用来去除低频干扰信号,在地震勘探工作中低频干扰信号主要是指面波信号。 ②高切滤波器:它用来去除高频干扰,在数字信息采集系统中,一般都设置采样开关,这样高切滤波器主要用来去除信号中不满足采样定理的假频成分,假频信号的频率是信号中比折叠频率还高的高频成分。 ③陷波器:它用来除去50Hz的工业频率干扰。 ⒌多路采样开关:在一个采样周期之内,对全部各路信号按先后顺序分别采

样一次,将多路系统转换为单路系统,实现多路合一;同时将连续的模拟信号转换为离散的模拟子样脉冲。 ⒍模数转换器:则将每一个子样脉冲电压转换为二进制代码。 ⒎数据记录系统:将二进制代码按照国际专业技术组织的规定,进行编排和编码,编排主要是将一定长度的二进制数据编排成便于计算机数据处理的字节形式;编码则是为了数据写读的方便,针对数码“1”和“0”对磁带剩余磁通的变化方式所作出的规定。 第二节 输入电路和低噪声前置放大器 一、差动放大器输入电路 A 1和A 2的输出分别为V 1和V 2,它们可表示为 2111i W FO i W FO V R R V R R V ?-????? ??+= ,1221i W FO i W FO V R R V R R V ?-????? ? ?+= 放大器A 3具备输入平衡条件,它的输出V 0表示为 ()()2121021i i f F W FO f F V V R R R R V V R R V -?????? ? ?+-=-?- = 闭环增益为:f F W FO i i F R R R R V V V K ???? ? ?+-=-= 21210 由于该电路具有很高的输入阻抗和共模抑制比,许多数字地震仪的输入电路都采用了该形式的电路。

采样控制系统分析

自动控制实验

采样控制系统分析 一.实验目的 1.了解判断采样控制系统稳定性的充要条件。 2.了解采样周期T对系统的稳定性的影响及临界值的计算。 3 观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。 三、实验内容及步骤 1.闭环采样系统构成电路如图3-5-1所示。了解采样周期T对系统的稳定性的影响及临界值的计算,观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。 2.改变采样控制系统的被控对象,计算和测量系统的临界稳定采样周期T,填入实验报告。 图3-5-1 闭环采样系统构成电路 闭环采样系统实验构成电路如图3-5-1所示,其中被控对象的各环节参数: 积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S, 惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。 实验步骤:注:‘S ST’不能用‘短路套’短接! (1)用函数发生器(B5)单元的方波输出作为系统振荡器的采样周期信号。(D1)单元选择“方波”,(B5)“方波输出”孔输出方波。调节“设定电位器1”控制相应的输 出频率。 (2)用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号R(t): B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V阶跃)。阶跃信号输出(B1-2的Y测孔)调整为2.5V(调节方法:调节电位器,用万用表测量Y测孔)。(3)构造模拟电路:按图3-5-1安置短路套及测孔联线,表如下。 (a)安置短路套(b)测孔联线 (4)运行、观察、记录: ①运行LABACT程序,选择自动自动控制菜单下的采样系统分析实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,即可使用本实验机配套的虚拟示 波器(B3)单元的CH1测孔测量波形。

采样控制系统的分析

热工过程自动控制原理实验报告 白思平 03015413 实验八 采样控制系统的分析 一、实验目的 1. 熟悉并掌握Simulink 的使用; 2. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法; 3. 研究开环增益K 和采样周期T 的变化对系统动态性能的影响; 二、实验原理 1. 采样定理 图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(* t x 。 图2-1 连续信号的采样与恢复 香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为: max 2ωω≥S 式中S ω为采样的角频率,m ax ω为连续信号的最高角频率。由于T S π ω2=,因而式可为 max ωπ ≤T T 为采样周期。 2. 采样控制系统性能的研究 图2-2为二阶采样控制系统的方块图。 图2-2 采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆,且这种系统的动、静态性能均只与采样周期T 有关。 由图2-2所示系统的开环脉冲传递函数为: ]2 5 .05.01[)1(25])2(2[)1(25])15.0()1(25[)(21212++--=+-=+-==---S S S Z Z S S Z Z S S e Z z G S T ]5.015.0)1([ )1(25221 T e Z Z Z Z Z TZ Z Z ---+----=

) )(1()]21()12[(5.122222T T T T e Z Z Te e Z e T --------++-= 闭环脉冲传递函数为: )]21(]12[5.12)1()]21(12[5.12)()(222222 222T T T T T T T T Te e Z e T e Z e Z Te e Z e T z R z C ----------++-+++---++-=)( 5 .12)5.1125()5.115.1325()] 21(12[5.12222222++-+-+--++-=-----T e Z e T Z Te e Z e T T T T T T )( 根据上式,根据朱利判据可判别该采样控制系统否稳定,并可用迭代法求出该系统的阶跃输出响应。 三、实验设备: 装有Matlab 软件的PC 机一台 四、实验容 1. 使用Simulink 仿真采样控制系统 2. 分别改变系统的开环增益K 和采样周期T S ,研究它们对系统动态性能及稳态精度的影响。 五、实验步骤 5-1. 验证香农采样定理 利用Simulink 搭建如下对象,如图2-3。 图2-3 设定正弦波的输入角频率w = 5,选择采样时间T 分别为0.01s 、0.1s 和1s ,观察输入输出波形,并结合香农定理说明原因。 5-2.采样系统的动态特性 利用Simulink 搭建如下二阶系统对象,如图2-4。 当系统的增益K=10,采样周期T 分别取为0.003s ,0.03s ,0.3s 进行仿真实验。 更改增益K 的值,令K=20,重复实验一次。 系统对象simulink 仿真图:

计算机控制实验报告初稿解析

南京邮电大学自动化学院 实验报告 课程名称:计算机控制系统 实验名称:计算机控制系统性能分析 所在专业:自动化 学生姓名:王站 班级学号: B11050107 任课教师: 程艳云 2013 /2014 学年第二学期

实验一:计算机控制系统性能分析 一、 实验目的: 1.建立计算机控制系统的数学模型; 2.掌握判别计算机控制系统稳定性的一般方法 3.观察控制系统的时域响应,记录其时域性能指标; 4.掌握计算机控制系统时间响应分析的一般方法; 5.掌握计算机控制系统频率响应曲线的一般绘制方法。 二、 实验内容: 考虑如图1所示的计算机控制系统 图1 计算机控制系统 1. 系统稳定性分析 (1) 首先分析该计算机控制系统的稳定性,讨论令系统稳定的K 的取值范围; 解: G1=tf([1],[1 1 0]); G=c2d(G1,0.01,'zoh');//求系统脉冲传递函数 rlocus(G);//绘制系统根轨迹 Root Locus Real Axis I m a g i n a r y A x i s -7 -6-5-4-3-2-1012 -2.5-2-1.5-1-0.500.51 1.52 2.5 将图片放大得到

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 -0.15 -0.1 -0.05 0.05 0.1 0.15 Root Locus Real Axis I m a g i n a r y A x i s Z 平面的临界放大系数由根轨迹与单位圆的交点求得。 放大图片分析: [k,poles]=rlocfind(G) Select a point in the graphics window selected_point = 0.9905 + 0.1385i k = 193.6417 poles = 0.9902 + 0.1385i 0.9902 - 0.1385i 得到0

实验十采样控制系统的分析

实验十 采样控制系统的分析 一、实验目的 2. 熟悉用LF398组成的采样控制系统; 3. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法; 3. 观察系统在阶跃作用下的稳态误差。研究开环增益K 和采样周期T 的变化对系统动态性能的影响; 二、实验设备 同实验一 三、实验内容 1. 利用实验平台设计一个对象为二阶环节的模拟电路,并与采样电路组成一个数-模混合系统。 2. 分别改变系统的开环增益K 和采样周期T S ,研究它们对系统动态性能及稳态精度的影响。 四、实验原理 1. 采样定理 图11-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(*t x 。 图10-1 连续信号的采样与恢复 香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为: max 2ωω≥S (10.1) 式中S ω为采样的角频率,max ω为连续信号的最高角频率。由于T S πω2= ,因而式(10.1)可写为 m ax ωπ≤ T (10.2) T 为采样周期。 采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。 2. 采样控制系统性能的研究 图10-2为二阶采样控制系统的方块图。 图10-2 二阶采样控制系统方块图 由图10-2所示系统的开环脉冲传递函数为:

]25.05.01[)1(25])2(2[)1(25])15.0()1(25[)(21212++--=+-=+-==---S S S Z Z S S Z Z S S e Z z G S T T e Z Z Z Z Z TZ Z Z 2215.015.0)1([)1(25---+----= ) )(1()21(]12[5.122222T T T T e Z Z Te e Z e T --------++-= 闭环脉冲传递函数为: )] 21(]12[5.12)1()]21(]12[5.12)()(222222222T T T T T T T T Te e Z e T e Z e Z Te e Z e T z R z C ----------++-+++---++-= ) 255.1152.12()5.115.1325()]21(]12[5.1222222222T T T T T T T Te e T e Z e T Z Te e Z e T ---------+++----++-= 根据上式可判别该采样控制系统否稳定,并可用迭代法求出该系统的阶跃输出响应。 五、实验步骤 1. 零阶保持器 本实验采用“采样-保持器”组件LF398,它具有将连续信号离散后的零阶保持器输出信号的功能。图10-3为采样-保持电路。图中MC14538为单稳态电路,改变输入方波信号的周期,即改变采样周期T 。 图10-3 采样保持电路 图中方波信号由实验台的低频信号发生器提供。 接好“采样保持电路”的电源。用上位软件的“信号发生器”输出一个频率为5Hz 、幅值为2V 的正弦信号输入到“采样保持电路”的信号输入端。在下列几种情况下用示波器观察“采样保持电路”的信号输出端。 1.1 当方波(采样产生)信号为100 Hz 时; 1.2 当方波(采样产生)信号为50 Hz 时; 1.3 当方波(采样产生)信号为10Hz 时; 注:方波的幅值要尽可能大。 2. 采样系统的动态性能 根据图10-2二阶采样控制系统方块图,设计并组建该系统的模拟电路,如图10-4所示。

相关主题
文本预览
相关文档 最新文档