当前位置:文档之家› 常见的三个离散动态系统模型

常见的三个离散动态系统模型

常见的三个离散动态系统模型
常见的三个离散动态系统模型

常见的三个离散动态系统模型

要理解并预测由差分方程n n Ax x =+1所描述的动态系统的长期行为或演化,关键在于掌握矩阵A 的特征值与特征向量. 在本节中,我们将通过应用实例来介绍矩阵对角化在离散动态系统模型中的应用. 这些应用实例主要针对生态问题,是因为相对于物理问题或工程问题,它们更容易说明和解释,但实际上动态系统在许多科学领域中都会出现.

分布图示

★ 引言

★ 教师职业转换预测问题 ★ 区域人口迁移预测问题 ★ 捕食者与被捕食者系统 ★ 内容小结 ★ 课堂练习

★ 习题4-5

例题选讲

例1(E01)(教师职业转换预测问题)某城市有15万人具有本科以上学历,其中有1.5万人是教师,据调查,平均每年有10%的人从教师职业转为其他职业,只有1%的人从其他职业转为教师职业,试预测10年以后这15万人中还有多少人在从事教育职业。

解 用n x 表示第n 年后做教师职业和其他职业的人数,则????

??=5.135.10x ,用矩阵

???

?

??==99.010.001.090.0)(ij a A 表示教师职业和其他职业间的转移,其中90.011=a 表示每年有90%

的人原来是教师现在还是教师;10.021=a 表示每年有%10的人从教师职业转为其他职业。显然

???

?

??=???? ?????? ??==515.13485.15.135.199,010.001.090.001Ax x ,

即一年以后,从事教师职业和其他职业的人数分别为1.485万和13.515万。又

0212x A Ax x ==,…,01x A x x n n n ==-,

所以01010x A x =,为计算10A 先需要把A 对角化。 001.0891.089.1001.0)99.0)(9.0(99

.01

.001

.09

.02-+-=---=----=

-λλλλλλλA E

0890.089.12=+-=λλ 89.0121==λλ,,21λλ≠,故A 可对角化.

将11=λ代入0=-x A E )(λ,得其对应特征向量????

??=1011p 。

将89.02=λ代入0=-x A E )(λ,得其对应特征向量????

??-=112p

令,11011),21???

?

??-==p p P (有

???

? ??=Λ=-89.00011AP P ,1

-Λ=P P A ,11010-Λ=P P A ,

而 ???

?

??-=???? ??----

=-11011111110111111P , ???

? ?????? ??-???? ?????? ??-=

Λ=-5.135.11101189.0001

1101111110011010x P P x ???

? ??=???? ?????? ??-???? ?????? ??-=

4575.135425.15.135.111011311817.0001

11011111。 所以10年后,15万人中有1.54万人仍是教师,有13.45万人从事其他职业。

例 2 (区域人口迁移预测问题)使用§3.7中的人口迁移模型的数据,忽略其它因素对人口规模

的影响,计算2022年的人口分布.

解 迁移矩阵???

?

??=88.005.012.095.0M 的全部特征值是83.0,121==λλ,其对应的特征向量

分别是

???

?

??-=???? ??=11,14.221p p . 因为21λλ≠,故M 可对角化. 令()????

??-==1114.2,21p p P ,有???? ??=-83.00011

MP P ,则183.0001-?

??

? ??=P P M 因2002年的初始人口为???

?

??=780000050000000x , 故对2022年,有

???

? ??≈???? ?????

? ??-???? ?????? ??-=====--38618558938145780000050000001114.283.0001

1114.21

2001200201920x P PM x M Mx x

即2022年中国的城市人口约为8938145,农村人口为3861855.

例3(捕食者与被捕食者系统)某森林中,猫头鹰以鼠为食. 记猫头鹰和鼠在时间n 的数量为????

??=n n n M O x ,其中n 是以月份为单位的时间, n O 是研究区域中的猫头鹰,n M 是鼠的

数量(单位:千). 假定生态学家已建立了猫头鹰与鼠的自然系统模型:

??

?+-=+=++n

n n n

n n M pO M M O O 2.13.04.011 (1)

其中p 是一个待定的正参数. 第一个方程中的n O 4.0表明,如果没有鼠做食物,每个月只有40%的猫头鹰可以存活,第二个方程中的n M 2.1表明,如果没有猫头鹰捕食,鼠的数量每个月会增加20%. 如果鼠充足,猫头鹰的数量将会增加n M 3.0,负项n pO -用以表示猫头鹰的捕食所导致野鼠的死亡数(事实上,平均每个月一只猫头鹰吃掉鼠约1000p 只). 当捕食参数325.0=p 时,则两个种群都会增长. 估计这个长期增长率及猫头鹰与鼠的最终比值.

解 当325.0=p 时,(1)的系数矩阵???

? ??-=2.1325.03.04

.0A ,求得A 的全部特征值

05.1,55.021==λλ,其对应的特征向量分别是???

?

??=???

? ??=136,1221p p .

初始向量22110p c p c x +=.令()???

?

??==13162,21p p P ,当0≥n 时,则

???

? ??+???? ??=???? ?????? ?????? ??==--13605.11255.01316205.10055.0131622101

01

n n n n n

n c c x x P PA x

假定02>c ,则对总够大的n ,n

55.0趋于0,进而

???

?

??=≈13605.1222n n c p c x (2)

n 越大(2)式的近似程度越高,故对于充分大的n

n n n x c x 05.113605.11

21=???

?

??≈++ (3)

(3)式的近似表明,最后n x 的每个元素(猫头鹰和鼠的数量)几乎每个月都近似地增长了0.05倍,即有5%的月增长率. 由(2)式知,n x 约为()T

13,6的倍数,所以n x 中元素的比值约为

6:13,即每6只猫头鹰对应着约13000只鼠.

课堂练习

设???

?

?

??=????

? ??=001,

4.002.03.08.03.03.02.0

5.00x A ,考虑一个由 ,3,2,1,1==+n Ax x n n 描述的系统.随时间的

变化,这个系统将如何变化?通过计算状态向量151,,x x 来求解. .

离散系统稳定性分析

实验一 离散系统稳定性分析 实验学时:2 实验类型:常规 实验要求:必作 一、实验目的: (1)掌握利用MATLAB 绘制系统零极点图的方法; (2)掌握离散时间系统的零极点分析方法; (3)掌握用MATALB 实现离散系统频率特性分析的方法; (4)掌握逆Z 变换概念及MATLAB 实现方法; (5)掌握用MATLAB 分析离散系统稳定性。 二、实验原理: 1、离散系统零极点图及零极点分析; 线性时不变离散系统可用线性常系数差分方程描述,即 ()()N M i j i j a y n i b x n j ==-= -∑∑ (8-1) 其中()y k 为系统的输出序列,()x k 为输入序列。 将式(8-1)两边进行Z 变换的 00 ()()()() () M j j j N i i i b z Y z B z H z X z A z a z -=-== = = ∑∑ (8-2) 将式(8-2)因式分解后有: 11 () ()() M j j N i i z q H z C z p ==-=- ∏∏ (8-3) 其中C 为常数,(1,2,,)j q j M = 为()H z 的M 个零点,(1,2,,)i p i N = 为()H z 的N 个极点。 系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。 因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性: ● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性;

离散系统的频率特性; 1.1、零极点图的绘制 设离散系统的系统函数为 ()()() B z H z A z = 则系统的零极点可用MA TLAB 的多项式求根函数roots()来实现,调用格式为: p=roots(A) 其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。如多项式为231()4 8 B z z z =+ + ,则求该多项式根的MA TLAB 命令为为: A=[1 3/4 1/8]; P=roots(A) 运行结果为: P = -0.5000 -0.2500 需注意的是,在求系统函数零极点时,系统函数可能有两种形式:一种是分子、分母多项式均按z 的降幂次序排列;另一种是分子、分母多项式均按1z -的升幂次序排列。这两种方式在构造多项式系数向量时稍有不同。 (1)()H z 按z 的降幂次序排列:系数向量一定要由多项式最高次幂开始,一直到常数项,缺项要用0补齐;如 3 4 3 2 2()3221 z z H z z z z z += ++++ 其分子、分母多项式系数向量分别为A=[1 0 2 0]、B=[1 3 2 2 1]。 (2)()H z 按1z -的升幂次序排列:分子和分母多项式系数向量的维数一定要相同,不足的要用0补齐,否则0z =的零点或极点就可能被漏掉。如 1 1 2 12()11124 z H z z z ---+= + + 其分子、分母多项式系数向量分别为A=[1 2 0]、B=[1 1/2 1/4]。 用roots()求得()H z 的零极点后,就可以用plot()函数绘制出系统的零极点图。下面是求系统零极点,并绘制其零极点图的MA TLAB 实用函数ljdt(),同时还绘制出了单位圆。 function ljdt(A,B) % The function to draw the pole-zero diagram for discrete system p=roots(A); %求系统极点 q=roots(B); %求系统零点 p=p'; %将极点列向量转置为行向量

离散系统的数学模型

6.4 离散系统的数学模型 为了研究离散系统的性能,需要建立离散系统的数学模型。本节主要介绍线性定常离散系统的差分方程及其解法,脉冲传递函数的定义,以及求开、闭环脉冲传递函数的方法。 6.4.1 差分方程及其解法 1. 差分的概念 设连续函数为,其采样函数为,简记为,则一阶前向差分定义为 ()e t ()e kT ()e k ()(1)()e k e k e k Δ=+? (6-32) 二阶前向差分定义为 2()[()][(1)()](1)()(2)2(1)(e k e k e k e k e k e k e k e k e k ΔΔ=Δ=Δ+?=Δ+?Δ=+?++) 1? (6-33) n 阶前向差分定义为 1()(1)()n n n e k e k e n ?Δ=Δ+?Δ (6-34) 同理,一阶后向差分定义为 ()()(1)e k e k e k ?=?? (6-35) 二阶后向差分定义为 2()[()][()(1)]()(1)()2(1)(2) e k e k e k e k e k e k e k e k e k ?=??=???=????=??+? (6-36) n 阶后向差分定义为 11()()(1)n n n e k e k e n ???=???? (6-37) 2. 离散系统的差分方程 对连续系统而言,系统的数学模型可以用微分方程来表示,即 **00d ()d ()d d i j n m i j i i j c t r t a b t t ===∑∑j (6-38) 式中,分别表示系统的输入和输出。如果把离散序列,看成连续系统中,的采样结果,那么式(6-38)可以化为离散系统的差分方程。 ()r t ()c t ()r k ()c k ()r t ()c t 设系统采样周期为T ,当T 足够小时,函数在()r t t kT =处的一阶导数近似为 ()[(1)]()r kT r k T r kT T ??≈& 可简写为 ()(1)()()r k r k r k r k T T ???≈=& (6-39) 同理,可以写出二阶导数

离散系统的数学描述

离散系统的数学描述 1. 状态空间描述法 状态空间描述离散系统使用ss 命令。 语法: G=ss(a,b,c,d,Ts) %由a 、b 、c 、d 参数获得状态方程模型 说明:Ts 为采样周期,为标量,当采样周期未指明可以用-1表示。 【例6.2】用状态空间法建立离散系统。 a=[-1.5 -0.5;1 0]; b=[1;0]; c=[0 0.5]; d=0; G=ss(a,b,c,d,0.1) %采样周期为0.1s a = x1 x2 x1 -1.5 -0.5 x2 1 0 b = u1 x1 1 x2 0 c = x1 x2 y1 0 0.5 d = u1 y1 0 Sampling time: 0.1 Discrete-time model. 2. 脉冲传递函数描述法 脉冲传递函数也可以用tf 命令实现。 语法: G=tf(num,den,Ts) %由分子分母得出脉冲传递函数 说明:Ts 为采样周期,为标量,当采样周期未指明可以用-1表示,自变量用'z'表示。 【例6.2续】创建离散系统脉冲传递函数21120.5z 1.5z 10.5z 0.51.5z z 0.5z G(z)---+-=+-= 。 num1=[0.5 0];

den=[1 -1.5 0.5]; G1=tf(num1,den,-1) Transfer function: 0.5 z ----------------- z^2 - 1.5 z + 0.5 Sampling time: unspecified MATLAB中还可以用filt命令产生脉冲传递函数。 语法: G=filt(num,den,Ts) %由分子分母得出脉冲传递函数 说明:Ts为采样周期,当采样周期未指明Ts可以省略,也可以用-1表示,自变量用'z-1'表示。 【例6.2续】使用filt命令产生脉冲传递函数。 num2=[0 0.5]; G2=filt(num2,den) Transfer function: 0.5 z^-1 ----------------------- 1 - 1.5 z^-1 + 0.5 z^-2 Sampling time: unspecified 程序说明:用filt命令生成的脉冲传递函数的自变量不是z而是z-1,因此分子应改为“[0 0.5]”。 3. 零极点增益描述法 离散系统的零极点增益用zpk命令实现。 语法: G=zpk(z,p,k,Ts) %由零极点得出脉冲传递函数 【例6.2续】使用zpk命令产生零极点增益传递函数。 G3=zpk([0],[0.5 1],0.5,-1) Zero/pole/gain: 0.5 z ------------- (z-0.5) (z-1) Sampling time: unspecified 语法: G=ss(传递函数) %由传递函数转换获得 G=ss(零极点模型) %由零极点模型转换获得

第五章离散选择模型

第五章离散选择模型 在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。 本章主要介绍以下内容: 1、为什么会有离散选择模型。 2、二元离散选择模型的表示。 3、线性概率模型估计的缺陷。 4、Logit模型和Probit模型的建立与应用。 第一节模型的基础与对应的现象 一、问题的提出 在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。 1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连续的。例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。由离散数据建立的模型称为离散选择模型。 2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。这种类型的数据成为审查数据。再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。这两种数据所建立的模型称为受限被解释变量模型。有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,

就把高出分数线和低于分数线划分为了两类。 下面是几个离散数据的例子。 例5.1 研究家庭是否购买住房。由于,购买住房行为要受到许多因素的影响,不仅有家庭收入、房屋价格,还有房屋的所在环境、人们的购买心理等,所以人们购买住房的心理价位很难观测到,但我们可以观察到是否购买了住房,即 我们希望研究买房的可能性,即概率(1) P Y=的大小。 例5.2 分析公司员工的跳槽行为。员工是否愿意跳槽到另一家公司,取决于薪资、发展潜力等诸多因素的权衡。员工跳槽的成本与收益是多少,我们无法知道,但我们可以观察到员工是否跳槽,即 例5.3 对某项建议进行投票。建议对投票者的利益影响是无法知道的,但可以观察到投票者的行为只有三种,即 研究投票者投什么票的可能性,即(),1,2,3 ==。 P Y j j 从上述被解释变量所取的离散数据看,如果变量只有两个选择,则建立的模型为二元离散选择模型,又称二元型响应模型;如果变量有多于二个的选择,则为多元选择模型。本章主要介绍二元离散选择模型。 离散选择模型起源于Fechner于1860年进行的动物条件二元反射研究。1962年,Warner首次将它应用于经济研究领域,用于研究公共交通工具和私人交通工具的选择问题。70-80年代,离散选择模型被普遍应用于经济布局、企业选点、交通问题、就业问题、购买行为等经济决策领域的研究。模型的估计方法主要发展于20世纪80年代初期。(参见李子奈,高等计量经济学,清华大学出版社,2000年,第155页-第156页) 二、线性概率模型 对于二元选择问题,可以建立如下计量经济模型。

离散选择模型1121

Logistic回归在SPSS中应用讲课人:谢小燕 Email:xiexy@https://www.doczj.com/doc/c86784955.html,.cm 办公室:通博楼B座211 1

内容 第一节模型的种类和形式 第二节模型系数的检验和拟合优度 第三节应用SPSS完成模型估计和输出解读 2

第一节模型的种类和形式 当遇到被解释变量是分类变量时,我们可能选择离散选择模型来建立变量间的因果关系,而不是用线性回归方程。这类模型可以用来了解客户的信用度、消费者的消费行为、癌症是否转移、医生是否选择多点从业和出行选择何种交通工具等。根据被解释变量分类变量和概率分布函数的类型,产生了不同的离散选择模型。 3

二元Logistic模型—如果被解释变量是二分变量,连接分布函数(link function)为逻辑斯蒂函数。 多元Logistic模型—如果被解释变量是多分类无序次变量,连接分布函数为逻辑斯蒂函数。 有序Logistic模型—如果被解释变量是多分类有序次变量,连接分布函数为逻辑斯蒂函数。 Probit模型—连接分布函数是标准正态分布函数。 为了说明这类模型的机理,我们以二元Logistic回归为例,介绍模型形成过程。从而理解一些概念。 4

5 一、二元Logistic 模型 在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0表示。 1 yes y no ?=?? 考虑某个家庭在一定的条件下是否购买住房问题时,表示状态的虚拟变量作为一个被说明对象的因变量出现在经济模型中。 后面变量下标i 表示各不同的样本点,取值0或l 的因变量i y 表示第i 个样本点具体选择,而影响其进行选择的自变量i x 。如果选择响应YES 的概率为(1/)i p y =i x ,则经济主体选择响应NO 的概率为1(1/)i i p y -=x 。 则(/)1(1/)0(0/)i i i i i i E y p y p y =?=+?=x x x =(1/)i i p y x =。

离散选择模型完整版

离散选择模型 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第五章离散选择模型 在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。 本章主要介绍以下内容: 1、为什么会有离散选择模型。 2、二元离散选择模型的表示。 3、线性概率模型估计的缺陷。 4、Logit模型和Probit模型的建立与应用。 第一节模型的基础与对应的现象 一、问题的提出 在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。 1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连续的。例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。由离散数据建立的模型称为离散选择模型。 2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。这种类型的数据成为审查数据。再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。这两种数据所建立的模型称为受限被解释变量模型。有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,就把高出分数线和低于分数线划分为了两类。 下面是几个离散数据的例子。 例研究家庭是否购买住房。由于,购买住房行为要受到许多因素的影响,不仅有家庭收入、房屋价格,还有房屋的所在环境、人们的购买心理等,所以人们购买住

离散数学建模

离散建模 专业计算机科学与技术班级 姓名 学号 授课教师 二 O 一七年十二月

离散建模是离散数学与计算机科学技术及IT技术应用间的联系桥梁。也是学习离散数学的根本目的。 它有两部分内容组成: 1.离散建模概念与方法 2.离散建模应用实例 一.离散建模概念与方法 1.1离散建模概念 在客观世界中往往需要有许多问题等待人们去解决。而解决的方法很多,最为常见的方法是将客观世界中的问题域抽象成一种形式化的数学表示称数学模型,从而将对问题域的求解变成为对数学表示式的求解。而由于人们对数学的研究已有数千年历史,并已形成了一整套行之有效的对数学求解的理论与方法,因此用这种数学方法去解决实际问题可以取得事倍功半的作用。而采用这种方法的关键之处是数学模型的建立,它称为数学建模,而当这种数学模型是建立在有限集或可列集之上时,此种模型的建立称离散建模。 1.2.离散建模方法 (1)两个世界理论 在离散建模中有两个世界,一个是现实世界另一个是离散世界。现实世界是问题域产生的世界,离散世界则是一种数学世界,它有三个特性:离散世界采用离散数学语言,该语言具有简洁性且表达力丰富。 离散世界所表示的是一种抽象符号,它是一种形式化符号体系。 离散世界中的环境简单,它在离散建模时设立,可以屏蔽大量无关信息对问题求解的干扰。 为求解问题须将问题域转换成离散模型,然后对离散模型求解,再逆向转换成现实世界中的解. (2)两个世界的转换 在离散建模方法中需要构作两种转换,即由现实世界到离散世界的转换以及由离散世界到现实世界的逆转换,而其中第一种转换尤为重要,这种转换我们一般即称之为离散建模。 下面对两种转换作介绍: 现实世界到离散世界的转换

(完整word版)离散数学建模

离散建模 专业计算机科学与技术 班级 姓名 学号 授课教师 二 O 一七年十二月

离散建模是离散数学与计算机科学技术及IT技术应用间的联系桥梁。也是学习离散数学的根本目的。 它有两部分内容组成: 1.离散建模概念与方法 2.离散建模应用实例 一.离散建模概念与方法 1.1离散建模概念 在客观世界中往往需要有许多问题等待人们去解决。而解决的方法很多,最为常见的方法是将客观世界中的问题域抽象成一种形式化的数学表示称数学模型,从而将对问题域的求解变成为对数学表示式的求解。而由于人们对数学的研究已有数千年历史,并已形成了一整套行之有效的对数学求解的理论与方法,因此用这种数学方法去解决实际问题可以取得事倍功半的作用。而采用这种方法的关键之处是数学模型的建立,它称为数学建模,而当这种数学模型是建立在有限集或可列集之上时,此种模型的建立称离散建模。 1.2.离散建模方法 (1)两个世界理论 在离散建模中有两个世界,一个是现实世界另一个是离散世界。现实世界是问题域产生的世界,离散世界则是一种数学世界,它有三个特性:离散世界采用离散数学语言,该语言具有简洁性且表达力丰富。 离散世界所表示的是一种抽象符号,它是一种形式化符号体系。 离散世界中的环境简单,它在离散建模时设立,可以屏蔽大量无关信息对问题求解的干扰。 为求解问题须将问题域转换成离散模型,然后对离散模型求解,再逆向转换成现实世界中的解. (2)两个世界的转换 在离散建模方法中需要构作两种转换,即由现实世界到离散世界的转换以及由离散世界到现实世界的逆转换,而其中第一种转换尤为重要,这种转换我们一般即称之为离散建模。 下面对两种转换作介绍: 现实世界到离散世界的转换

离散选择模型

离散选择模型 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

第五章离散选择模型 在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。 本章主要介绍以下内容: 1、为什么会有离散选择模型。 2、二元离散选择模型的表示。 3、线性概率模型估计的缺陷。 4、Logit模型和Probit模型的建立与应用。 第一节模型的基础与对应的现象 一、问题的提出 在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。 1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连续的。例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。由离散数据建立的模型称为离散选择模型。 2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。这种类型的数据成为审查数据。再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。这两种数据所建立的模型称为受限被解释变量模型。有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,就把高出分数线和低于分数线划分为了两类。 下面是几个离散数据的例子。 例研究家庭是否购买住房。由于,购买住房行为要受到许多因素的影响,不仅

离散系统的Simulink仿真

电子科技大学中山学院学生实验报告 院别:电子信息学院课程名称:信号与系统实验 一、实验目的 1.掌握离散系统Simulink的建模方法。 2.掌握离散系统时域响应、频域响应的Simulink仿真方法。 二、实验原理 离散系统的Simulink建模、仿真方法与连续系统相似,其系统模型主要有z域模型、传输函数模型和状态空间模型等形式。 现采用图1的形式建立系统仿真模型,结合如下仿真的命令,可得到系统的状态空间变量、频率响应曲线、单位阶跃响应和单位冲激响应的波形。 图1 系统响应Simulink仿真的综合模型 仿真命令: [A,B,C,D]=dlinmod(‘模型文件名’)%求状态空间矩阵,注意:‘模型文件名’不含扩展名 dimpulse(A,B,C,D) %求冲激响应 dimpulse(A,B,C,D,1,N 1:N 2 ) %求k=N 1 ~N 2 区间(步长为1)的冲激响应 dimpulse(A,B,C,D,1,N 1:△N: N 2 ) %求冲激响应在k=N 1 ~N 2 区间(步长为△N) 的部分样值 dstep(A,B,C,D) %求阶跃响应 dstep(A,B,C,D,1,N 1:△N:N 2 ) dbode(A,B,C,D,T s )%求频率响应(频率范围: Ts ~ π ω=,即π ~ 0=)。T s 为 取样周期,一般去T s =1. dbode(A,B,C,D, T s ,i u ,w :△w:w 1 ) %求频率响应(频率=范围:ω=w ~w 1 , 即θ=(w0~w1)T s,△w为频率步长);i u为系统输入端口的编号,系统只有一个输入端

离散系统的数学模型

232 6.4 离散系统的数学模型 为研究离散系统的性能,需要建立离散系统的数学模型。线性离散系统的数学模型有差分方程、脉冲传递函数和离散状态空间表达式三种。本节主要介绍差分方程及其解法,脉冲传递函数的定义,以及求开环脉冲传递函数和闭环脉冲传递函数的方法。有关离散状态空表达式及其求解,将在第8章介绍。 6.4.1 线性常系数差分方程及其解法 对于线性定常离散系统,k 时刻的输出)(k c ,不但与k 时刻的输入)(k r 有关,而且与k 时刻以前的输入 ), 2(), 1(--k r k r 有关,同时还与k 时刻以前的输出 ), 2(), 1(--k c k c 有关。这种关系 一般可以用n 阶后向差分方程来描述,即 ∑∑==-+ --=m j j n i i j k r b i k c a k c 0 1 )()()( (6-34) 式中,i a ,i =1,2,…,n 和j b ,j =0,1,…,m 为常系数,n m ≤。式(6-34)称为n 阶线性常系数差分方程。 线性定常离散系统也可以用n 阶前向差分方程来描述,即 ∑∑==-++ -+-=+m j j n i i j m k r b i n k c a n k c 0 1 )()()( (6-35) 工程上求解常系数差分方程通常采用迭代法和z 变换法。 1. 迭代法 若已知差分方程式(6-34)或式(6-35),并且给定输出序列的初值,则可以利用递推关系,在计算机上通过迭代一步一步地算出输出序列。 例6-10 已知二阶差分方程 )2(6)1(5)()(---+=k c k c k r k c 输入序列1)(=k r ,初始条件为1)1(,0)0(==c c , 试用迭代法求输出序列)(k c , ,5,4,3,2,1,0=k 。 解 根据初始条件及递推关系,得 0)0(=c 1)1(=c 6)0(6)1(5)2()2(=-+=c c r c 25)1(6)2(5)3()3(=-+=c c r c 90)2(6)3(5)4()4(=-+=c c r c 301)3(6)4(5)5()5(=-+=c c r c 2. z 变换法

离散选择模型在市场研究中的应用

离散选择模型在市场研究中的应用 黄晓兰沈浩 北京广播学院, 北京100024 摘要:离散选择模型是一种复杂、非线性的多元统计分析方法和市场研究技术,主要基于消费者对产品/服务的选择来模拟消费者的购买行为。本文通过手机话费价格研究介绍了离散选择模型的基本原理和操作步骤,以及采用M ultinomial Logit Model计算属性效用值、选择概率和模拟市场占有率,获得价格弹性曲线的方法。 关键词:属性;水平;正交实验设计、选择集、效用值、选择概率、M ultinomial Logit Model 离散选择模型(Discrete Choice Model),也叫做基于选择的结合分析模型(Choice-Based Conjoint Analysis),是一种非常有效且实用的市场研究技术。该模型是在实验设计的基础上,通过模拟所要研究产品/服务的市场竞争环境,来测量消费者的购买行为,从而获知消费者如何在不同产品/服务属性水平和价格条件下进行选择。这种技术可广泛应用于新产品开发、市场占有率分析、品牌竞争分析、市场细分和价格策略等市场营销领域。同时离散选择模型也是一种处理离散的、非线性的定性数据的复杂高级多元统计分析技术,它采用Multinomial Logit Model进行数据统计分析。目前,国内在采用该模型进行市场研究方面还是一项空白,本文主要介绍了离散选择模型的基本原理,选择集实验设计、问卷设计、数据收集和处理、模型分析和结果解释等主要操作步骤,并给出了一个手机市场价格研究的应用案例。 1离散选择模型的基本概念和原理 离散选择模型主要用于测量消费者在实际或模拟的市场竞争环境下如何在不同产品/服务中进行选择。通常是在正交实验设计的基础上,构造一定数量的产品/服务选择集(Choice Set),每个选择集包括多个产品/服务的轮廓(Profile),每一个轮廓是由能够描述产品/服务重要特征的属性(Attributes)以及赋予每一个属性的不同水平(Level)组合构成。例如消费者购买手机的重要属性和水平可能包括:品牌(A,B,C)、价格(1500元,1750万元,2000元)、功能(短信,短信语音,图片短信)等,离散选择模型是测量消费者在给出不同的产品价格、功能条件下是选择购买品牌A,还是品牌B或者品牌C,还是什么都不选择。离散选择模型的一个重要的假定是:消费者是根据构成产品/服务的多个属性来进行理解和作选择判断;另一个基本假定是:消费者的选择行为要比偏好行为更接近现实情况。 它与传统的全轮廓结合分析(Full Profiles Conjoint Analysis)都是在全轮廓的基础上采用分解的方法测量消费者对某一轮廓(产品)的选择与偏好,对构成该轮廓的多个属性和水平的选择与偏好,用效用值(Utilities)来描述。但是,它与传统的结合分析的最大区别在于:离散选择模型不是测量消费者的偏好,而是获知消费者如何在不同竞争产品选择集中进行选择。因此,离散选择模型在价格研究中是一种更为实际、更有效、也更复杂的技术。具体表现在: ●将消费者的选择置于模拟的竞争市场环境,“选择”更接近消费者的实际购买行为; 消费者的选择行为要比偏好态度更能反映产品不同属性和水平的价值,也更具有针 对性; ●消费者只需做出“买”或“不买”的回答,数据获得更容易,也更准确; ●消费者可以做出“任何产品都不购买”的决策,这与现实是一致的; ●实验设计可以排除不合理的产品组合,同时可以分析产品属性水平存在交互作用的

离散事件建模及仿真

第7章离散事件系统建模与仿真 离散事件系统指的是一组实体为了达到某些目的,以某些规则相互作用、关联而集合在一起。与连续事件系统不同,离散事件系统所包含的事件在时间上和空间上都是离散的。离散事件系统在生产和生活中是很常见的,例如一个超市就是一个离散事件系统,它由顾客和收银员组成。在离散事件系统中,各事件以某种顺序或在某种条件下发生,并且大都是随机性的,所以,其模型很难用某种规范的形式,一般采用流程图或者网络图的形式来定义实体在系统中的活动。这类系统在建模时,只要考虑系统内部状态发生变化的时间点和发生这些变化的原因,而不用描述系统内部状态发生变化的过程。本章将介绍几种常见的离散事件系统和离散事件系统建模方法。 7.1 离散事件系统模型 离散事件系统是指系统的状态仅在离散的时间点上发生变化的系统,而且这些离散时间点一般是不确定的。这类系统中引起状态变化的原因是事件,通常状态变化与事件发生是一一对应的。事件的发生没有持续性,可以看作在一个时间点上瞬间完成,事件发生的时间点是离散的,因而这类系统称为离散事件系统。首先看一个典型的离散系统的例子。 例7.1 超市服务系统 某理发店只有一名理发师。在正常的工作时间内,如果理发店没有顾客,则理发师空闲;如果有顾客,则为顾客理发。如果顾客到达理发店时,理发师正在为其他顾客服务,则新来的顾客在一旁排队等候。显然,每个顾客到达理发店的时间是随机的,而理发师为每个顾客服务的时间也是随机的,进而队列中每个顾客的等候时间也是随机的。 下面,结合例7.1介绍一下在离散事件系统仿真中所用到的一些基本概念。 (1)实体 实体是指有可区别性且独立存在的某种事物。在系统中,构成系统的各种成分称为实体,用系统论的术语,它是系统边界内的对象。在离散事件系统中,实体可分为两大类:临时实体和永久实体。临时实体指的是只在系统中存在一段时间的实体,这类实体由系统外部到达系统,在系统仿真过程中的某一时刻出现,最终在仿真结束前从系统中消失。例7.1中,顾客是临时实体,他们按一定的规律到达,经过理发师服务(可能要排队等待一段时间),最终离开系统。那些虽然达到,但未进入理发店的顾客则不能称为该系统的临时实体。永久实

数学建模专题汇总_离散模型

离散模型 § 1 离散回归模型 一、离散变量 如果我们用0,1,2,3,4,…说明企业每年的专利申请数,申请数是一个离散的变量,但是它是间隔尺度变量,该变量类型不在本章的讨论的被解释变量中。但离散变量0和1可以用来说明企业每年是否申请专利的事项,类似表示状态的变量才在本章的讨论中。在专利申请数的问题中,离散变量0,1,2,3和4等数字具有具体的经济含义,不能随意更改;而在是否申请专利的两个选择对象的选择问题中,数字0和1只是用于区别两种不同的选择,是表示一种状态。本专题讨论有序尺度变量和名义尺度变量的被解释变量。 .word版.

.word 版. 二、离散因变量 在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0表示。 10yes x no ?=?? 如果x 作为说明某种具体经济问题的自变量,则应用以前介绍虚拟变量知识就足够了。如果现在考虑某个家庭在一定的条件下是否购买住房问题时,则表示状态的虚拟变量就不再是自变量,而是作为一个被说明对象的因变量出现在经济模型中。因此,需要对以前讨论虚拟变量的分析方法进行扩展,以便使其能够适应分析类似家庭是否购房的问题。因为在家庭是否购房问题中,虚拟因变量的具体取值仅是为了区别不同的状态,所以将通过虚拟因变量讨论备择对象选择的回归模型称为离散选择模型。

.word 版. 三、线性概率模型 现在约定备择对象的0和1两项选择模型中,下标i 表示各不同的经济主体,取值0或l 的因变量i y 表示经济主体的具体选择结果,而影响经济主体进行选择的自变量i x 。如果选择响应 YES 的概率为(1/)i p y =i x ,则经济主体选择响应NO 的 概率为1(1/)i i p y -=x , 则(/)1(1/)0(0/)i i i i i i E y p y p y =?=+?=x x x =(1/)i i p y x =。 根据经典线性回归,我们知道其总体回归方程是条件期望建立的,这使我们想象可以构造线性概率模型 (1/)(/)i i i i i p y x E y x '===x β 011i k ik i x x u βββ=++++ 描述两个响应水平的线性概率回归模型可推知,根据统计数据得到的回归结果

离散事件系统仿真实验

实验二离散事件系统仿真实验 目录 实验题目 (1) 一、实验目标 (1) 二、实验原理 (1) 1. 排队系统的一般理论 (1) 2. 离散系统常用的仿真策略 (2) 3. 本实验采用单服务台模型 (3) 4. 仿真运行方式 (3) 三、理论分析 (4) 1. 涉及的基本概念 (4) 2. 仿真的总体规划设计 (5) 四、建模过程 (7) 1. 思路分析 (7) 2. 仿真策略 (7) 3. 事件列表 (8) 4. 变量定义 (8) 5. 系统流程框图 (9) 五、仿真源程序(Matlab) (10) 六、结果分析 (12) 七、感受及建议 (15)

实验题目 实体(临时实体)到达模式:实体到达模式是顾客到达模式,设到达时间间隔Ai 服从均值5min A β=的指数分布 /1 ()(0) A A A f A e A ββ?=≥服务模式:设服务员为每个顾客服务的时间为Si .它也服从指数分布,均值为4min S β=/1 ()(0) S S s f S e S ββ?=≥服务规则:由于是单服务台系统,考虑系统顾客按单队排列,并按FIFO 方式服务 一、实验目标 通过单服务台排队系统的方针,理解和掌握对离散事件的仿真建模方法,以便对其他系统进行建模,并对其系统分析,应用到实际系统,对实际系统进行理论指导。 二、实验原理 1. 排队系统的一般理论 一般的排队系统都有三个基本组成部分:

(1)到达模式:指动态实体(顾客)按怎样的规律到达,描写实体到达的统计特性。通常假定顾客总体是无限的。 (2)服务机构:指同一时刻有多少服务设备可以接纳动态实体,它们的服务需要多少时间。它也具有一定的分布特性。通常,假定系统的容量(包括正在服务的人数加上在等待线等待的人数)是无限的。 (3)排队规则:指对下一个实体服务的选择原则。通用的排队规则包括先进先出(FIFO),后进先出(LIFO),随机服务(SIRO)等。 2. 离散系统常用的仿真策略 (1)事件调度法(Event Scheduling): 基本思想:离散事件系统中最基本的概念是事件,事件发生引起系统状态的变化,用事件的观点来分析真实系统。通过定义事件或每个事件发生系统状态的变化,按时间顺序确定并执行每个事件发生时有关逻辑关系。 (2)活动扫描法: 基本思想:系统有成分组成,而成分又包含活动。活动的发生必须满足某些条件,且每一个主动成分均有一个相应的活动例程。仿真过程中,活动的发生时间也作为条件之一,而且较之其他条件具有更高的优先权。 (3)进程交互法: 基本思想:将模型中的主动成分历经系统所发生的事件及活动,按时间发生的顺序进行组合,从而形成进程表。系统仿真钟的推进采

离散数学建模

. .. . 离散建模 专业计算机科学与技术 班级 姓名 学号 授课教师 二 O 一七年十二月 .. ..范文 . .

离散建模是离散数学与计算机科学技术及IT技术应用间的联系桥梁。也是学习离散数学的根本目的。 它有两部分容组成: 1.离散建模概念与方法 2.离散建模应用实例 一.离散建模概念与方法 1.1离散建模概念 在客观世界中往往需要有许多问题等待人们去解决。而解决的方法很多,最为常见的方法是将客观世界中的问题域抽象成一种形式化的数学表示称数学模型,从而将对问题域的求解变成为对数学表示式的求解。而由于人们对数学的研究已有数千年历史,并已形成了一整套行之有效的对数学求解的理论与方法,因此用这种数学方法去解决实际问题可以取得事倍功半的作用。而采用这种方法的关键之处是数学模型的建立,它称为数学建模,而当这种数学模型是建立在有限集或可列集之上时,此种模型的建立称离散建模。 1.2.离散建模方法 (1)两个世界理论 在离散建模中有两个世界,一个是现实世界另一个是离散世界。现实世界是问题域产生的世界,离散世界则是一种数学世界,它有三个特性:离散世界采用离散数学语言,该语言具有简洁性且表达力丰富。 离散世界所表示的是一种抽象符号,它是一种形式化符号体系。 离散世界中的环境简单,它在离散建模时设立,可以屏蔽大量无关信息对问题求解的干扰。 为求解问题须将问题域转换成离散模型,然后对离散模型求解,再逆向转换成现实世界中的解. (2)两个世界的转换 在离散建模方法中需要构作两种转换,即由现实世界到离散世界的转换以及由离散世界到现实世界的逆转换,而其中第一种转换尤为重要,这种转换我们一般即称之为离散建模。 下面对两种转换作介绍: 现实世界到离散世界的转换

Simulink中连续与离散模型的区别

Simulink中连续与离散模型的区别 matlab/simulink/simpowersystem中连续vs离散! 本文中的一些具体数学推导见下面链接:计算机仿真技术 1.连续系统vs离散系统 连续系统是指系统状态的改变在时间上是连续的,从数学建模的角度来看,可以分为连续时间模型、离散时间模型、混合时间模型。其实在simpowersystem的库中基本所有模型都属于连续系统,因为其对应的物理世界一般是电机、电源、电力电子器件等等。 离散系统是指系统状态的改变只发生在某些时间点上,而且往往是随机的,比如说某一路口一天的人流量,对离散模型的计算机仿真没有实际意义,只有统计学上的意义,所以在simpowersystem中是没有模型属于离散系统的。但是在选取模型,以及仿真算法的选择时,常常提到的discrete model、discrete solver、discrete simulate type等等中的离散到底是指什么呢?其实它是指时间上的离散,也就是指离散时间模型。 下文中提到的连续就是指时间上的连续,连续模型就是指连续时间模型。离散就是指时间上的离散,离散模型就是指离散时间模型,而在物理世界中他们都同属于连续系统。为什么要将一个连续模型离散化呢?主要是是从系统的数学模型来考虑的,前者是用微分方程来建模的,而后者是用差分方程来建模的,并且差分方程更适合计算机计算,并且前者的仿真算法(simulationsolver)用的是数值积分的方法,而后者则是采用差分方程的状态更新离散算法。 在simpowersystem库中,对某些物理器件,既给出的它的连续模型,也给出了它的离散模型,例如: 离散模型一个很重要的参数就是采样时间sampletime,如何从数学建模的角度将一个连续模型离散化,后面会有介绍。在simpowersystem中常用powergui这个工具来将系统中的连续模型离散以便采用discrete算法便于计算机计算。

离散时间系统最优控制

第五章离散时间系统最优控制

引言 ?前面所讨论的都是关于连续时间系统的最优控制问题。?现实世界中,很多实际系统本质上是时间离散的。 机 ?即使是系统是时间连续的,因为计算机是基于时间和数值上都离散的数字技术的,实行计算机控制时必须 将时间离散化后作为离散系统处理。 ?因此,有必要讨论离散时间系统的最优控制问题。 ?离散时间系统仍然属于连续变量动态系统(CVDS)范畴。 注意与离散事件动态系统(DEDS)的区别。 ?CVDS与DEDS是自动化领域的两大研究范畴,考虑不同的自动化问题。

5.1 离散时间系统最优控制问题的提法 (1) 离散系统最优控制举例——多级萃取过程最优控制 ?萃取是指可被溶解的物质在两种互不相溶的溶剂之间的转移,一般用于将是指可被溶解的物质在两种互不相溶的溶剂之间的转移,般用于将要提取的物质从不易分离的溶剂中转移到容易分离的溶剂中。 ?多级萃取是化工生产中提取某种价值高、含量低的物质的常用生产工艺。 萃取V u (0) u (1) u (k -1) u (N -1) V V V V V V 萃取器1萃取器2 萃取器 k 萃取器N x (0) x (1)x (2) x (k -1) x (k ) x (N )x (N -1) 含物质z (0)z (1) z (k-1) z (N -1) 多级萃取过程 A 的混合物以流量V 进入萃取器1,混合物中A 浓度x (0); 萃取剂以流量u (0)通过萃取器1,单位体积萃取剂带走A 的量为z (0); 一般萃取过程的萃取物含量均较低,可认为通过萃取器1后混合物流量仍为V ; 流出萃取器1的混合物中A 物质的浓度为x (1)。以此类推至萃取器N 。

离散系统的数学模型辨识

系统模型的辨识与仿真 摘要:系统传递函数是系统模型的数学形式,广泛地应用于自动控制领域。通过已知输入信号与输出信号的采样结果,利用矩阵运算与系统辩识技术,客观地求出了系统真实的传递函数并利用Matlab仿真对其进行了验证。经过大量的实践,该技术现已成功应用于实际工程之中。 关键词:系统辨识;系统仿真;数字模型 Identification And Simulation Of System Model Abstract:The system transfer function is the mathematical form of system model,which is widely used in the field of automatic control. With the known input signal and output signal sampling results,the true transfer function of system is derived objectively by using matrix operations and system identification technology,and verified by means of Matlab simulation.It has been successfully applied to the practical engineering.Keywords:system identification;system simulation;digital model 0 引言 系统是一个内涵十分丰富的概念,从广义上来讲,系统是指具有某些特定功能、相互联系、相互作用的元素的集合。系统的数字模型则是用抽象的数学方程描述系统内部物理变量之间的关系。通过对系统的数字模型的研究可以揭示系统的内在运动和系统的动态性能。对于一些简单的系统,可以通过基本定律如牛顿定律、基尔霍夫定律建立数字模型,这种建模方法通常称之为“机理建模法”。而对于很多系统,由于系统的复杂性,难于写出用数学表达式表示的数字模型,则必须利用实验方法获得实验数据,通过系统辨识技术建立数字模型。因为数字模型是系统仿真的研究依据,所以数字模型的准确性是十分重要的。凡是需要通过实验数据确定数学模型和估计参数的场合都要利用辨识技术,辨识技术已经推广到工程和非工程的许多领域。 1理论基础

相关主题
文本预览
相关文档 最新文档