当前位置:文档之家› 函数小综合讲义

函数小综合讲义

函数小综合讲义
函数小综合讲义

一次函数应用题(讲义及答案). (1)

一次函数应用题(讲义) ?课前预习 1. 一条公路旁依次有A,B,C三个村庄,甲、乙两人骑自行车 分别从A村、B村同时出发前往C村,甲、乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论: ①A,B 两村相距10 km;②出发1.25 h 后两人相遇;③出发 2 h 后甲到达C 村庄;④甲每小时比乙多骑行8 km.其中正确的个数是() A.1 个B.2 个C.3 个D.4 个 ?知识点睛 一次函数应用题的处理思路: 1.理解题意,梳理信息 结合图象、文字信息理解题意,将实际场景与图象中轴、点、线对应起来理解分析. ①看轴,明确横轴和纵轴表示的实际意义. ②看点,明确起点、终点、状态转折点表示的具体意义,还 原实际情景,提取每个点对应的数据. ③看线,观察每段线的变化趋势(增长或下降等),分析每 段数据的变化情况. 2.辨识类型,建立模型 ①将所求目标转化为函数元素,借助图象特征,利用表达式 进行求解; ②将图象中的点坐标还原成实际场景中的数据,借助实际场 景中的等量关系列方程求解. 3.求解验证,回归实际

1

?精讲精练 1.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀 速步行2 400 米,先到终点的人原地休息.已知甲先出发4 分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论: ①甲步行的速度为60 米/分; ②甲走完全程用了40 分钟; ③乙用16 分钟追上甲; ④乙走完全程用了30 分钟; ⑤乙到达终点时,甲离终点还有300 米. 其中正确的结论是.(填序号) 2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车 同时出发,匀速行驶.设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地的过程中y 与x 之间的函数关系,结合图象解答下列问题: (1)求线段AB 所在直线的函数解析式以及甲、乙两地之间的距离; (2)求a 的值; (3)出发多长时间,两车相距140 千米?

最新基本初等函数讲义(全)

一、一次函数 二、二次函数 (1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

图像 定义域 (),-∞+∞ 对称轴 2b x a =- 顶点坐标 24,24b ac b a a ??-- ??? 值域 24,4ac b a ??-+∞ ??? 24,4ac b a ?? --∞ ?? ? 单调区间 ,2b a ??-∞- ??? 递减 ,2b a ?? -+∞ ??? 递增 ,2b a ? ?-∞- ??? 递增 ,2b a ?? -+∞ ??? 递减 ①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为 ,2b x a =-顶点坐标是24(, )24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减, 在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,] 2b a -∞-上递增,在[,)2 b a -+∞上递减,当2b x a =-时,2max 4()4ac b f x a -=. 三、幂函数 (1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象 2b x a =- 2b x a =-

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

函数性质综合运用(讲义)

函数性质综合运用(讲义) ?课前预习 1.填空: ①如果我们将方程组中的两个方程看作是两个函数,则方程组的解恰好对应 两个函数图象的__________________;方程x2+3x-1=2x+1的根对应两个函数图象交点的__________. 特别地,一元二次方程ax2+bx+c=0(a≠0)的根是二次函数______________的图象与______交点的横坐标.当?>0时,二次函数图象与x轴有_____个交点;当?=0时,与x轴有_____个交点;当?<0时,与x轴______交点. ②y=2x+1与y=x2+3x+1的交点个数为__________. 2.借助二次函数图象,数形结合回答下列问题: ①当a>0时,抛物线开口_____,图象以对称轴为界,当x_____时,y随x 的增大而增大;该二次函数有最____值,是_______; ②当a<0时,抛物线开口____,图象以对称轴为界,当x_____时,y随x的 增大而增大;该二次函数有最___值,是______. ③已知二次函数y=x2+2x-3.当-5<x<3时,y的取值范围为__________;当 1<x≤5时,y的取值范围为__________. 注:二次函数y=ax2+bx+c的顶点坐标为 2 4 () 24 b a c b a a --,. ?知识点睛

a b c k ???? ?? ????? ?????? ???????①坐标代入表达式,得方程或不等式表达式与坐标②借助表达式设坐标①判断,,,等字母符号函数图象与性质②借助图象比大小、找范围 ③图象平移:左加右减,上加下减 将方程、不等式转化为函数,函数与方程、不等式数形结合,借助图象分析 ?????????????????? ??????????????? ?? 第一步:设坐标 利用所在函数表达式或坐标间关系横平竖直第二步:坐标相减竖直线段:纵坐标相减,上减下水平线段:横坐标相减,右减左表达线段长①倾斜程度不变借助相似,利用竖直线段长表达斜放置②倾斜程度变化 ? 精讲精练 1. 抛物线y =ax 2+bx +c 上部分点的横坐标x 、纵坐标y 的对应值如表所示. y 轴的右侧;③抛物线一定经过点(3,0); ④在对称轴左侧,y 随x 增大而减小;⑤一元二次方程ax 2+bx +c =4的解为x =-1或x =2.由表可知,正确的说法有______个. 2. 已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况 下,与其对应的函数值y 的最小值为5,则h 的值为( ) A .5或1 B .-1或5 C .1或-3 D .1或3 3. 已知二次函数y =ax 2-bx -2(a ≠0)的图象的顶点在第四象限,且过点(-1,0), 当a -b 为整数时,ab 的值为( ) A .34或1 B .14或1 C .34或12 D . 14或34 4. 二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(-1,0),对称 轴为直线x =2.给出下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④

基本初等函数知识点(一轮复习)

基本初等函数 中学阶段(初高中)我们只要求掌握基本初等函数及其复合函数即可。什么是基本初等函数?就是那些:幂函数(一次二次负一次)、指数、对数、三角等。力求在这些具体函数中,运用函数的性质(奇偶性、周期、单调等的性质),掌握某些函数的特殊技巧。 一、一次函数 初中的一个函数,Primary基本、简单而又很重要。解析式:y=kx+b或y=ax+b,通常我们会这样设。那么高中我们在什么地方会用到它呢?解析几何中我们会设直线;线性规划会有好多跟直线;也容易在函数里面作为条件表达一下…… 画出以下解析式的图像:要求快 (1)y=x+1; (2)y=x-1 (3)y=-x+1 (4)y=-x-1 (5)x=1(6)y=1 (7)y=2x 根据以下条件,设出一次函数的解析式: (1)直线经过(1,2)点 (2)直线的斜率是2 总结:两个参数主宰斜率和与y轴的交点位置。因为两个参数,所以要有两个条件才能解得解析式。 二、二次函数 二次函数的大部分内容在另外一个讲义里面已经讲述了,这里补遗强调一下。十分重要的内容,属于幂函数中最重要的一类。二次函数图象的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用,幂函数的内容要求较低,只要求会简单幂函数的图象与性质. 1、二次函数的三种表示形式 (1)一般式:y=ax2+bx+c,(a≠0); (2)顶点式:y=a(x-h)2+k(顶点坐标为(h,k)); (3)双根式:y=a(x-x1)(x-x2)(图象与x轴的交点为(x1,0),(x2,0)) 求一元二次解析式:将题目有的条件表示一下,没有难度,过场的题目而已 Eg:已知二次函数f(x)同时满足条件:(1)f(1+x)=f(1-x);(2)f(x)的最大值为15;(3)f(x)=0的两根平方和等于7.求f(x)的解析式. Ans:f(1+x)=f(1-x)知二次函数对称轴为x=1. ∴已知最大值和对称轴,用顶点式,设f(x)=a(x-1)2+15=ax2-2ax+15+a. ∵x21+x22=7 即(x1+x2)2-2x1x2=7

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

人教版数学必修四三角函数复习讲义

第一讲 任意角与三角函数诱导公式 1. 知识要点 角的概念的推广: 平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 象限角的概念: 在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 终边相同的角的表示: α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z 。 注意:相等的角的终边一定相同,终边相同的角不一定相等. α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2 k k Z π απ=+∈; α终边在坐标轴上的角可表示为:,2 k k Z π α= ∈. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. α与2 α的终边关系: 任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),

它与原点的距离是0r =>,那么sin ,cos y x r r αα==, ()tan ,0y x x α= ≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 三角函数线的特征:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )” 同角三角函数的基本关系式: 1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 2. 倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 3. 商数关系:sin cos tan ,cot cos sin αα αααα = = 注意:1.角α的任意性。 2.同角才可使用。 3.熟悉公式的变 形形式。 三角函数诱导公式:“ (2 k πα+)”记忆口诀: “奇变偶不变,符号看象限” 典型例题 例1.求下列三角函数值: (1)cos210o; (2)sin 4 5π 例2.求下列各式的值: (1)sin(-3 4π ); (2)cos(-60o)-sin(-210o) 例3.化简 ) 180sin()180cos() 1080cos()1440sin(?--?-?-?-?+?αααα

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当 时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加 的;当时为单调减少的,曲线过点。高等 数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当 时单调减少,曲线过(1,0)点,都在右半平面 内。与互为反函数。当时的对数 函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函 数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为 ,为无界函数,周期在定义域为奇函 数,图形如图1-1-11。

指数函数讲义经典整理[附答案解析]

指数函数讲义经典整理(含答案) 一、同步知识梳理 知识点1:指数函数 函数 (01)x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R 知识点2:指数函数的图像和性质 知识点3:指数函数的底数与图像的关系 指数函数在同一直角坐标系中的图像的相对位置与底数大小的关系 如 图所示,则01c d a b <<<<<, 在y 轴右侧,图像从下到上相应的底数也由小变大, 在y 轴左侧,图像从上到下相应的底数也由小变大 即无论在y 轴左侧还是右侧,底数按逆时针方向变大 在第一象限内,“底大图高” 知识点4:指数式、指数函数的理解 ① 分数指数幂与根式或以互化,通常利用分数指数幂进行根式的运算

② 根式的运算、变形、求值、化简及等式证明在数学中占有重要的地位,是研究方程、不等式和函数的基础,应引起重视 ③ 在有关根式、分数指数幂的变形、求值过程中,要注意运用方程的观点处理问题,通过解方程或方程组来求值 ④ 在理解指数函数的概念时,应抓住定义的“形式”,像 1 2 2 23,,3,21x x x y y x y y -=?===- 等 函数均不符合形式 () 01x y a a a =>≠且,因此,它们都不是指数函数 ⑤ 画指数函数x y a =的图像,应抓住三个关键点: ()()11,,0,1,1, a a ?? - ?? ? 二、同步题型分析 题型1:指数函数的定义、解析式、定义域和值域 例1:已知函数 ,且 . (1)求m 的值; (2)判定f (x )的奇偶性; (3)判断f (x )在(0,+∞)上的单调性,并给予证明. 考点: 指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明. 专题: 计算题. 分析: (1)欲求m 的值,只须根据f (4)=的值,当x=4时代入f (x )解一个指数方程即可; (2)求出函数的定义域x|x≠0},利用奇偶性的定义判断f (x )与f (﹣x )的关系,即可得到答案; (3)利用单调性的定义证明即可.任取0<x1<x2,只要证明f (x1)>f (x2),即可. 解答: 解:(1)因为 ,所以 ,所以m=1. (2)因为f (x )的定义域为{x|x≠0},又, 所以f (x )是奇函数. (3)任 取 x1 > x2 > , 则 , 因为x1>x2>0,所以,所以f (x1)>f (x2),

基本初等函数讲义(超级全)

一、一次函数 一次 函数 k kx b k0 k0k0 k, b 符号b0b0b0b0b0b0 y y y y y y 图象 O x O O x x O x O x O x 性质y随x的增大而增大y随x的增大而减小 二、二次函数 (1)二次函数解析式的三种形式 ①一般式:2 f(x)ax bx c(a0) ②顶点式:2 f(x)a(x h)k(a0) ③两根式:f(x)a(x x1)(x x2)(a0) (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便. (3)二次函数图象的性质 20 f x ax bx c a a0a0 图像 x b 2a x b 2a 定义域, 对称轴x b 2a 顶点坐标 2 b4ac b , 2a4a 文档

值域 2 4ac b 4a ,, 2 4ac b 4a , b 2a 递减, b 2a 递增 单调区间 b 2a , 递增 b 2a ,递减 ①.二次函数 b 2 f(x)ax bx c(a0)的图象是一条抛物线,对称轴方程为x, 2a 顶 点坐标是 2 b4ac b (,) 2a4a b ②当a0时,抛物线开口向上,函数在(,] 2a b 上递减,在[,) 2a 上递增,当 x b 2a 时,f(x) min 2 4ac b 4a b ;当a0时,抛物线开口向下,函数在(,] 2a 上递b 增,在[,) 2a 上递减,当x b 2a 时,f(x) max 2 4ac b 4a . 三、幂函数 (1)幂函数的定义 一般地,函数y x叫做幂函数,其中x为自变量,是常数. (2)幂函数的图象 过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).文档

基本初等函数(整理)

1.1 初等函数图象及性质 1.1.1 幂函数 1函数(μ是常数)叫做幂函数。 2幂函数的定义域,要看μ是什么数而定。 但不论μ取什么值,幂函数在(0,+ ∞ )内总有定义。 3最常见的幂函数图象如下图所示:[如图] 4 2 -551015 -2 -4 -6 4①α>0时,图像都过(0,0)、(1,1 注意α>1与0<α<1的图像与性质的区别. ②α<0时,图像都过(1,1)点,在区间(0 上无限接近y轴,向右无限接近x轴. ③当x>1时,指数大的图像在上方. 1.1.2 指数函数与对数函数

1.指数函数 1函数 (a 是常数且a>0,a ≠ 1)叫做指数函数,它的定义域是区间(-∞ ,+∞ )。 2因为对于任何实数值x ,总有,又,所以指数函数的图形,总在x 轴的上方, 且通过点(0,1)。 若a>1,指数函数是单调增加的。若0

2.对数函数 由此可知,今后常用关系式,如: 指数函数的反函数,记作(a是常数且a>0,≠ a1),叫做对数函数。它的定义域是区间(0,+∞ )。 对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。 的图形总在y轴上方,且通过点(1,0)。 若a>1,对数函数是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞ )内函数值为正。 若01 0

幂函数及函数应用(讲义)

幂函数及函数应用(讲义) ? 知识点睛 一、幂函数 1. 定义:一般地,函数y x α=叫做幂函数,其中x 是自变量,α是常数. 2. 函数图象及图象性质 (1)在同一平面直角坐标系内作出幂函数y =x ,y =x 2,y =x 3 ,12 y x =,1y x -=的图象: (2)图象性质 (3)幂函数图象的画法 第一步:根据单调性判断函数y x α=的图象变化趋势. ①当1α>时,函数y x α=在第一象限内的图象呈快速上升趋势,比如y =x 2; ②当01α<<时,函数y x α=在第一象限内的图象呈缓慢上升趋势,比如 1 2 y x =; ③当0α<时,函数y x α=在第一象限内的图象呈下降趋势,比如1y x -=. 第二步:根据函数的奇偶性判断图象整体分布情况.

① 当m n α= (m ,n ∈N *,且互质)时: 若m ,n 均为奇数,则函数y x α=是奇函数,其图象关于原点对称; 若m 为偶数,n 为奇数,则函数y x α=是偶函数,其图象关于y 轴对称; 若m 为奇数,n 为偶数,则函数y x α=是非奇非偶函数,只在第一象限内有图象. ② 当m n α=- (m ,n ∈N *,且互质)时: 若m ,n 均为奇数,则函数y x α=是奇函数,其图象关于原点对称; 若m 为偶数,n 为奇数,则函数y x α=是偶函数,其图象关于y 轴对称; 若m 为奇数,n 为偶数,则函数y x α=是非奇非偶函数,只在第一象限内有图象. 3. 幂函数指数变化与图象分布规律 函数y x α=在第一象限的图象: ①a y x =;②b y x =;③c y x =;④d y x =;⑤e y x =;⑥f y x =, 则有a

基本初等函数讲义

一、一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 三、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 四、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈

必修四第一章三角函数 知识点及练习 讲义

__________________________________________________ 高一数学下必修四第一章三角函数 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα?<

__________________________________________________ 6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α=. 7、弧度制与角度制的换算公式:2360π=,1180π = ,180157.3π??=≈ ??? . 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+, 211 22 S lr r α==. 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标 是(),x y ,它与原点的距离是 () 0r r =>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系:()2 2 1sin cos 1αα+= ()2222sin 1cos ,cos 1sin αααα=-=-;() sin 2tan cos α αα = sin sin tan cos ,cos tan αααααα? ?== ?? ?. 13、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.

函数性质应用(讲义)

函数性质应用(讲义) ?知识点睛 一、函数的单调性 确定函数单调性的常用方法: (1)定义法:先求出函数的定义域,再根据取值、作差、变形、定号的顺序得结论. (2)图象法:若函数是以图象形式给出的,或可以作出函数图象,可由图象的升、降得出它的单调性或单调区间. (3)转化法:转化为已知函数的单调性,即转化为已知函数的和、差或复合函数,再根据“增+增得增”、“减-增得减”、“同增异减”等,求得函数的单调性或单调区间. 注: (1)确定函数单调性,优先确定定义域; (2)利用定义证明单调性,注意取值的任意性. 二、函数奇偶性判断的步骤 三、函数单调性与奇偶性的常用结论 1.若() f x是奇函数,且在原点处有定义,则f (0)=0. 2.奇函数图象关于原点对称,偶函数图象关于y轴对称. 3.若() f x是奇函数,则() f x是 f x在关于原点对称的区间上单调性相同;若() 偶函数,则() f x在关于原点对称的区间上单调性相反. ?精讲精练

1. 函数|4||3| y x x =++-是( ) A . 奇函数 B .偶函数 C .非奇非偶函数 D .既是奇函数又是偶函数 2. 已知函数(4)0()(4)0x x x f x x x x +?=?->, B .240b ac ->

三角函数综合讲义

三角函数 1.1 任意角和弧度制 1.1.1 任 意 角 1 角的概念 平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 2 角的分类 (1)正角:按逆时针方向旋转形成的角; (2)负角:按顺时针方向旋转形成的角; (3)零角:射线没有作任何旋转形成一个零角; 规定:正角>零角>负角; 画法:画角时,用带箭头的螺旋线加以标注; 记法:αα α∠、角; 意义:用“旋转”定义角之后,角的范围扩大了:角有正负之分;角可以任意大;还有零角。 3 象限角 使角的顶点与原点重合,角的始边与x 轴的正半轴重合,角的终边在第几象限就称为第几象限角.若终边落在坐标轴上,认为这个角不属于任何象限.称为轴线角. 4 终边相同的角 所有与角α终边相同的角,连同角α在内,可构成一个集合:{}Z k k ∈?+=,360 αββ 5 象限角的集合表示 第一象限角的集合 第二象限角的集合 第三象限角的集合 第四象限角的集合 6 αk k α ?、所在象限的判定 方法一 代数推导法;方法二 图示法 例: α是第三象限的角,求2 α的范围,并在坐标系内表示出来,同时指出它在哪一象限. (代数推导法) (图示法) {}Z k ,180360k 90360k |∈?+??<

(完整word版)高中数学专题系列三角函数讲义(2)

§1.1.1、任意角 1、 正角、负角、零角、象限角的概念. 2、 与角α终边相同的角的集合:{}Z k k ∈+=,2παββ. §1.1.2、弧度制 1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角. 2、 r l = α. 3、弧长公式 :R R n l απ==180. 4、扇形面积公式:lR R n S 2 1 3602==π. §1.2.1、任意角的三角函数 1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:x y x y ===αααtan ,cos ,sin 2、 设点(),A x y 为角α终边上任意一点,那么: (设r = sin y r α= ,cos x r α=,tan y x α=,cot x y α= 3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法. 正弦线:MP; 余弦线:OM; 正切线:AT 5、 特殊角0°,30°45°,60°,90°,180°,270等的三角函数值. §1.2.21、 平方关系:1cos sin 2 2 =+αα 2、 商数关系:α α αcos sin tan = . 3、 倒数关系:tan cot 1αα=

§1.3、三角函数的诱导公式 (概括为Z k ∈) §1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象: 2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图. sin y x =在[0,2]x π∈上的五个关键点为: 30010-1202 2 π π ππ(, )(,,)(,,)(,,)(,,).

函数模型及其应用复习讲义

函数模型及其应用 要点梳理 1.几类函数模型及其增长差异 (2)三种增长型函数之间增长速度的比较 ①指数函数y=a x (a>1)与幂函数y=x n (n>0) 在区间(0,+∞),无论n比a大多少,尽管在x的一定范围内a x会小于x n,但由于y=a x的增长速度快于y=x n的增长速度,因而总存在一个x0,当x>x0时有____________. ②对数函数y=log a x (a>1)与幂函数y=x n (n>0) 对数函数y=log a x (a>1)的增长速度,不论a与n值的大小如何总会慢于y=x n的增长速度,因而在定义域内总存在一个实数x0,使x>x0时有____________.由①②可以看出三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在(0,+∞)上,总会存在一个x0,使x>x0时有______________.2.解函数应用问题的步骤(四步八字) (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型; (3)求模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义. 以上过程用框图表示如下:

注意: 解决函数应用问题重点解决以下问题 (1)阅读理解、整理数据:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等; (2)建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域; (3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图像的作用; (4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来. 基础自测 1.某物体一天中的温度T(单位:℃)是时间t(单位:h)的函数:T(t)=t3-3t+60,t=0表示中午12∶00,其后t取正值,则下午3时的温度为________.2.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加 10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-1 20 Q2,则总利润L(Q)的最大值是________万元. 3.(课本改编题)某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数关系式是______________. 4.某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处

第八讲 函数的应用自主招生讲义

第八讲 函数的应用 【知识引入】 一.基本初等函数的单调性: 1.反比例函数的单调性:)0(≠=k x k y ,由k 的符号确定; 2.分式函数的单调性:d cx b ax y ++=; 3.一次函数:)0(≠+=k b kx y ; 4.二次函数:)0(2≠++=a c bx ax y ;确定单调性要素?? ? ??-的大小②、对称轴的符号①、a b a 2 5.耐克函数:)0(>c x c x y + =;双增函数:)0(->c x c x y =;双减函数:)0(->c x x c y =; 6.幂函数)21-3 1212-1-321(? ??? ?? ∈=、、、、、、、a x y a 7.指数函数)1,0(≠=a a a y x 且>; 8.对数函数)1,0(log ≠=a a y x a 且>; 9.三角函数:x y sin =、x y cos =、x y tan =; 10.其他函数:a x y -=、 b x a x y -+-=、 b x a x y --=-等。 二.复合函数的单调性:同增异减。 【知识拓展】 一.函数的迭代:一个函数的自复合,叫做迭代。我们用()k g x 表示()g x 的k 次迭代函数, 即01(),()(())k k g x x g x g g x +?=??=??。如果()(())()(1,2,,1) p k g x x g x x g x x k p ?=??≠=-??对一切使有定义的,则称()g x 有迭代周期p 。 迭代问题的解法通常是找它的迭代周期。一般说来,若()y g x =的图像关于直线y x =对称,则一定有(())g g x x =。它的迭代周期是2.下面是几个常见函数的迭代周期。 27()1x g x x -= +,迭代周期是3;1()1x g x x -=+,迭代周期是4;1()2x g x x +=-,迭代周期是6.

相关主题
文本预览
相关文档 最新文档