当前位置:文档之家› 论光伏发电支架基础设计方法 肖江奇

论光伏发电支架基础设计方法 肖江奇

论光伏发电支架基础设计方法 肖江奇
论光伏发电支架基础设计方法 肖江奇

论光伏发电支架基础设计方法肖江奇

发表时间:2020-03-16T22:20:04.693Z 来源:《电力设备》2019年第20期作者:肖江奇弓卫

[导读] 摘要:在许多可再生能源中,太阳能是最丰富、分布最广、取之不尽、用之不竭的资源。

(陕西省水利电力勘测设计研究院陕西西安 710001)

摘要:在许多可再生能源中,太阳能是最丰富、分布最广、取之不尽、用之不竭的资源。就我国目前的太阳能转化技术而言,虽然与发达国家仍有较大差距,但同样的效果也显著缓解了我国的能源短缺问题。可以根据不同地区的不同情况进行推广和推广。虽然光伏电站建设周期相对较短,但由于定性投资较高,需要较长时间才能收回成本。支撑是光伏电站建设的重要因素,是保证光伏电站正常使用的前提,也是保证光伏电站安全可靠运行的基础。

关键词:光伏电站;支架;基础设计;

随着我国经济的迅猛发展,我国能源紧缺和环境污染问题日渐严重,基于此,开发利用新能源以此缓解我国能源紧缺问题势在必行。而光伏电站便是一种新的电能生产方式,它同其它清洁能源一样,无污染、无噪音、维修方便,正因为这样其具有广阔发展空间和应用前景,甚至于可以说其是目前最具潜能的新能源开发领域。在一般情况下光伏发电规模相对较大,基于此,光伏电站具有以下特点,数量众多,支架上部荷载较小,基于此在光伏电站支架及基础设计过程中必须综合考虑各方面因素,后续工作才能顺利完成。

一、光伏电站优点

光伏电站建设需要综合考虑各方面因素。例如:地形条件、太阳能丰富程度,在无特殊情况下,建设光伏电站的地区多为沙化或是石漠化山地,地表起伏不平,形态各异,可以安装大小不等光伏组件。在上述中也提及到光伏电站建设成本较大,但是土地成本相对较低,因为地处人烟稀少地区,所以管理方面,受外界因素也比较小。以山地光伏电站为例进行分析,其受地势形态影响,同处于戈壁滩或者是沙漠等地区的光伏电站比较后发现,前者布局欠合理加上自然协调性较差,将直接导致系统损耗大,设计、施工工作也难以顺利进行。换一种方式来说,新形势下如若要建设山地光伏电站,首要条件便是克服因自然因素给光伏电站建设带来的影响,综合考虑各方面因素,当然其中也包括协调性、经济性等其它因素。

二、光伏电站支架设计难点

光伏电站支架设计中需考虑的因素:其一,方阵设计,在上述中也提及到光伏电站建设要考虑地形因素,在支架设计中同样如此,必须考虑好安装方式、方阵基础等因素,只有这样光伏电站支架设计工作才能顺利进行,确保光伏电站方阵与支架完美匹配,既保证了土地充分利用,也确保光伏电站效用能够充分发挥出来。其二,组件选择和支架布置设计,如何根据自然条件和国家相关标准,选择安全系数高和经济性能高的设备,例如:支架布置方案、系统防雷接地等,只有这样光伏组件和光伏电站支架才能有效匹配起来,系统效率才能最优化处理。再有光伏电站支架设计过程中需要考虑场内道路、消防,最大限度降低光伏电站因受外在因素产生的不必要损失。同样光伏电站支架设计难点也多表现在多个方面:其一,支架假设难度比较高,受各种因素影响。在一般情况下,光伏电站选址地方先前都是未经开发,因而地表起伏程度难以确定,如若处理不当极容易形成不同于平地的山风,此时就需要对支架承载力或者是抗拔力进行预测,但是就我国目前光伏电站发展现状来说,关于这方面技术还有待提高。其二,光伏电站施工成本相对较高,众多周知,光伏电站支架对基础的强度要求比较高,换一种方式来说,施工过程中对机器设备、原材料等都有特殊要求,如果将光伏电站建于风化岩或者是白云岩地区,无疑都会加大施工难度,建设成本直线上升,这是我国光伏电站支架设计的又一难点所在。

三、光伏电站支架及基础设计

通过分析不难得知,光伏电站工程条件复杂,在建设场内有冲沟、岩石,若处理不当将会引发塌方。基于此,在光伏电站支架及基础设计过程中,除了依据实际情况制定行之有效建设计划外,还需要综合考虑材料、设计结构等多方面因素,依据多方面数据精确计算出光伏电站支架在有或者无地震效应时的风荷载、雪荷载下支架横梁的弯曲程度和弯曲量,安装螺栓的强度等,只有这样才能充分适应地形变化。再有,光伏电站基础设计,同样也要考虑诸多因素,设计强度必须符合建设要求,尤其要选择对地表扰动相对较小的基础形式,既经济又实惠。就我国目前实际情况来看,我国光伏电站基础设计主要有:微型钢管桩基础、锚杆式基础、混泥土基础等。

四、光伏支架基础参数取值

光伏支架基础设计应根据地勘资料和施工因素选取合适的支架基础类型,设计需要考虑几个方面:地基承载力、抗倾覆设计、抗滑移设计、抗拔设计等,进行基础上拔和倾覆稳定验算时,荷载效应应按承载能力极限状态下荷载效应的基本组合,分别采用与土抗力有关的设计稳定系数KS和与基础重力有关的设计稳定系数KG。其中KS用于按锥形土重来验算抗拔力或按极限土抗力来验算抗倾覆力矩。KG用于按基础自重及基础台阶上土重来验算抗拔力或抗倾覆力矩。目前我们设计的支架基础埋深较浅,多符合KG按基础自重及基础台阶上土重来验算抗拔力或抗倾覆力矩,长期荷载效应取1.15,短期荷载效应取1.0。抗滑移系数还是取1.3。屋面光伏和地面光伏取值相同。光伏基础当采用了短桩基础,为了适应光伏支架结构这种压力较小同时上部结构允许变形较大的特殊情况,可以适当放宽《建筑桩基技术规范》(JGJ94)中有关桩端入土深度的构造要求,但是短桩基础的桩端进入持力层最小深度必须满足桩基础的承载能力计算和稳定性验算要求,必要时通过单桩试验确定。对存在负摩阻力的短桩基础,尤其应进行验算。在季节性弱冻涨土和冻涨土中桩端进入冻深线以下的深度,应满足抗拔稳定性验算要求,且不得小于1倍桩径,同时最小深度不得小于1.5m;对强冻涨土、特强冻涨土和膨胀土地基中桩端进入冻深线或膨胀土的大气影响急剧层以下的深度,必须满足《建筑桩基技术规范》(JGJ94)中的相关构造要求。因为光伏上部支架竖向压力一般较小,因此在短桩基础计算中一般是上拔力和水平荷载对短桩基础起设计控制作用,尤其是季节性冻土和膨胀土地区的短桩基础设计,应考虑地基土的冻胀、膨胀作用,对桩基的上拔承载力进行验算。其设计还应符合下列规定:①所有短桩基础均应进行抗倾覆、抗滑移、抗拔和桩身强度计算。对于预制管桩尚应进行运输、吊装和锤击等过程的强度和抗裂验算。②同一结构单元内的短桩基础,不宜采用部分摩檫短桩和部分端承短桩。

五、安全性保障

提及到光伏电站要不是设在沙漠化地带就是在海拔较高的地方,例如:对于山地光伏电站来说,如果防雷措施没有落到实处,光伏电站遭遇雷击的几率将直线上升。基于此,整个光伏电站应当充分好支架基础做好相关金属接地网工作,在条件允许情况下将光伏电站所有地网都连接在一起,这样能够将电阻最小化处理。与此同时还需要做好接地极工作,在各方面都得到保障情况下,延长光伏电站设计寿命,以此降低运营风险或者维护成本,更好作用光伏电站发展。再者,光伏电站支架及基础设计过程中各组串工情况不同,这就需要在光

设计部光伏支架强度设计规范

设计部 设计部支架强度设计规 范 编制: 审核: 批准: 发布日期:实施日期:

1 目的 1.1 加强设计管理,确保设计安全有效的进行。 2 适用范围 2.1 此制度适用于设计部支架设计人员。 3 职责 3.1 设计部领导负责此规范的执行和检查。 3.2 设计部负责此规范的维护和完善。 4 工作内容 4.1 引用标准 下列标准所包含的条文,通过在本标准引用而构成本标准的条文。本标准发布时,所示版本均为有效。所有标准都会被修订。 GB/T 700-2006 碳素结构钢 GB/T 6725-2008 冷弯型钢 GB/T 4171-2008 耐候结构钢 GB/T 1591-2008 低合金高强度结构钢 GB 3077-1988 合金结构钢技术条件 GB/T 13793-2008 直缝电焊钢管 GB/T 5117-1995 碳钢焊条 GB/T 5118-1995 低合金钢焊条 GB/T 983-1995 不锈钢焊条 GB 2101-2008 型钢验收、包装、标志及质量证明书的一般要求 GB 8162-1999 结构用无缝钢管 GB 50017-2003 钢结构设计规范 GB/T 715-1989 标准件用碳素钢热轧圆钢 GB/T 3632-2008 钢结构用扭剪型高强度螺栓连接副 GB/T 5780-2000 六角头螺栓尺寸—C级 GB/T 5781-2000 六角头螺栓尺寸—全螺纹—C级 GB/T 5782-2000 六角头螺栓尺寸—A级和B级 GB/T 5783-2000 六角头螺栓尺寸—全螺纹—A级和B级 GB/T 90.1-2002 紧固件验收检查

GB/T 90.2-2002 紧固件标志与包装 GB/T 3098.1-2000 紧固件机械性能螺栓、螺钉和螺柱 GB/T 15957-1995 大气环境腐蚀性分类 GB/T 19355-2003 钢铁结构耐腐蚀防护锌和铝覆盖层指南 4.2 支架是安装从下端到上端高度为4m以下的太阳能电池阵列时使用。计算因从支架前面吹来(顺风)的风压及从支架后面吹来(逆风)的风压引起的材料的弯曲强度和弯曲量,支撑臂的压曲(压缩)以及拉伸强度,安装螺栓的强度等,并确认强度。 (1)结构材料 选取支架材料,确定截面二次力矩IM和截面系数Z。大部分用角钢,或方管。 (2)假想载荷 固定荷重(G) 组件质量(包括边框)GM +框架自重GK1+其他GK2 固定载荷G=GM+ GK1+ GK2 风压荷重(W) 加在组件上的风压力(WM)和加在支撑物上的风压力(WK)的总和)。 W=1/2×(CW×σ×V02×S)×a×I×J (3)积雪载荷(S)。与组件面垂直的积雪荷重。 (4)地震载荷(K)。加在支撑物上的水平地震力 (5)总荷重(W) 正压:(5)=(1)+(2)+(3)+(4) 负压:(5)=(1)-(2)+(3)+(4) 4.3 载荷的条件和组合 4.4 基础稳定性计算 4.4.1 风压载荷的计算

光伏支架载荷计算

支架强度计算 支架是安装从下端到上端高度为4m以下的太阳能电池阵列时使用计算因从支架前面吹来(顺风)的风压及从支架后面吹来(逆风)的风压引起的材料的弯曲强度和弯曲量,支撑臂的压曲(压缩)以及拉伸强度,安装螺栓的强度等,并确认强度。 (1)结构材料 选取支架材料,确定截面二次力矩I M和截面系数Z。 (2)假象载荷 1)固定荷重(G) 组件质量(包括边框)G M +框架自重G KI+其他G K2 固定载荷G=G M+G KI + G K2 2)风压荷重(W) (加在组件上的风压力(W M)和加在支撑物上的风压力(W K)的总和) 2 X C X V O X S)X a x I x J W=1/2 X( C w 3)积雪载荷(S)。与组件面垂直的积雪荷重。 4)地震载荷(K)。加在支撑物上的水平地震力 5)总荷重(W)正压:5) =1) +2) +3) +4)

负压:5) =1) -2) +3) +4) 载荷的条件和组合 (3)悬空横梁模型 (4)A-B间的弯曲应力 顺风时A-B点上发生的弯曲力矩: M i=WL 勺8应力(T i二M/Z (5)A-B间的弯曲 (6)B-C间的弯曲应力和弯曲形变 (7)C-D间的弯曲应力和弯曲形变 (8)支撑臂的压曲 (9)支撑臂的拉伸强度

(10)安装螺栓的强度

基础稳定性计算 1、风压载荷的计算 2、作用于基础的反作用力的计算 3、基础稳定性计算 当受到强风时,对于构造物基础要考虑以下问题: ①受横向风的影响,基础滑动或者跌倒 ②地基下沉(垂直力超过垂直支撑力) ③基础本身被破坏 ④吹进电池板背面的风使构造物浮起 ⑤吹过电池板下侧的风产生旋涡,引起气压变化,使电池板向地面吸引 对于③?⑤须采用流体解析等方法才能详细研究。研究风向只考虑危险侧的逆风状态 以下所示为各种稳定条件: a.对滑动的稳定 平时:安全率Fs> 1.5 ;地震及暴风时:安全率Fs > 1.2 b.对跌倒的稳定 平时:合力作用位置在底盘的中央1/3以内时 地震及暴风时:合力作用位置在底盘的中央2/3以内时 c.对垂直支撑力的稳定

光伏电站支架系统的优化设计研究 桂晓刚

光伏电站支架系统的优化设计研究桂晓刚 发表时间:2019-05-17T16:06:31.043Z 来源:《电力设备》2018年第34期作者:桂晓刚 [导读] 摘要:光伏发电场设计的重要组成部分就是光伏支架结构设计,而其设计原则目前国内缺乏相应的规范依据。 (宁夏回族自治区电力设计院有限公司宁夏银川 750001) 摘要:光伏发电场设计的重要组成部分就是光伏支架结构设计,而其设计原则目前国内缺乏相应的规范依据。以现行其他规范为指导,参考国外其他规范的要求,建立了光伏支架结构计算的理论方法,并开发了相关的优化设计程序。通过数值模拟验证,该程序准确度较好且偏于安全。采用上述优化设计程序,对光伏组件的排布方式进行了经济性分析,并推荐了最优方案。 关键词:光伏电站;光伏支架;优化设计 1光伏行业现状 早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。这种现象后来被称为"光生伏特效应",简称"光伏效应"。1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。20世纪70年代后,随着现代工业的发展,全球能源危机和大气污染问题日益突出,传统的燃料能源正在一天天减少,对环境造成的危害日益突出,这个时候,全世界都把目光投向了可再生能源,希望可再生能源能够改变人类的能源结构,维持长远的可持续发展。太阳能以其独有的优势而成为人们重视的焦点。丰富的太阳辐射能是重要的能源,是取之不尽、用之不竭的、无污染、廉价、人类能够自由利用的能源。截至2011年底,中国共有电池企业约115家,总产能为36.5GW左右。其中产能1GW以上的企业共14家,占总产能的53%;在100MW和1GW之间的企业共63家,占总产能的43%;剩余的38家产能皆在100MW以内,仅占全国总产能的4%。规模、技术、成本的差异化竞争格局逐渐明晰。国内前十家组件生产商的出货量占到电池总产量的60%。中国太阳能光伏发电发展潜力巨大,配合积极稳定的政策扶持,到2030年光伏装机容量将达1亿千瓦,年发电量可达1300亿千瓦时,相当于少建30多个大型煤电厂。 2光伏支架概述 目前,光伏支架常用模式有固定倾角模式和跟踪模式。由于跟踪模式投资较大,占地面积是固定倾角模式的2倍左右,考虑到系统的可靠性、经济性和维护性,光伏电站普遍采用固定倾角模式。通过对甘肃地区多个光伏电站进行调研发现,固定倾角模式光伏支架主要存在以下问题:1)光伏支架设计复杂、连接部件多;2)钢材使用量大;3)施工安装工作量大;4)支架安装困难;5)对场平要求较高;6)组件角度不可调节。2光伏支架的选择光伏支架的设计原则是结构稳固、质量最小。查阅资料,镇江地区光伏支架系统的最佳倾角为30°,以此进行支架的抗风计算,合格的支架系统的砼支墩应不小于400mm×400mm×400mm,砼支墩横向间距(支架的跨度)小于等于2m。这样的支架系统恒载荷很大,会大幅减少建筑物的载荷安全余量,需要进一步优化,以提高建筑物的安全系数。减少支架系统砼支墩质量的最好办法是缩小支架的倾角,这样,组件背面风力的倾覆力矩会变小。 3新型支架方案 在对光伏支架做了大量研究的基础上,本文提出了一种可调节光伏支架方案,具体包括光伏组件与支架。其中,支架包括斜置框架、前支腿、后支腿、斜撑、前支架基础与后支架基础。后支腿包括上部后支腿与下部后支腿,上部后支腿的下部设有数个定位孔,下部后支腿上部设有数个连接孔,连接螺栓通过定位孔、连接孔将上部后支腿与下部后支腿相连接;下部后支腿底部埋置于后支架基础,前支腿底部埋置于前支架基础,上部后支腿上端与前支腿上端通过螺栓与斜置框架连接,光伏组件通过螺栓安装于斜置框架上面,斜撑一端与斜置框架连接,另一端经连接螺栓安装在后支腿。前支架基础与后支架基础为下部大、上部小的圆台形,形成倒圆锥体基础,增加了基础的抗拔力,可适应西北地区风大的恶劣环境条件。为便于安装及实现各连接部件角度及位移的变化,与上部后支腿连接部位的斜置框架上设有条形孔。主要部件的功能阐述:1)前支腿:对光伏组件起支撑作用,根据光伏组件最小离地间隙确定高度,工程实施中直接预埋于前支架基础中。2)后支腿:对光伏组件起支撑及调节倾角的作用,通过连接螺栓与不同的连接孔、定位孔相连接,实现后支腿高度的变化;下部后支腿预埋于后支架基础中,取消法兰盘、螺栓等连接材料的使用,大幅减少了工程投资及施工量。3)斜撑:对光伏组件起辅助支撑作用,增加了光伏支架的稳定性、刚度与强度。4)斜置框架:光伏组件的安装主体。5)连接件:前后支腿、斜撑、斜置框架均采用U型钢材,各部位之间的连接均采用螺栓直接固定,取消了常规的法兰盘、减少了螺栓使用量,减少了投资及施工量。斜置框架与后支腿上部分、斜撑与后支腿下部分的连接部位均采用条形孔。调节后支腿高度时,需将各连接部位的螺栓松动,即可实现后支腿、前支腿与斜置框架的连接角度变化;斜撑和斜置框架的位移增量通过条形孔实现。6)支架基础:采用钻孔混凝土浇筑式,实际工程中,钎杆变长有抖动现象,实际上是非钢体,所以浇筑混凝土形成倒圆锥体基础,增加了基础的抗拔力,能较好满足西北地区风大的恶劣环境条件。 4跟踪支架在光伏项目中的应用 光伏发电采用太阳能跟踪系统的发电量高于采用固定支架的发电量,同时光伏电池跟踪支架的不同,直接影响光伏发电的效率。针对分布式光伏项目的不同,选择与之相相适应的光伏电池跟踪支架,可大幅度提高光伏发电效率,综合度电成本比采用固定支架方案更低,同时还可缩短光伏项目的投资回收期。分布式光伏项目包括屋顶光伏、水上光伏、林光互补光伏电站和渔光互补光伏电站等。针对不同的光伏项目,光伏跟踪支架可依据以下影响因素加以选择。(1)占地面积。采用不同型式的跟踪支架,占地面积不同。固定支架的占地面积最小,其次分别为水平单轴支架和倾斜单轴支架,并且倾斜角度越大,相应的占地面积也越大。占地面积最大的为双轴跟踪支架。一般而言,单轴跟踪电站占地是固定支架电站的1.5倍,双轴跟踪电站是固定支架电站的2倍多。故对于租地成本有要求的分布式光伏项目,应考虑不同型式的跟踪支架所需的占地面积因素,可选择固定支架、水平单轴支架或者倾角较小的倾斜单轴支架等占地面积较小的支架类型,尽量不采用双轴支架或大倾角的倾斜单轴支架。(2)光伏发电量。采用不同型式的光伏跟踪支架,光伏发电量有一定的差异。以西北某省的分布式光伏电站实测数据为例,采用固定光伏支架在夏季时发电量较大,而在其他季节发电量较小;采用其他三种跟踪支架在春、秋、冬三个季节的发电量都比采用固定光伏支架时大,跟踪效果明显;采用双轴跟踪支架的发电量高于单轴支架,因为双轴跟踪支架跟踪了太阳入射角的变化,这种方式对发电量的提高最为显著。 结语 分布式光伏项目能大幅减少发电厂把电能传输给用户时的线路传输损耗,有益于社会能源健康发展。光伏支架的优化设计能够在充分利用太阳能资源的同时满足安全和经济投资需要。

光伏支架类型及常见问题

光伏支架类型及常见问题 光伏支架作为光伏电站重要的组成部分,它承载着光伏电站的发电主体。支架的选择直接影响着光伏组件的运行安全、破损率及建设投资,选择合适的光伏支架不但能降低工程造价,也会减少后期养护成本。 一、光伏支架类型 1、根据材料分类 根据光伏支架主要受力杆件所采用材料的不同,可将其分为铝合金支架、钢支架以及非金属支架,其中非金属支架使用较少,而铝合金支架和钢支架各有特点。

2、根据安装方式分类 二、固定式光伏支架介绍 光伏阵列不随太阳入射角变化而转动,以固定的方式接收太阳辐射。根据倾角设定情况可以分为:最佳倾角固定式、斜屋面固定式和倾角可调固定式。 1、最佳倾角固定式 先计算出当地最佳安装倾角,而后全部阵列采用该倾角固定安装,目前在平顶屋面电站和地面电站广泛使用。

1)平顶屋面-混凝土基础支架 平顶屋面混凝土基础支架是目前平屋面电站中最常用的安装形式,根据基础的形式可以分为条形基础和独立基础;支架支撑柱与基础的连接方式可以通过地脚螺栓连接或者直接将支撑柱嵌入混凝土基础。 平顶屋面条形混凝土基础支架 a.地脚螺栓连接 b. 直接嵌入基础 平顶屋面独立混凝土基础支架 平顶屋面混凝土基础支架安装方式优点为抗风能力好,可靠性强,不破坏屋面防水结构;缺点为需要先制作好混凝土基础,并养护到足够强度才能进行后续支架安装,施工周期较长。

2)平顶屋面-混凝土压载支架 混凝土压载支架施工方式简单,可在制作配重块时同时进行支架安装,节省施工时间,但其抗风能力相对较差,设计配重块重量时需要充分考虑到当地最大风力。 平顶屋面混凝土压载支架 3)地面电站-混凝土基础支架 地面电站混凝土基础支架多种多样,根据不用的项目地质情况,可选择对应的安装方式,以下主要介绍现浇钢筋混凝土基础、独立及条形混凝土基础、预制混凝土空心柱基础等几种最常见的混凝土基础安装形式。 现浇钢筋混凝土基础 根据基础形式不同,现浇钢筋混凝土基础可分为现浇混凝土桩和浇注锚杆。施工工艺都是先开孔,然后放入钢筋和混凝土,经养护凝固后与支架连接。其中现浇混凝土桩基础可以通过埋设地脚螺栓与支架支撑柱连接,可以直接将支撑柱嵌入混凝土,浇注锚杆基础不需成桩。现浇钢筋混凝土基础开挖土方量少,混凝土钢筋用量小,造价较低、施工速度快。但施工易受季节和天气等环境因素限制,施工要求高,一旦做好后无法再调节。 a.直接嵌入基础 b.地脚螺栓连接 c.浇注锚杆 现浇钢筋混凝土基础

屋顶光伏电站支架强度及屋面载荷计算

屋顶光伏电站支架强度及屋面载荷计算 1 工程概况 项目名称:江苏省*****中心小学49KW光伏屋顶 工程地址:江苏省*** 设计单位:上海能恩太阳能应用技术有限公司 建设单位:******有限公司 结构形式:屋面钢结构光伏支架 支架高度:0、3m 2 参考规范 《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2001(2006年版) 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板与钢带》GB/T3280—2007 3设计条件: 太阳能板规格:1650mm*990mm*50mm 混凝土屋顶太阳能板安装数量:200块 最大风速:27、5m/s 平坦开阔地域 太阳能板重量:20kg 安装条件:屋顶 计算标准:日本TRC 0006-1997 设计产品年限:20年 4型材强度计算 4、1 屋顶荷载得确定 (1)设计取值: ①假设为一般地方中最大得荷重,采用固定荷重G与暴风雨产生得风压荷重W 得短期复合荷重。 ②根据气象资料,扬中最大风速为27、5m/s,本计算最大风速设定为:30m/s。 ③对于混凝土屋面,采用最佳倾角安装得系统,需要考虑足够得配重,确保组件方阵得稳定可靠。 ④屋面高度20m。 4、2 结构材料: C型钢重量:1、8kg/m

截面面支架尺寸(mm) 41*41*2 安装角度 25° 材料镀锌 截面面积(A) 277 形心主轴到腹板边缘得距离 1、4516E+01 形心主轴到翼缘尖得距离 2、6484E+01 惯性矩 Ix 8、3731E+04 惯性矩 Iy 4、5694E+04 回转半径 ix 1、7386E+01 回转半径 iy 1、2844E+01 截面抵抗矩 Wx 4、0844E+03 截面抵抗矩 Wx 4、0844E+03 截面抵抗矩 Wy 3、1478E+03

光伏支架标准

光伏支架标准 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

太阳能光伏发电支架 1 范围 1.本标准规定了金属制太阳能光伏发电支架产品的型号、要求、试验方法、检验规则及标志、包装、运输、贮存。 2.本标准适用于金属制固定、单轴跟踪、双轴跟踪太阳能光伏发电支架。 2 引用标准 下列标准所包含的条文,通过在本标准引用而构成本标准的条文。本标准发布时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T700-2006碳素结构钢 GB/T6725-2008冷弯型钢 GB/T4171-2008耐候结构钢 GB/T1591-2008低合金高强度结构钢 GB3077-1988合金结构钢技术条件 GB/T13793-2008直缝电焊钢管 GB/T5117-1995碳钢焊条 GB/T5118-1995低合金钢焊条 GB/T983-1995不锈钢焊条 GB2101-2008型钢验收、包装、标志及质量证明书的一般要求 GB8162-1999结构用无缝钢管 GB50017-2003钢结构设计规范 GB/T715-1989标准件用碳素钢热轧圆钢

GB/T3632-2008钢结构用扭剪型高强度螺栓连接副 GB/T5780-2000六角头螺栓尺寸—C级 GB/T5781-2000六角头螺栓尺寸—全螺纹—C级 GB/T5782-2000六角头螺栓尺寸—A级和B级 GB/T5783-2000六角头螺栓尺寸—全螺纹—A级和B级 GB/T90.1-2002紧固件验收检查 GB/T90.2-2002紧固件标志与包装 GB/T3098.1-2000紧固件机械性能螺栓、螺钉和螺柱 GB/T15957-1995大气环境腐蚀性分类 GB/T19355-2003钢铁结构耐腐蚀防护锌和铝覆盖层指南 3定义、型号 3.1定义 下列定义适用于本标准 3.1.1 支架 用于支承光伏电池组件的系统。由金属材料制作的立柱、支撑、梁、轴、导轨以及附件等构成,为了跟踪太阳的轨迹还可能配有传动和控制部件。 3.1.2 固定支架 倾角和方位角不可调整的支架。 3.1.3 单轴跟踪支架

光伏支架分类

光伏支架分类 光伏支架作为光伏电站重要的组成部分,它承载着光伏电站的发电主体。支架的选择直接影响着光伏组件的运行安全、破损率及建设投资,选择合适的光伏支架不但能降低工程造价,也会减少后期养护成本。 一、光伏支架类型 1、根据材料分类 根据光伏支架主要受力杆件所采用材料的不同,可将其分为铝合金支架、钢支架以及非金属支架,其中非金属支架使用较少,而铝合金支架和钢支架各有特点。 2、根据安装方式分类 二、固定式光伏支架介绍 光伏阵列不随太阳入射角变化而转动,以固定的方式接收太阳辐射。根据倾角设定情况可以分为:最佳倾角固定式、斜屋面固定式和倾角可调固定式。 1、最佳倾角固定式 先计算出当地最佳安装倾角,而后全部阵列采用该倾角固定安装,目前在平顶屋面电站和地面电站广泛使用。

1)平顶屋面-混凝土基础支架 平顶屋面混凝土基础支架是目前平屋面电站中最常用的安装形式,根据基础的形式可以分为条形基础和独立基础;支架支撑柱与基础的连接方式可以通过地脚螺栓连接或者直接将支撑柱嵌入混凝土基础。 优点:抗风能力好,可靠性强,不破坏屋面防水结构。 缺点:需要先制作好混凝土基础,并养护到足够强度才能进行后续支架安装,施工周期较长。 2)平顶屋面-混凝土压载支架

优点:混凝土压载支架施工方式简单,可在制作配重块时同时进行支架安装,节省施工时间。 缺点:混凝土压载支架抗风能力相对较差,设计配重块重量时需要充分考虑到当地最大风力。 3)地面电站-混凝土基础支架 地面电站混凝土基础支架多种多样,根据不用的项目地质情况,可选择对应的安装方式,以下主要介绍现浇钢筋混凝土基础、独立及条形混凝土基础、预制混凝土空心柱基础等几种最常见的混凝土基础安装形式。 现浇钢筋混凝土基础 根据基础形式不同,现浇钢筋混凝土基础可分为现浇混凝土桩和浇注锚杆。

光伏支架技术要求

光伏支架技术要求 支架对于我们来说并不陌生,在生活的每个角落,只要你稍加注意,就会有支架的出现,下面南通正道就详细为你介绍一下光伏支架的几种常见形式。 (1)方阵支架采用固定支架,光伏阵列的最佳倾角为36°,共1429个支架, (2)光伏组件的支撑依据风荷载按照能够抵抗当地50年一遇最大风速进行设计,支架应按承载能力极限状态计算结构和构件的强度、稳定性以及连接强度。 (3)支架设计应考虑在安装组件后,组件最低端离地高度应满足光伏电站设计规范要求,在确保安全的前提下既经济合理,又方便施工。 (4)要充分考虑现场对光伏发电对支架距离地面最小距离的要求,具体数值要经招标人确认。 (5)钢材、钢筋、水泥、砂石料的材质应满足国家标准。 (6)光伏电池组件安装采用压块式固定在组件框架上,为防止腐蚀冷弯薄壁型钢,螺栓、螺母材质为Q235B热浸镀锌,厚度不小于65μm;与冷弯薄壁型钢相联接的所有螺栓也Q235B热浸镀锌;导槽与组件之间的连接螺栓直径为不小于M8。热浸镀锌满足《金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法》GB/T13912-2002中规定,防腐寿命不低于25年,并提供抗腐蚀性测试报告。 (7)光伏组件光伏支架承受的基本风压应不小于0.4kN/m2。 (8)支架冷弯薄壁型钢檩条满足最大变形量不超过L/200,构件的允许应力比不大于0.9。 (9)钢支撑结构系统的变形量应满足《光伏发电站设计规范》 (GB50797-2012)、“钢结构设计规范(GB50017-2003)”和“钢结构工程施工质量验收规范(GB50205-2001)”。 (10)支架系统抗震等级等应满足《光伏发电站设计规范》(GB50797-2012)以及《建筑抗震设计规范》(GB50011-2012)的要求。 (11)支架与支架基础之间采用螺栓连接形式或预埋件焊接形式,安装完成后的防腐处理由投标人负责,连接螺栓的大小由投标人负责设计。 (12)支架应预留汇流箱安装支撑件,汇流箱规格待定(汇流箱不在供货范

光伏支架基础

中广核哈密光伏并网发电站三期30MWp项目光伏支架基础施工方案 编写: 审核: 批准: 长沙市建设工程集团有限公司 日期:2013年8月

目录 1.适用范围 2.编制依据 3.工程概况及主要工程量 4.作业人员的资格和要求 5.主要机械及工器具 6.施工准备 7.作业程序 8.作业方法、工艺要求及质量标准 9.工序交接及成品保护 10.危险源辨识及防护措施 11.安全和文明施工措施 12.环境管理

1.适用范围 本方案适用于中广核哈密并网光伏发电站三期30MWp项目支架基础施工。 2.编制依据 2.1《30MWp区水平面投影布置图》HMG 3.S-ZT-02 2.2《电池组件支架基础平面布置图》HMG 3.S-JG.zj-2 2.3《电力建设安全健康与环境管理工作规定》2002年版 2.4《电力建设安全工作规程》(火力发电厂部分)DL5009.1-2002 2.5《建筑地基基础工程施工质量验收规范》GB50202-2002 2.6《混凝土结构工程施工质量验收规范》GB50204-2002 2.7《钢筋焊接及验收规程》JGJ 18-2003 2.8工程建设标准强制性条文(房屋建筑部分)建标【2002】219号 2.9合同文件 3.工程概况及主要工程量 3.1工程概况 本工程为中广核哈密并网光伏三期30MWp发电工程,设计共30个方阵,其中1区-10区相邻阵列(东西向)间距0.5m,高差东西向不大于125mm,11区-30区相邻阵列(东西向)间距1.0m,高差(东西向)不大于250mm,道路两侧处阵列高差(东西向)高差均不大于1000mm。单个支架东西向坡度倾斜应控制在1%以内。按照水土保持要求,光伏场地不得大面积平整,局部沟壑及土包根据现场情况的需要进行削平补齐,场区高程根据现场实际情况确定。支架条形基础为 2600*400*400mm的长方体钢筋混凝土结构,受力筋为4根HPB235φ10圆钢,并用HPB235φ6圆钢间距300mm进行绑扎固定,混凝土采用哈密西部建设有限责任公司供给的商品混凝土,强度等级:C35。混凝土四周表面均做防腐处理,回填后露出地面150mm。每一子阵共8个条基,每一区共912个条基,30区共27360个条基。 3.2主要工程量(概量) 4.1参加作业人员的资格要求:

光伏系统支架的设计方案

新能源科学与工程学院 光伏系统设计与施工 课程设计 学院:新能源科学与工程学院 专业班级: 学生姓名:名字就不告诉你们了 学号: 指导教师: 实施时间:2013.11.18—2013.11.22 项目课程成绩:

课程设计是《光伏系统设计与施工》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。在整个教学计划中,它也起着培养学生独立工作能力的重要作用。 课程设计不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出设计和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。所以,课程设计是培养学生独立工作能力的有益实践。 通过课程设计,学生应该注重以下几个能力的训练和培养: 1. 查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力; 2. 树立既考虑技术上的先进性又考虑经济上的合理性正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力; 3. 用简洁的文字或清晰的图表来表达自己设计思想的能力; 4.综合运用了以前所学的各门课程的知识(高数、CAD制图、机械制图、计算机等等)使相关学科的知识有机地联系起来; 5.运用太阳能光伏发电系统设计与施工中的知识解决工程中的实际问题。 二、课程设计日程安排: 实施时间实习内容安排地点 2013年11月18日讲解任务、设计原理及要求主附西多媒体5 2013年11月19日学生选定实验室电池组件对其长度及质 量进行测量,讲解参观学习实验室屋顶 及学习地面电站支架,对关键部位的连 接进行深入观测。 主A210教室 2013年11月20日针对新余地区的光伏并网电站,对给定 的电池组件进行荷载计算,包括风压荷 载计算,下载相关支架图片手绘制图纸 主A210教室 2013年11月21日出具图纸(用CAD制图),打印报告, 请指导教师批阅并给出评语 主A210教室 2013年11月22日提交设计书、答辩报告书、分组交叉答 辩 主A210教室

光伏支架基础桩基施工方案

第一章编制依据 1.1本工程有关设计参考图纸 1.2本工程地质勘察报告 1.3甲方提供的标高基准点 1.4《地基与基础工程施工及验收规范》(GB502002) 1.5《建筑工程质量检验评定标准》GB/T50221-1995; 1.6《建筑地基基础工程施工质量验收规范》GB50202-2002; 1.7《建筑地基基础设计规范》DB33/1001-2003; 1.8《混凝土结构工程施工质量验收规范》GB50204-2015。 第二章工程概况 2.1地理位置 南召县中机国能电力有限公司太山庙10MWp光伏电站工程位于河南省西南部,伏牛山南麓,南阳盆地北缘,东邻方城,南接南阳市卧龙区、镇平县,北靠鲁山、嵩县,属南阳市。场址中心位于东经112°38′、北纬33°21′,海拔高度197m~226m。东西长约95公里,南北宽约62公里,总面积2946平方公里。 2.2地形条件 南召县地势西北高,东南低,大体分为三个阶梯。秦岭山脉东延形成的伏牛山脉,绵亘于西北部、西南部和北部、东北部,大小群峰300余座。诸山呈弓形自西北向西南和北东北部蜿蜒展开,最高峰石人山海拔2153.1米。海拔在500米~2000米之间,为第一阶梯。中部丘陵起伏,有山地向平原过度,有西北向东南敞开,海拔在200米~500米之间,为第二阶梯。南部衔接南阳盆地,为平原地带,海拔在200米以下,为第三阶梯。全县地势整体轮廓略呈“箕”形。山地面积占34.4%,丘陵面积占62.5%,平原面积占3.1%。 2.3气象条件 南召县位于中国重要地理分界线“秦岭-淮河”线上,南北方交汇区,800毫米等降水线上,湿润带与半湿润带交汇处,属北亚热带季风型大陆性气候,具

光伏支架受力计算书..

支架结构受力计算书 设计:___ ___ _日期:___ 校对:_ 日期:___ 审核:__ _____日期:____ 常州市**实业有限公司

1 工程概况 项目名称: *****30MW 光伏并网发电项目 工程地址: 新疆 建设单位: **集团 结构高度: 电池板边缘离地不小于500mm 2 参考规范 《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2012 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板和钢带》GB/T3280—2007 《光伏发电站设计规范》 GB50797-2012 3 主要材料物理性能 3.1材料自重 铝材——————————————————————327/kN m 钢材————————————————————3/78.5kN m 3.2弹性模量 铝材————————————————————270000/N mm 钢材———————————————————2206000/N mm 3.3设计强度 铝合金 铝合金设计强度[单位:2/N mm ]

钢材 钢材设计强度[单位:2/N mm ] 不锈钢螺栓 不锈钢螺栓连接设计强度[单位:2/N mm ] 普通螺栓 普通螺栓连接设计强度[单位:2/N mm ] 角焊缝 容许拉/剪应力—————————————————2160/N mm 4 结构计算 4.1 光伏组件参数 晶硅组件: 自重PV G :0.196kN (20kg /块) 尺寸(长×宽×厚)992164400mm ?? 安装倾角:37°

太阳能光伏组件支架的设计选型

1.引言 目前,在全球能源供应紧张和环境问题日益严重的情况下,经济和社会的可持续发展受到了巨大挑战,发展和利用清洁而安全的可再生能源受到了广泛重视。虽然目前已经实现利用的可再生替代能源种类较多,但从可用总量上看,水能、风能、潮汐能都太小,不足以满足人类需求。太阳能作为一种资源丰富,分布广泛且可永久利用的可再生能源,具有极大的开发利用潜力。特别是进入21世纪,太阳能光伏发电产业发展非常迅速。太阳能光伏发电在不远的将来不仅要替代部分常规能源,而且将成为世界能源供应的主体,将给能源发展带来革命性的变化。根据欧洲联合委员会研究中心(JRC)的预测,到21世纪末,可再生能源在能源结构中将占到80%以上,其中太阳能发电占到60%以上,充分显示出其重要的战略地位。 太阳能光伏组件支架是固定太阳能电池板的重要部件,在获得太阳能电池板最大发电效率的前提下,保证支架的安全可靠性是光伏组件厂家需要考虑和研究。根据不同形式的太阳能光伏发电的需要,支架系统一般分为单立柱太阳能支架、双立柱太阳能支架、矩阵太阳能支架、屋顶太阳能支架、墙体太阳能支架、追踪系统系列支架等若干规格型号,同时按照不同的安装方式又分为地面安装系统、屋顶安装系统和建筑节能一体化支架安装系统。 2.光伏组件支架设计 2.1 光伏组件支架结构 目前商品化的太阳能光伏组件安装支架大多不可以调节角度,采用跟踪方式进行太阳能发电又浪费大量人力物力,投入产出比受到一定程度的局限。本文设计了一种可根据不同纬度地区而调节角度的光伏系统支架,(如图1所示)该支架系统可以根据需要调节水平角度,不但适应于地面光伏电站的使用,同时还可以在屋顶光伏电站使用,在安装过程中可以快速调整支架的安装角度,避免了常规光伏组件支架不能够迅速调整安装角度的缺点,同时该组件支架采用高碳钢结构,表面经过热镀锌材料,具有成本低,强度高,选材耐腐蚀强,可以

中国十大光伏支架企业

中国十大光伏支架企业 发布时间:2013-11-14 新闻来源:一览光伏英才网 光伏支架是固定太阳能电池板的重要部件,在获得太阳能电池板最大发电效率的前提下,保证支架的安全可靠性是光伏组件厂家需要考虑和研究的重要问题。 根据不同形式的太阳能光伏发电的需要,支架系统一般分为单立柱太阳能支架、双立柱太阳能支架、矩阵太阳能支架、屋顶太阳能支架、墙体太阳能支架、追踪系统系列支架等若干规格型号,同时按照不同的安装方式又分为地面安装系统、屋顶安装系统和建筑节能一体化支架安装系统。北极星太阳能光伏网编辑按照已知销售商数量(非静态指标)列出了国内前十名光伏支架制造商,仅供参考。 1、厦门格瑞士太阳能科技有限公司 厦门格瑞士太阳能科技有限公司是一家提供领先技术和高效服务的光伏行业高科技企业,专业从事太阳能光伏领域产品的研发、生产、销售及服务,致力于为客户提供最稳定可靠和经济高效的太阳能光伏系统解决方案。自成立至今,引领全球光伏市场的格瑞士太阳能产品,已销往全球100多个国家和地区的客户,是目前国内最大的太阳能光伏产品出口企业之一。 格瑞士太阳能在成立之初,就提出规范化、国际化的高起点管理理念,积极引进多项国际性管理体系,如ISO9001:2008、APQP、FMEA、控制计划、MSA、SPC等并在研发、生产、销售、服务等多项环节严格参照其管理标准执行。 格瑞士太阳能亦非常注重对知识产权的保护和权威机构的指导,在太阳能光伏领域已拥有多项专利证书和软件著作权,并成功通过UL、TUV、CE、CQC、SAA、AS/NZS1170、金太阳等多项国际和国内权威认证。 2、杭州帷盛太阳能科技有限公司 帷盛太阳能成立于2009年,是中国最早专注于太阳能安装系统的高科技公司,总部位于杭州滨江国家高新技术产业开发区,目前公司拥有300名员工,其中60位以上研发工程师。工厂占地面积15000平方米,产能1200兆瓦,同时占地60亩,总面积为6万平方米的产业基地正在规划建设中,预计2012年建成后年产量可达2500兆瓦。 帷盛太阳能已被列入国家高新技术企业,杭州市高新技术企业,是国内销售规模最大,产品线最齐全,研发最强的太阳能支架与安装系统供应商。2011年总投资额超亿元以上,全面进军太阳能光伏电站行业。目前为公司致力于为客户提供最可靠,经济,安全,快捷与完善的光伏电站建设解决方案,包括项目咨询、产品设计、工程计算、生产,物流管理、项目管理、现场施工安装及电站后期维护。帷盛太阳能一直以来都十分重视产品创新,保持与国

光伏电站方阵基础与支架设计

光伏电站方阵基础与支架设计 发表时间:2014-12-05T16:33:10.437Z 来源:《工程管理前沿》2014年第11期供稿作者:李玉润 [导读] 光伏电站方阵基础最佳倾角计算太阳能总辐射量包括直接辐射及散射辐射两个部分。 李玉润(甘肃省电力设计院 730050)摘要:在光伏电站设计的过程中,光伏组件方阵的安装形式会对光伏电站的整体发电效能产生极大的影响。太阳能发电安装的基础支架形式较多,大多数光伏电站采用固定式光伏支架系统,其具有成本低、后期维护量少等特点,本文对光伏电站固定式光伏支架系统的设计进行了分析。 关键词:光伏电站;方阵基础;支架 太阳能光伏发电是一种直接将太阳能转换成电能的发电形式。在光照条件下,太阳能电池组件会产生一定的电动势,通过组件的串并联形成太阳能电池方阵系统,从而使整个方阵的电压能够达到系统输入的电压要求。通过光伏逆变器将直流电转换成交流电升压后传输到公共电网中。目前光伏电站方阵基础的形式设计主要依据《建筑地基基础设计规范》进行,在设计过程中,需要充分考虑方阵的角度、间距等方面的设置,从而保证光伏电站发电效能的最大化。 1 光伏电站方阵基础最佳倾角计算太阳能总辐射量包括直接辐射及散射辐射两个部分。[1]太阳能电池组件表面通常能够接收到直接辐射、散射辐射以及地面反射的部分太阳能。根据光伏电站的地理位置以及当地气象资料水平面太阳辐射每月总量,可以计算出每月日出水平面太阳能的辐射量,具体按照下面公式进行计算。 针对太阳辐照较为丰富的地区,可以对光伏阵列的间距进行适当的增加,而对于太阳辐照强度较弱地区,可以适当的降低光伏阵列的间距,这样可以充分提高土地的利用率,提高单位面积内太阳能电池板的数量,时太阳辐照被电池板全面吸收。 另外,对于大型的光伏电站,光伏阵列的南北间距通常存在一定的限制,因此,在每天早上和傍晚,太阳的高度角极小的情况下,阵列之间必然会产生一定的遮挡,这会直接影响光伏电站的发电量。因此,需要充分考虑电池板阵列的排布方式,根据相关的实验研究结果,在这种条件下,应尽量采用横向的排布方式,可以有效减少电池板相互之间的遮挡所造成的发电量损失。 3 结论在光伏电站中,太阳能电池板方阵基础的设计会直接影响电站的总体发电水平。因此,在进行方阵基础的设计过程汇总,需要结合地区的实际太阳辐照情况对太阳能电池板阵列的间距进行合理设计,保证太阳能辐照的全面吸收,并充分提高土地的利用效率,全面提高光伏电站的发电水平。 参考文献:[1]常泽辉,田瑞.固定式太阳电池方阵最佳倾角的实验研究[J].源技术,2007(4):412-314.[2]邱国全,夏艳军,杨鸿毅.天太阳辐射模型的优化计算[J].阳能学报,2001(4):456-60.

光伏支架结构优化设计研究 陈伯雄

光伏支架结构优化设计研究陈伯雄 摘要:随着电力能源需求量的增加,发电工程建设数量也越来越多,光伏发电 是很重要的一种形式之一。光伏发电项目的支架结构每MW的用钢量一直是影响 工程造价最直接的因素之一,对支架结构的优化设计越来越成为光伏发电项目的 设计重点,本文在一种柔性光伏支架结构的基础上提出优化方案,并通过结构计 算及受力分析,最终得到了最优方案。 关键词:光伏支架;结构优化;设计 引言 太阳能作为无污染的绿色资源,发展前景非常广阔,已经成为各国竞相开发 的绿色资源。传统的固定式支架由于对太阳光的利用率低,造成了巨大的资源浪费,将给开发商带来较大的压力,开发商的效益近年下滑,影响了光伏产业的发 展速度。 1光伏发电单元组成 光伏发电系统主要分为独立光伏发电、分布式光伏发电、并网光伏发电。目 前我们最常见的就是分布式光伏发电、并网光伏发电项目。光伏发电主要设备主 要由太阳能电池组件、逆变器、汇交箱、光伏支架等组成。其中对于基建部分钢 结构专业主要任务是光伏支架的设计、施工。 2光伏支架结构优化设计 2.1结构参数 模型结构跨度为71.30m,柱高为2.95m,边跨柱距为3.95m,中跨分别 为4.25,4.10m;承重索采用直径20mm的镀锌钢绞线,其强度为1670MPa;钢梁采用尺寸为300mm×10mm的方钢管,材质为Q235-b;钢梁下方钢柱采用 尺寸为250mm×10mm的方钢管,材质为Q235-b;柱顶采用加劲肋进行局部加强,结构的荷载考虑了结构的自重,并由程序自动计算,承重索张拉力为88KN。有限元计算模型中,承重索采用桁架单元进行模拟,并通过施加初张力模拟承重 索的张拉力,计算模型中,考虑了几何非线性。在自重作用下,承重索的张拉力 确实不是水平作用,由于存在垂度,柱顶承重索的拉力与水平线有一定的角度。 实际光伏支架结构承重索张拉之后,垂度较小,索与水平线的夹角很小,因此, 文中忽略该夹角对计算结果的影响,根据模型计算结果进行分析,从而得出不同 结构形式及承载水平力的构件与地面倾角变化对水平力承载构件受力情况的影响 规律,以达到对结构最优选型。 2.2斜拉索倾斜度变化对斜拉索内力的影响 斜拉索截面直径为45mm,在其他条件不变的情况下,通过调整斜拉索与地 面的倾角,分析结构受力的变化,如图1所示。图1中:F为水平力承载构件内力。由图1(a)可知:随着斜拉索倾角的增大,斜拉索内力逐渐增大;当倾角θ 为20°~40°时,斜拉索内力随着倾角的增大而逐渐增大,增大的幅值不到1.0%,变化数值较小;当θ>40°时,倾角越大,斜拉索内力增加明显,每增大5°,内力 增量越大,已超过1.0%。由于考虑了承重索张拉施工顺序的影响,后张拉索力 会对已张拉承重索的索力产生影响,使承重索的预张力发生损失.当斜拉索与水 平向倾角较小时,随着倾角的减小,斜拉索长度变长,斜拉索的总伸长量增加, 柱顶的侧向变形增大,导致承重索的预应力损失增大,所以承重索的水平力减小,故而斜拉索的水平分力随着倾角减小而减小;当斜拉索与水平向倾角增大到一定 程度时,随着倾角的增加,钢立柱和斜拉索的抗侧刚度减小,柱顶侧向位移增大,

(公建屋面)光伏支架计算书

海南恒大海花岛影视基地光伏项目 2#、3#楼 (整体) 计算书 审核: 校核: 编写: 2017年1月22日

目录 1 设计依据 (1) 1.1作用荷载计算过程 (1) 2 计算简图 (2) 3 荷载与组合 (2) 3.1 节点荷载 (3) 3.2 单元荷载 (3) 3.3 其它荷载 (6) 3.4 荷载组合 (7) 4 内力位移计算结果 (7) 4.1 内力 (7) 4.1.1 内力包络及统计 (7) 4.2 位移 (18) 4.2.1 组合位移 (18) 5 设计验算结果 (23) 5.1 设计验算结果图及统计表 (24) 附录 (27) 6.连接螺栓计算 (28) 6.1主梁与横向次梁的连接 (28) 6.2横向次梁与纵向次梁的连接(纵向次梁端) (31) 6.3横向次梁与纵向次梁的连接(横向次梁端) (32) 6.4横向次梁与纵向次梁的连接(连接过渡用钢板) (34) 6.5拉条与横向次梁的连接(横向次梁端) (35)

1 设计依据 《钢结构设计规范》 (GB50017-2003) 《冷弯薄壁型钢结构技术规范》 (GB50018-2002) 《建筑结构荷载规范》 (GB50009-2012) 《建筑抗震设计规范》 (GB50011-2010) 《建筑地基基础设计规范》 (GB50007-2011) 《钢结构焊接规范》 (GB50661-2011) 《钢结构高强度螺栓连接技术规程》 (JGJ82-2011) 1.1作用荷载计算过程 一、与光伏板直接连接横梁所受荷载 1、永久荷载标准值(对水平投影面): 光伏板 2252 0.12630.99100 k g kN m = ≈? 2、可变荷载标准值 (1) 活荷和雪荷载 不考虑。 (2)风荷载 根据招标文件要求,光伏板所受风荷载按围护结构计算, 基本风压按50年一遇(0.80kN/m 2)考虑, 外部局部体型系数按1 2.0s μ=-外考虑。 根据《荷规》8.2.1,地面粗糙度类别为A 类,高度按26.6米考虑 查表8.2.1 ()26.620 1.67 1.52 1.52 1.6193020 z μ-= ?-+≈- 8.3.4 光伏板横梁A=0.87x0.93=0.81m 2<1.0m 2,故1s μ外不折减 8.3.5 开放式,11 2.0s s μμ==-外 查表8.6.1 ()26.620 1.53 1.55 1.55 1.5373020 gz β-= ?-+≈-

相关主题
文本预览
相关文档 最新文档