当前位置:文档之家› 专题训练 二次根式化简求值有技巧

专题训练 二次根式化简求值有技巧

专题训练   二次根式化简求值有技巧
专题训练   二次根式化简求值有技巧

专题训练(一) 二次根式化简求值有技巧(含答案)

? 类型之一 利用二次根式的性质a 2

=|a|化简 对于a 2的化简,不要盲目地写成a ,而应先写成绝对值的形式,即|a|,然后再根据a 的符号进行化简.即a 2=|a|=?????a (a >0),0(a =0),-a (a <0).

1.已知a =2-3,则a 2-2a +1=( )

A .1- 3 -1 C .3- 3 -3

2.当a <12且a≠0时,化简:4a 2-4a +12a 2-a

=________. 3.当a <-8时,化简:|(a +4)2-4|.

4.已知三角形的两边长分别为3和5,第三边长为c ,化简:c 2-4c +4-14

c 2-4c +16.

? 类型之二 逆用二次根式乘除法法则化简

5.当ab <0时,化简a 2b 的结果是( )

A .-a b

B .a -b

C .-a -b

D .a b

6.化简:(1)(-5)2×(-3)2; (2)(-16)×(-49);

(3)错误!; (4)错误!; (5)错误!.

? 类型之三 利用隐含条件求值

7.已知实数a 满足(2016-a )2+a -2017=a ,求a -12016

的值.

8.已知x +y =-10,xy =8,求

x y +y x 的值.

? 类型之四 巧用乘法公式化简

9.计算:(1)(-4-15)(4-15); (2)(26+32)(32-26);

(3)(23+6)(2-2); (4)(15+4)2016(15-4)2017.

? 类型之五 巧用整体思想进行计算

10.已知x =5-26,则x 2-10x +1的值为( )

A .-30 6

B .-186-2

C .0

D .106

11.已知x =12(11+7),y =12(11-7),求x 2

-xy +y 2的值.

12.已知x >y 且x +y =6,xy =4,求x +y

x -y 的值.

? 类型之六 巧用倒数法比较大小

13.设a =3-2,b =2-3,c =5-2,则a ,b ,c 的大小关系是(

) A .a >b >c B .a >c >b

C .c >b >a

D .b >c >a _

详解详析

1.[解析] B a 2-2a +1=|a -1|.

因为a -1=(2-3)-1=1-3<0,

所以|a -1|=-(1-3)=3-1.

故选B .

2.[答案] -1a

[解析] 原式=(2a -1)2a (2a -1)=|2a -1|a (2a -1)

. 当a <12

时,2a -1<0,所以|2a -1|=1-2a. 所以原式=1-2a a (2a -1)=-1a

. 3.解:当a <-8时,a +4<-4<0,a +8<0,

∴|a +4|=-(a +4),|a +8|=-(a +8).

∴原式=|-(a +4)-4|=|-a -8|=|a +8|=-(a +8)=-a -8.

4.[解析] 由三角形三边关系定理可得2<c <8,将这两个二次根式的被开方数分解因式,就可以利用二次根式的性质化简了.

解:由三角形三边关系定理,得2<c <8.

∴原式=(c -2)2-(12c -4)2=c -2-(4-12c)=32

c -6. 5.[解析] A 由ab <0,可知a ,b 异号且a≠0,b ≠0.又因为a 2≥0,且a 2b ≥0,所以

a <0,b>0.

所以原式=-a b.

[点评] 逆用二次根式的乘除法法则进行化简时,关键是注意法则成立的条件,还要注意二次根式的总体性质符号,即化简前后符号要一致.

6.解:(1)原式=(-5)2×(-3)2=5×3=15.

(2)原式=16×49=16×49=4×7=28.

(3)原式=错误!×错误!·错误!=·错误!=错误! 错误!.

(4)原式=259=259=53

. (5)原式=

9a 34=3a 2 a. 7.解:依题意可知a -2017≥0,即a≥2017.

所以原条件转化为a -2016+a -2017=a ,

即a -2017=2016.

所以a =20162+2017.

所以a -12016=20162

+20162016

=2017. [点评] 解决此题的关键是从已知条件中挖掘出隐含条件“a-2017≥0”,这样才能对(2016-a )2进行化简,从而求出a 的值.

8.解:依题意可知x <0,y <0. 所以原式=x 2xy +y 2

xy =-x xy +-y xy =-(x +y )xy . 因为x +y =-10,xy =8,

所以原式=-(-10)8

=522. [点评] 解决此题的关键是从已知条件中分析出x ,y 的正负性,这样才能对要求的式子

进行化简和求值.如果盲目地化简代入,那么将会得出-522

这个错误结果. 解答此题还有一个技巧,那就是对x y +y x

进行变形时,不要按常规化去分母中的根号,而是要根据已知条件的特点对它进行“通分”.

9.解:(1)原式=(-15)2-42

=15-16=-1.

(2)原式=(32)2-(26)2=18-24=-6. (3)原式=3(2+2)(2-2)=3(4-2)=2 3.

(4)原式=(15+4)2016(15-4)2016(15-4)=[(15+4)(15-4)]2016(15-4)

=15-4.

[点评] 利用乘法公式化简时,要善于发现公式,通过符号变形、位置变形、公因式变形、结合变形(添括号)、指数变形等,变出乘法公式,就可以利用公式进行化简与计算,事半功倍.

10.[解析] C 原式=(x -5)2-24.

当x =5-26时,x -5=-26,

∴原式=(-26)2-24=24-24=0.

故选C .

[点评] 解答此题时,先对要求的代数式进行配方,然后视x -5为一个整体代入求值,这比直接代入x 的值进行计算要简单得多.

11.解:因为x +y =11,xy =14

[(11)2-(7)2]=1, 所以x 2-xy +y 2=(x +y)2-3xy =(11)2-3=8.

[点评] 这类问题通常视x +y ,xy 为整体,而不是直接代入x ,y 的值进行计算.

12.解:因为(x -y)2=(x +y)2-4xy =20,且x >y ,

所以x -y =20=25,

所以原式=(x +y )2(x )2-(y )2=x +y +2xy x -y =6+425= 5. [点评] 此题需先整体求出x -y 的值,然后再整体代入变形后的代数式计算.

13.[解析] A 因为(3-2)(3+2)=1,所以a =3-2=13+2

.同理,b =12+3,c =15+2.当分子相同时,分母大的分式的值反而小,所以a >b >c.故选A .

[点评] 这里(3-2)(3+2)=1,即3-2与3+2互为倒数.因此,比较大小时,

可把3-2转化为

1

3+2

,从而转化为分母大小的比较

初中奥数讲义_二次根式的化简求值附答案

1 二次根式的化简求值 用运算符号把数或表示数的字母连结而成的式子,叫做代数式,有理式和无理式统称代数式,整式和分式统称有理式. 有条件的二次根式的化简求值问题是代数式的化简求值的重点与难点.这类问题包容了有理式的众多知识,又涉及最简根式、同类根式、有理化等二次根式的重要概念,同时联系着整体代入、分解变形、构造关系式等重要的技巧与方法,解题的关键是,有时需把已知条件化简,或把已知条件变形,有时需把待求式化简或变形,有时需把已知条件和待求式同时变形. 例题求解 【例l 】已知21 =+x x ,那么191322++-++x x x x x x 的值等于 . (河北省初中数学创新与知识应用竞赛题) 思路点拨 通过平方或分式性质,把已知条件和待求式的被开方数都用x x 1+的代数式表示. 【例2】 满足等式2003200320032003=+--+xy y x x y y x 的正整数对(x ,y)的个数是( ) A .1 B .2 C . 3 D . 4 (全国初中数学联赛题) 思路点拨 对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解. 【例3】已知a 、b 是实数,且1)1)(1(22=++++b b a a ,问a 、b 之间有怎样的关系?请推导. (第20届俄罗斯数学奥林匹克竞赛题改编) 思路点拨 由特殊探求一般,在证明一般性的过程中,由因导果,从化简条件等式入手,而化简的基本方法是有理化. 【例4】 已知:a a x 1 += (0ad ,有一个三角形的三边长分别为22c a +,22d b +,22)()(c d a b -+-,求此三角形的面积; ( “五羊杯”竞赛题)

二次根式的计算与化简练习题(提高篇)

二次根式的计算与化简练习题(提高篇) 1、已知m 2、化简(1(2)x x x x x 50 2232212 3-+ (30)a > 3、当2x =2(7(2x ++

4、先化简,再求值:221,39 a b ==。 6、已知1a =222214164821442 a a a a a a a a a --+++÷-+-+-,再求值。 7、已知:3 21 +=a ,321 -=b ,求b a b a 222 2+-的值。 9、已知30≤≤x ,化简9622+-+x x x

10、已知2a =-a a a a a a a a 11212122 2- -+---+- 11、①已知2222x y x xy y ==++求:的值。 ②已知12+=x ,求1 12 --+x x x 的值. ③)57(9 64222x x y x y +-+ ④3)2733(3 a a a ÷ -

12、计算及化简: ⑴. 22 - ⑵ ⑷ 13、已知:11a a +=221 a a +的值。 14、已知()1 1039 32 2++=+-+-y x x x y x ,求 的值。

二次根式提高测试 一、判断题:(每小题1分,共5分) 1. ab 2 )2(-=-2ab .…………………( ) 2.3-2的倒数是3+2.( ) 3.2)1(-x =2 )1(-x .…( ) 4.ab 、3 1b a 3、b a x 2- 是同类二次根式.…( ) 5.x 8,31 ,2 9x +都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分) 6.当x__________时,式子31 -x 有意义. 7.化简-8 15 27102 ÷31225 a =_. 8.a - 12-a 的有理化因式是____________. 9.当1<x <4时,|x -4|+122 +-x x =________________. 10.方程2(x -1)=x +1的解是____________. 11.已知a 、b 、c 为正数,d 为负数,化简 222 2d c ab d c ab +-=______. 12.比较大小:-721_________-341 . 13.化简:(7-52)2000·(-7-52)2001=______________. 14.若1+x + 3-y =0,则(x -1)2+(y +3)2=____________. 15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y2=____________. 三、选择题:(每小题3分,共15分) 16.已知2 33x x +=-x 3+x ,则………………( ) (A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0 17.若x <y <0,则222y xy x +-+2 22y xy x ++=………………………( )

初中常见二次根式化简求值的九种技巧

常见二次根式化简求值的九种技巧 1.估值法 例题1:估计184 132+?的运算结果应在( ) A . 5到6之间 B. 6到7之间 C. 7到8之间 D. 8到9之间 例题2:若将三个数3-,7,11表示在数轴上,则其中被如图所示的墨汁覆盖的数是 。 2.公式法 例题3:计算)3225()65(-?+ 3.拆项法 例题4:计算 )23)(36(23346++++ 提示:)23(3)36(23346+++=++ 4.换元法 例题5:已知12+= n ,求:424242422222-++--++--+-++n n n n n n n n 的值。 5.整体代入法 例题6:已知2 231-= x ,2231+=y ,求4-+x y y x 的值。

6.因式分解法 例题7:计算 15106232++++ 例题8:计算 y xy x x y y x +++2 (y x ≠) 7.配方法 例题9:若a, b 为实数,153553+-+-= a a b ,试求22-+-++b a a b b a a b 的值。 8.辅元法 例题10:已知3:2:1::=z y x (0>x ,0>y ,0>z ) 求 y x z x y x 2++++的值。 9.先判后算法 例题11:已知8-=+b a ,8=ab ,化简b a a a b b +并求值。 巧用被开方数非负性解决代数式化简求值问题

例题:设等式y a a x a y a a x a ---=-+-)()(成立,且x ,y ,a 互不相等, 求222 23y xy x y xy x +--+的值 友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!

二次根式的化简与计算

二次根式的化简与计算 【知识要点】 1.一般地,式子()0≥a a 叫做二次根式,这里的a 可以是数,也可以是代数式,它们都必须是非负数(即不小于0),a 的结果也是非负数. 2.二次根式的性质 (1) () ()02 ≥=a a a (2)()()()?? ? ??<-=>==000 02a a a a a a a (3)()0,0≥≥?=? b a b a b a (4) ()0,0>≥=b a b a b a 3.运算法则: (1)乘法运算:()0,0≥≥=?b a ab b a (2)除法运算: ()0,0>≥= b a b a b a 4.最简的二次根式: (1)被开方数因数是整数,因式是整式. (2)被开方数中不含有能开得尽方的因式或因数. 5.分母有理化 定义:把分母中的根号化去,叫做分母有理化. 方法:①单项 a =来确定. ②两项二次根式:利用平方差公式()()22b a b a b a -=-+来确定. 如 : a 与a - 【经典例题】 例1.判断下列各式,是否是二次根式: ,12,4,,4,27,824233 +--a a a 2,21122 +?? ? ?? < -a a a

例2.计算下列各题: (1) () 2 7 (2)2 43??? ? ?? (3)() 2 23 (4)2 55??? ? ?? (5 (6 例4.把下列各式分母有理化 (1)12 1 (2) 2 33 (3) 12121 (4)50 3 51- 例5.化简 (1)121699?? (2)637? (3)221026- (4) ()()2512-?- 例6.计算 (1)??? ? ??-?32335 (2) ??? ? ??-?56215 (3)??? ? ??-?614123 (4)5433 1 12785??? -

二次根式的化简求值(习题)

二次根式的化简求值 【例题求解】 例1 已知21=+ x x ,那么191322++-++x x x x x x 的值等于__________. 例2 满足等式2003200320032003=+--+xy y x xy y x 的正整数对),(y x 的个数是( ). A .1 B .2 C .3 D .4 例 3 已知b a 、是实数,且1)1)(1(22=++++b b a a ,问b a ,之间有怎样的关系?请推导. 例4 有这样一道题,计算222224 444 x x x x x x x x x -++--+---+的值,其中1005=x ,某同学 把“1005=x ”错钞成“1050=x ”,但他的计算结果是正确的.清你回答这是怎么回事?试说明理由. 例5 (1)设d c b a 、、、为正实数,ad bc d c b a <<<,,,有一个三角形的三边长分别为222222)()(,,c d a b d b c a -+-++,求此三角形的面积; (2)已知b a 、均为正数,且14,222+++= =+b a U b a 求的最小值. 【学力训练】 基础夯实 1. 已知__________________141402 2=??? ? ?-+-??? ??+-

4. 已知a 是34-的小数部分,那么代数式??? ? ?-????? ??++++-+a a a a a a a a a 42442222的值为________________. 5. 若y x ,为有理数,且xy y x x 则,42112=+-+-的值为( ). A .0 B . 2 1 C . 2 D .不能确定 6. 已知实数a 满足22000,20012000-=-+-a a a a 那么的值是( ). A .1999 B .2000 C .2001 D .2002 7. 设c b a c b a 、、,则10002,9991001,9971003=+=+=之间的大小关系 是( ). A .c b a << B .a b c << C .b a c << D .b c a << 8. 若a a x -= 1,则24x x +的值为( ). A .a a 1- B .a a -1 C .a a 1+ D .不能确定 9.有一道题:“先化简,再求值:4 1442222-÷??? ??-++-x x x x x ,其中3-=x .”小玲做题时把“3-=x ”错钞成了“3= x ”,但她的计算结果是正确的,请你解释这是怎么回事. 10.已知x x x x x x +++-+=--4 141,) 1(1222化简. 能力拓展 11.已知_______________________2 14121,312=---+++=x x x x 那么. 12.已知__________________________26,514=-=-++a a a 则. 13.代数式9)12(422+-++x x 的最小值为______________________________. 14.已知=+----=++++586643,2002)2002)(2002(2222y x y xy x y y x x 则 ______________. 15.如果3333333,,22002,22002c b a c b c b b a b a --=+-=-+= +那么的 值为( ). A .20022002 B .2001 C .1 D .0

专题01二次根式的化简与求值

专题01二次根式的化简与求值 阅读与思考 二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、 换元等技巧. 有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、 二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是: 1、 直接代入 直接将已知条件代入待化简求值的式子 ? 2、 变形代入 适当地变条件、适当地变结论,同时变条件与结论,再代入求值 数学思想: 数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式 与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学 就是在矛盾中产生,又在矛盾中发展 ? 想一想:若 x 二、n (其中x, y, n 都是正整数),则x,.. y,、、n 都是同类二次根式,为什么? 例题与求解 B 、一 1 (绍兴市竞赛试 题) 【例1】 1 「200 2 时 —y 时, 代数式 (4x 3 -2005x-2OO1 )2003 的值是( 22003 (1) 丄B_b 丄a, 、b ”a . b ab -b (黄冈市中考试题) (五城市联赛试题)

【例2】化简

⑶? 4.3 3 2_ (.?6 .3)(「3 J2) 3、厉-、10 -2.6 3.3-2 18 .5 2,3 1 (陕西省竞赛试题) 解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通 过分解、分析等方法寻找它们的联系,问题便迎刃而解 题的难度 【例3】 比?、、5)6大的最小整数是多少? (西安交大少年班入学试题) 解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设 想一想:设 X =.;;19-8;3,求 X _? x 字 18x 23 的值. x -7x +5x+15 形如:-A —「B 的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式 (北京市竞赛试题) x =6 5, y - , 6 - \ 5, (“祖冲之杯”邀请赛试题)

专题训练 二次根式化简求值有技巧(含答案)

专题训练(一) 二次根式化简求值有技巧(含答案) ? 类型之一 利用二次根式的性质a 2=|a|化简 对于a 2的化简,不要盲目地写成a ,而应先写成绝对值的形式,即|a|,然后再根据a 的符号进行化简.即a 2=|a|=?????a (a >0),0(a =0),-a (a <0). 1.已知a =2-3,则a 2-2a +1=( ) A .1-3 B .3-1 C .3-3 D .3-3 2.当a <12且a ≠0时,化简:4a 2-4a +12a 2-a =________. 3.当a <-8时,化简:|(a +4)2-4|. 4.已知三角形的两边长分别为3和5,第三边长为c ,化简:c 2-4c +4- 14c 2-4c +16. ? 类型之二 逆用二次根式乘除法法则化简 5.当ab <0时,化简a 2b 的结果是( ) A .-a b B .a -b C .-a -b D .a b 6.化简:(1)(-5)2×(-3)2; (2)(-16)×(-49); (3) 2.25a 2b ; (4) -25-9; (5)9a 34 . ? 类型之三 利用隐含条件求值 7.已知实数a 满足(2016-a )2+a -2017=a ,求a -12016 的值.

8.已知x +y =-10,xy =8,求x y +y x 的值. ? 类型之四 巧用乘法公式化简 9.计算:(1)(-4-15)(4-15); (2)(26+32)(32-26); (3)(23+6)(2-2); (4)(15+4)2016(15-4)2017. ? 类型之五 巧用整体思想进行计算 10.已知x =5-26,则x 2-10x +1的值为( ) A .-30 6 B .-186-2 C .0 D .10 6 11.已知x =12(11+7),y =12(11-7),求x 2-xy +y 2的值. 12.已知x >y 且x +y =6,xy =4,求x +y x -y 的值. ? 类型之六 巧用倒数法比较大小 13.设a =3-2,b =2-3,c =5-2,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .c >b >a D .b >c >a _

二次根式化简的方法与技巧

二次根式化简的方法与技巧 所谓转化:解数学题的常用策略。常言道:“兵无常势,水无常形。”我们在解千变万化的数学题时,常常思维受阻,怎么办?使用转化策略,换个角度思考,往往能够打破僵局,迅速找到解题的途径。二次根式也不例外,约分、合并是化简二次根式的两个重要手段,所以我们在化简二次根式时应想办法把题目转化为能够约分和和能够合并的同类根式。现举例说明一些常见二次根式的转化策略。 一、巧用公式法 例1计算b a b a b a b a b a +-+-+-2 分析:本例初看似乎很复杂,其实只要你掌握好了公式,问题就简单了,因为a 与b 成立,且分式也成立,故有a >0,b >0,()0≠-b a 而同时公式:()b a -2=a 2-2ab +b 2,a 2-2 b =()b a +()b a -,能够协助我们将b ab a +-2和b a -变形,所以我们应掌握好公式能够使一些问题从复杂到简单。 解:原式=()b a b a --2+()() b a b a b a +-+=()b a -+() b a -=2a -2b 二、适当配方法: 例2.计算:3216 3223-+--+ 分析:本题主要应该从已知式子入手发现特点,∵分母含有1+32-其分子必有含1+32-的因式,于是能够发现3+22=()221+,且() 21363+=+,通过因式分解,分子所含的1+32-的因式就出来了。

解:原式= ()()32163223-++-+=()()=-++-+3212132121+2 三、准确设元化简法: 例3:化简53262++ 分析:本例主要说明让数字根式转化成字母的代替数字化简法,通过化简替代,使其变为简单的运算,再使用有理数四则运算法则的化简分式的方法化简,例如:a =2,c =5,,3b =6=ab ,正好与分子吻合。对于分子,我们发现222c b a =+所以0222=-+c b a ,于是在分子上可加0222=-+c b a ,所以可能能使分子也有望化为含有c b a ++因式的积,这样便于约分化简。 解:设,2a =,3b =c =5则262=ab 且0222=-+c b a 所以: 原式=()()()5322222222-+=-+=++-+++=+-+=++-++=++c b a c b a c b a c b a bc a c b a c b a c b a ab c b a ab 四、拆项变形法: 例4,计算()()76655 627++++ 分析:本例通过度析仍然要想到,把分子化成与分母含有相同因式的分式。通过约分化简,如转化成: b a ab b a 11+=+再化简,便可知其答案。 解:原式==()()()()()()()() 76657676656576657665+++++++=+++++ 576756761651 -=-+-=+++ 五、整体倒数法: 例5、计算()()13251335++++

二次根式的化简与计算

二次根式的化简与计算

————————————————————————————————作者:————————————————————————————————日期: ?

二次根式 【知识要点】 1.一般地,式子()0≥a a 叫做二次根式,这里的a 可以是数,也可以是代数式,它们都必须是非负数(即不小于0),a 的结果也是非负数. 2.二次根式的性质 (1)()()02≥=a a a (2)() ()() ?????<-=>==00002a a a a a a a (3)()0,0≥≥?=?b a b a b a (4)()0,0>≥=b a b a b a 3.运算法则: (1)乘法运算:()0,0≥≥=?b a ab b a (2)除法运算:()0,0>≥=b a b a b a 【化简以及分母有理化】 外移:2||a b a b = 内移:a b , 当0a >时,2a b a b = 当0a <时,2a b a b =- 4.最简的二次根式: (1)被开方数因数是整数,因式是整式. (2)被开方数中不含有能开得尽方的因式或因数. 5.分母有理化 定义:把分母中的根号化去,叫做分母有理化.

方法:①单项二次根式:利用a a a ?=来确定. ②两项二次根式:利用平方差公式()()22b a b a b a -=-+来确定. 如: a b +与a b -,a b a b +-与, a x b y a x b y +-与分别互为有理化因式。 a x b y a x b y +-与分别互为有理化因式。 例题. 化简:(1)3227a b = ; (2)32418a a ?= . 例题32 27= . 2 3649y x = ; 同类二次根式 (1)定义: 几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类 二次根式。 (2)判断方法: 注意以下三点: ①都是二次根式,即根指数都是2; ②必须先化成最简二次根式; ③被开方数相同. 【重难点解析】 1.化简二次根式:尽量把根号里的数写成几个数的平方的形式。 如:21223=?= 23 21832=?= 32 25052=?= 52 2.根号里的数比较大时,使用短除法把这个数分解成质数的幂的形式。 如29482379=??= 2379?,24202553=?= 253? 3.根号内有字母或代数式,观察它们所能分解出来的最小偶次数。如: 542 x x x x x =?=、()()()3232111x x x x x x +=++=()()11x x x x ++ 4.单项的分母有理化,可以直接分子分母同时乘以分母再约分。 如:11333333?==? 、 2223233233823233 ?====??

八年级数学二次根式的化简求值练习题及答案修订版

八年级数学二次根式的化简求值练习题及答案 修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

二次根式的化简求值 练习题

m n,m n,则 B. 2 )n)n()n “黑白双雄,纵横江湖;双剑合璧 3 33= 3 3 23 = 2 (23) (23)(23) =43, 一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化

1276 3 2 3 . 2332 3 (23)(2 3) ,33,23.答案:解:原式=2-3+33-23=2.(201221 3 2 4 3 2012 2011 111 (1)(1 ) n n n n n n n n n n ,将各个分式分别分母有理 化后再进行计算. 324320122011)(20121)=(2012)2-12=2012-1=2011. 3232,b=32 32 ,23ab b 的值. 2 2(32)52632 (32)(32) ,同理22632 ;26+ 526=10,a b=(526)(26),然后将所要求值的式子和a b 表示,再整体代入求值即可.

答案:解:因为a= 3252632 ,b= 3252632 , 所以a + b= 526+ 526=10,a b=(526)(526)=1. 所以223a ab b =2()5a b ab =21051=95. 小结:分母有理化是我们处理二次根式问题时常用的一种方法,在有关二次根式化简求值的题目中我们经常会用到. 利用平方差公式进行分母有理化是常用方法.如:(a +b )(a -b )=a -b ,(a+b )(a -b )=a 2-b, (a +b )(a - b )=a -b 2. 举一反三: 2. 如图,数轴上与1,2对应的点分别为A ,B ,点B 关于点A 的对称点为C ,设点C 表示的数为x ,则|x -2|+ 2 x =( ) A. 2 B. 22 C. 32 D. 2 解析:因为点B 和点C 关于点A 对称,点A 和点B 所表示的数分别为1,2,所以点C 表示的数为2-2,即x=2-2,故|x -2|+ 2 x =|2-2-2|+ 222 =22-2+2 2=32. 例3 比较大小:(1)11-3与10-2;(2)22-5与10-7. 解析:(1)用平方法比较大小;(2)用倒数法比较大小.

二次根式的化简与计算的策略与方法

二次根式的化简与计算的策略与方法 二次根式是初中数学教学的难点内容,读者在掌握二次根式有关的概念与性质后,进行二次根式的化简与运算时,一般遵循以下做法: ①先将式中的二次根式适当化简 ②二次根式的乘法可以参照多项式乘法进行,运算中要运用公式(, ) ③对于二次根式的除法,通常是先写成分式的形式,然后通过分母有理化进行运算. ④二次根式的加减法与多项式的加减法类似,即在化简的基础上去括号与合并同类项. ⑤运算结果一般要化成最简二次根式. 化简二次根式的常用技巧与方法 二次根式的化简是二次根式教学的一个重要内容,对于二次根式的化简,除了掌握基本概念和运算法则外,还要掌握一些特殊的方法和技巧,会收到事半功倍的效果,下面通过具体的实例进行分类解析. 1.公式法 【例1】计算①;② 【解】①原式 ②原式 【解后评注】以上解法运用了“完全平方公式”和“平方差公式”,从而使计算较为简便.2.观察特征法 【例2】计算: 【方法导引】若直接运用根式的性质去计算,须要进行两次分母有理化,计算相当麻烦,观察原式中的分子与分母,可以发现,分母中的各项都乘以,即得分子,于是可以简解如下: 【解】原式.

【例3】把下列各式的分母有理化. (1);(2)() 【方法导引】①式分母中有两个因式,将它有理化要乘以两个有理化因式那样分子将有三个因式相等,计算将很繁,观察分母中的两个因式如果相加即得分子,这就启示我们可以用如下解法: 【解】①原式 【方法导引】②式可以直接有理化分母,再化简.但是,不难发现②式分子中的系数若为“1”,那么原式的值就等于“1”了!因此,②可以解答如下: 【解】②原式 3.运用配方法 【例4】化简 【解】原式 【解后评注】注意这时是算术根,开方后必须是非负数,显然不能等于“” 4.平方法 【例5】化简 【解】∵

2021年八年级数学二次根式化简求值易错题

八年级数学二次根式化简求值易错 题 欧阳光明(2021.03.07) 学校:___________姓名___________班级___________考号 ___________ 一、解答题 1.先化简,再求值:22 2111x x x x -??-÷ ?++? ?,其中x =2. 2.先化简,再求值: 2 111a a a a a a --??÷-+ ?+??,其中,a 1. 3.先化简,再求值: 2 2121x x x x x x ??-÷ ?+++??,其中x = 4.先化简,再求值:532224a a a a -??--÷ ?++? ?,其中a = () 1 134π-?? -+ ??? . 5.计算: (1 2 ) . 6. 计算: . 7. 计算: 8.计算或化简: (1) 2 323?a ab b a b --÷(2 6b a -) (2 )()0,0x y ?≥≥ ? (3 )00a b >,>(4 ) 00a b ≥<,

(5) (6) -(

参考答案 1.1x x +,23. 【解析】试题分析:首先化简分式,然后把x 的值代入化简后的算式即可. 试题解析:解:解:原式=()()()11111x x x x x x +-? ++-=1 x x +. 当x =2时,原式=221+=23. 点睛:此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 2. () 2 1 1a +,12. 【解析】试题分析:首先化简分式,然后把a 代入化简后的算式,求出算式的值即可. 试题解析:解:原式= ()()()1111a a a a a a -+-÷ + = ()()() 1111a a a a a a -? +-+= ()2 1 1a + 当a 1时,原式 = ( ) 2 1 11 +=1 2. 点睛:此题主要考查了分式的化简求值问题,要熟练掌握,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式. 3.2 1x -,7. 【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 试题解析:解:原式=()22121x x x x x x ++-?+=()2211x x x x x +-?+= ()()2 111x x x x x -+?+=21x - 当x =时,原式 = ( 2 1 -=8-1=7. 点睛:本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 4.2a +6,16. 新-课 -标-第- 一-网 【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入即可解答本题. 试题解析:解:原式= ()()()225222 3a a a a a +--+?+-= ()()() 33222 3a a a a a +-+?+-=2a +6 当a = () 1 134π-??-+ ? ??=1+4=5时,原式=2×5+6=16.

8、二次根式的化简求值-培优 数学张老师

8、二次根式的化简求值 用运算符号把数或表示数的字母连结而成的式子,叫做代数式.有理式(rational expression)和无理式(irrational expression)统称代数式,整式和分式统称有理式. 有条件的二次根式的化简求值问题是代数式的化简求值的重点与难点.这类问题包容了有理式的众多知识,又涉及最简根式、同类根式、有理化等二次根式的重要概念,同时联系着整体代入、分解变形、构造关系式等重要的技巧与方法,解题的关键是,有时需把已知条件化简,或把已知条件变形;有时需把待求式化简或变形;有时需把已知条件和待求式同时变形. 【例l 】 已知 ,21=+ x x 那么 1 91 32 2 ++++x x x x x x 的值等亍 (河北省初中数学创新与知识应用竞赛题) 思路点拨通过平方或分式性质,把已知条件和待求式的被开方数都用x+x 1的代数式表示. 【例2】满足等式2003200320032003=+ - - + xy y x y x y x 的正整数对(x ,y)的个数是 ( ). A .1 B .2 C .3 D .4 (全国初中数学联赛题) 思路点拨对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解. 【例3】 已知a 、b 是实数,且,1)1)(1(22=++-+b b Fa a 问a ,b 之间有怎样的关系?请推导. (第20届俄罗斯数学奥林匹克竞赛题改编) 思路点拨 由特殊探求一般,在证明一般性的过程中,由因导果,从化简条件等式人手,而化简的基本方法是有理化. 【例4】 有这样一道题,计算 2 2 2 22 4 44 4x x x x x x x x x -++ --+ -- -+的值,其中x=1005,某同学把 “x=1005”错抄成“x=1050”,但他的计算结果是正确的.请回答这是怎么回事?试说明理由. (2005年辽宁省中考题) 思路点拨解题的关键是正确化简待求式. 【例5】(1)设a 、b 、c 、d 为正实数,aad ,有一个三角 形的三边长分别为 ,)()(,,2 2 2 2 2 2 c d a b d b c a -+-++求此三角形的面积; (第12届“五羊杯”竞赛题)

最新二次根式的化简与计算

二次根式的化简与计算 1 【知识要点】 2 1.定义:一般地,式子()0≥a a 叫做二次根式,这里的a 可以是数,也可以是代数 3 式,它们都必须是非负数(即不小于0),a 的结果也是非负数. 4 2.二次根式的性质 5 (1) () ()02 ≥=a a a 6 (2)() ()()?? ? ??<-=>==000 02a a a a a a a 7 (3)()0,0≥≥?=?b a b a b a 8 (4) ()0,0>≥=b a b a b a 9 3.运算法则: 10 (1)乘法运算:()0,0≥≥=?b a ab b a 11 (2)除法运算: ()0,0>≥= b a b a b a 12 4.最简的二次根式: 13 (1)被开方数因数是整数,因式是整式. 14 (2)被开方数中不含有能开得尽方的因式或因数. 15 5.分母有理化 16 定义:把分母中的根号化去,叫做分母有理化. 17 方法:①单项 a =来确定. 18

②两项二次根式:利用平方差公式()()22b a b a b a -=-+来确定. 19 如: a b +与a b -,a b a b +-与, 20 a x b y a x b y +-与分别互为有理化因式。 21 练习: 22 1.判断下列各式,是二次根式有_________________. 23 ,12,4,,4,27,824233+--a a a 2,21122+??? ? ? <-a a a 24 2.下列各组二次根式中是同类二次根式的是( ) 25 A . B . C . D . 26 3. 与最简二次根式是同类二次根式,则m=______. 27 28 4.若1<x <2,则的值为( ) 29 A .2x ﹣4 B .﹣2 C .4﹣2x D .2 30 5.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+ 的结果是( ) 31 32 A .﹣2a+b B .2a ﹣b C .﹣b D .b 33 6.若式子有意义,则x 的取值范围为( ) 34 A .x ≥2 B .x ≠3 C .x ≥2或x ≠3 D .x ≥2且x ≠3 35

初中常见二次根式化简求值的九种技巧

初中常见二次根式化简求值的九种技巧 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

常见二次根式化简求值的九种技巧 1.估值法 例题1:估计184 132+?的运算结果应在( ) A . 5到6之间 B. 6到7之间 C. 7到8之间 D. 8到9之间 例题2:若将三个数3-,7,11表示在数轴上,则其中被如图所示的墨汁覆盖的数是 。 2.公式法 例题3:计算)3225()65(-?+ 3.拆项法 例题4:计算)23)(36(2 3346++++ 提示: )23(3)36(23346+++=++ 4.换元法 例题5:已知12+=n ,求: 424242422222-++--++--+-++n n n n n n n n 的值。 5.整体代入法

例题6:已知2231-= x ,2231+=y ,求4-+x y y x 的值。 6.因式分解法 例题7:计算 15106232++++ 例题8:计算 y xy x x y y x +++2 (y x ≠) 7.配方法 例题9:若a, b 为实数,153553+-+-=a a b ,试求22-+-++b a a b b a a b 的值。 8.辅元法 例题10:已知3:2:1::=z y x (0>x ,0>y ,0>z ) 求y x z x y x 2++++的值。

9.先判后算法 例题11:已知8-=+b a ,8=ab ,化简b a a a b b +并求值。 巧用被开方数非负性解决代数式化简求值问题 例题:设等式y a a x a y a a x a ---=-+-)()(成立,且x ,y ,a 互不相等, 求222 23y xy x y xy x +--+的值

二次根式运算和化简超级经典

二次根式运算和化简(超级经典)

————————————————————————————————作者:————————————————————————————————日期:

二次根式的运算 【知识梳理】 1、 当0≥a 时,称a 为二次根式,显然0≥a 。 2、 二次根式具有如下性质: (1)() ()02≥=a a a ; (2)?? ?<-≥==时;,当时,,当002a a a a a a (3)()00≥≥?=b a b a ab ,; (4)()00>≥=b a b a b a ,。 3、二次根式的运算法则如下: (1)()()0≥±=±c c b a c b c a ; (2)()()0≥=a a a n n 。 4、设Q m d c b a ∈,,,,,且m 不是完全平方数,则当且仅当d b c a ==,时, m d c m b a +=+。 5、二次根式是代数式中应掌握的非常复杂的内容,其运算常用到换元、拆项相消、分解相约等方法,还应注意运用乘法公式、分母有理化等技巧,最后的结果一定要化成最简二次根式的形式。 6、最简二次根式与同类二次根式 (1)一个根式经过化简后满足: 被开方数的指数与根指数互质; 被开方数的每一个因式的指数都小于根指数; 被开方数不含分母。 适合上述这些条件的根式叫做最简根式。 (2)几个根式化成最简根式后,如果被开方数都相同,根指数也都相同,那么这几个根式叫做同类根式。

【例题精讲】 【例1】已知254245222+-----=x x x x y ,则=+22y x ___________________。 【巩固一】若y x ,为有理数,且42112=+-+-y x x ,则xy 的值为___________。 【巩固二】已知200911+-+ -=x x y ,则=+y x _______________________。 【拓展】若m 适合关系y x y x m y x m y x --?+-= -++--+19919932253, 求m 的值。 【例2】当b a 2<时,化简二次根式a b ab a b a a 2 2442+--。 【巩固】 1、化简()2 232144--+-x x x 的结果是__________________。

二次根式化简与计算的方法和技巧

谈谈二次根式的化简与计算的方法和技巧 安陆市辛榨中学 周俊军 同学们从小学就开始学习数的计算,到了七、八年级后又学习了代数式的计算与化简。在这个过程中他们早已熟练地掌握了运算的顺序、法则和运算律,并掌握了因式分解在化简中的运用。对于二次根式的化简与计算只是这些知识的延伸和继续运用,但二次根式有其独特的性质,在解题时仍需掌握一些技巧和方法,这样才会更简便更快地去进行化简和计算。下面我来谈谈二次根式的化简与计算中常用的方法和技巧。 一、拿出来 当二次根式下出现分母时,需要将分母“开出来”,从而化简。 例如:化简a 1- 解:a 1-=2a a -= a a -- 归纳:对于此类二次根式,首先要利用分式的性质,将分子分母同时乘以a 将分母变 成平方的形式以便开方,同时要挖掘题中的隐含条件,考虑到二次根式的意义,应有a<0.而当a<0时,a a -=2。 二、放进去 有时将根号外面的式子放到根号里面去,同样可消除根号下的分母,从而达到化简的目的。 例如:化简a a 1- 解:a a 1-=a a a --=?? ? ??-?-12 归纳:对于此类问题,也可利用上面的方法将根号下的分母“拿出来 ”,但若将根号外面的a 放到根号里面去计算会更简便。 此题同样要注意到a<0这个隐含条件,而当a<0时,2a a -= 。 再如:计算:()0,01222 n m m n b a m n n m n m ab m n a ÷??? ? ??+- 分析:此题除式中出现因式m n ,而将mn m ab 中根号外面的m 和m n n 1中根号外面的n 分别放到根号里面去即可得 m n ,再将括号中的各项分别与m n b a 22相除,运算更简便。 解:原式m n b a mn n m mn ab m n a 22222÷??? ? ??+-=

二次根式化简的方法与技巧

二次根式化简的方法与技巧 二次根式是初中数学教学的难点内容,读者在掌握二次根式有关的概念与性质后, 进行二次根式的化简与运算时,一般遵循以下做法: ①先将式中的二次根式适当化简 ②二次根式的乘法可以参照多项式乘法进行,运算中要运用公式 \a、b =、ab a - 0,b- 0 ③对于二次根式的除法,通常是先写成分式的形式,然后通过分母有理化进行运算. ④二次根式的加减法与多项式的加减法类似,即在化简的基础上去括号与合并同类 项. ⑤运算结果一般要化成最简二次根式. 化简二次根式的常用技巧与方法 所谓转化:解数学题的常用策略。常言道:“兵无常势,水无常形。”我们在解千变万化的数学题时,常常思维受阻,怎么办?运用转化策略,换个角度思考,往往可以打 破僵局,迅速找到解题的途径。 二次根式的化简是二次根式教学的一个重要内容,对于二次根式的化简,除了掌握 基本概念和运算法则外,还要掌握一些特殊的方法和技巧,会收到事半功倍的效果,约 分、合并是化简二次根式的两个重要手段,因此我们在化简二次根式时应想办法把题目 转化为可以约分和和可以合并的同类根式。现举例说明一些常见二次根式的转化策略。

例1■计算 a -2 ba b a - ;b 、巧用公式法

分析:本例初看似乎很复杂,其实只要你掌握好了公式,问题就简单了,因为a与、b成立,且分式也成立,故有 a . 0,b ? 0, (... ab =0)而同时公式: 2 2 2 2 2 (a—b)=a - 2 ab +b , a - b =(a+b)(a—b),可以帮助我们将 a a b b和a -b变形,所以我们应掌握好公式可以使一些问题从复杂到简单。 解:原式 (\ a \ b)(\ a - \ b) =a 一\ b) (\ a 一\ b) 二2 a2「b 、适当配方法。 3 2一2 - 3 -、6 例 2 .计算: 1 ? ?? 2 _ \ 3 分析:本题主要应该从已知式子入手发现特点,???分母含有1 . 3其分子必有 含i+J2—J3的因式,于是可以发现3十2丿2 = 1 + 2,且、3 飞「31 -2 ,

相关主题
文本预览
相关文档 最新文档