当前位置:文档之家› 文氏桥震荡原理

文氏桥震荡原理

文氏桥震荡原理
文氏桥震荡原理

原文地址:对文氏桥RC振荡电路的一点小实验作者:毒蛋

RC振荡电路可以可以产生特定频率的正弦波,这在很多数字系统中用来产生时钟信号,最大的优点就是成本低,而且在低频时,他的体积优势也很明显,LC振荡电路在低频是体积和成本都是问题。之前看过很多次资料一直不太理解这个振荡器的工作原理,今天又找到一点资料,顿时理解了一些,不过也只能算是基本了解了原理吧~

上图就是文氏桥振荡电路的原理图,在一个运放上,分别有正反馈和负反馈,正反馈为一个RC串并联选频网络,这也就是这个电路能产生特定频率波形的原因,因此先分析选

频网络

图a为RC串并联选频网络,左端输入,右端输出。当输入信号的频率足够低的时候,可以将该网络等效为中图(频率小,电容容抗远大于电阻),输出超前于输入,如果频率趋近于0,输出将为趋近于0,相位超前趋近于90°,当输入信号足够大的时候,网络等效为右图(频率大,电容容抗远小于电阻),输出将滞后于输入,如果频率趋近于无穷大,输出趋近于0,相位滞后趋近于90°。两种情况下,信号都有衰减

对这样一个网络,输出的相位总是在滞后90°和超前90°之前徘徊,那么显然,总存在一个频率,使得输出和输入同相位,而且此时信号衰减最低,为三分之一,下图为网络的幅频特

性和相频特性

如图,当频率在f0左右时,信号衰减小,而偏移这个频率的,衰减严重。

f0=1/2πRC

对选频网络的仿真

此时频率大于f0,很明显,输出的衰减已经超过1/3,而且相位滞后

现在再看文氏桥振荡电路,负反馈上的反馈系数为1+Rf/R1,而正反馈系数就为该选频网络的衰减系数。

在这个运放没有输入信号的时候,会有很多干扰,这个干扰先被放大为1+Rf/R1倍,如果某个干扰的频率正好为f0时,他正好又会被衰减为1/3 ,所以设定 1+Rf/R1=3,这样该信号就会被还原,而其他频率的信号经过这个过程后会被衰减,被抑制,这样,就选出了一个特定频率的干扰来放大,便得到了需要的正弦波。

在实际中,应当适当增大Rf,是负反馈系数大于3,让振荡器能起振,然而,这样的后果便是这个波形不断放大,最后让运放饱和,得到的波形就会失真,成了一个削去顶部的正弦波,这是不允许的,所以便在Rf上并联一个调节电路,使得负反馈系数不停在3左右跳动,让波形稳定在一个满意的范围

如图为仿真电路图,这个R2和R5我取了很久,才让电路输出一个5v的正弦波,本来20k 的R2已经变成了31k,不知道这样是不是规范,反正仿真已经能出来波形了,实际中能不能行有待考证,不过也就是调节这几个电阻罢了。

如图,可以看到探针上显示的频率为1.58KHz,这个值正好等于1/2*π*R*C。

Multisim课程设计正弦波发生器

东北石油大学MULTISIM电气应用训练 2012年3 月01日

MULTISIM电气应用训练任务书 课程MULTISIM电气应用训练 题目Multisim的正弦波振荡电路仿真 专业自动化姓名刘月莹学号0906******** 主要内容: 以文氏电桥正弦波振荡电路仿真为例,分析了基本及稳幅文氏电桥正弦波发生器的特点,并采用Multisim 10软件对文氏电桥正弦波发生器进行了仿真,仿真结果与理论分析结果一致。软件仿真在课堂教学、电路设计、及实验教学中的应用,使得课堂教学信息量饱满,设计、实验变得轻松,使教学的效果得到提升,在教学领域具有重要的推广、应用价值。 主要参考资料: [1] 黄智伟.全国大学生电子设计竞赛电路设计[J].北京:北京航空航天大学出版社,2006. [2] 康华光.电子技术基础[J].北京:高等教育出版社,2001. [3] 张凤言.电子电路基础[M].北京:高等教育出版社,1995. [4] 杨素行.模拟电子技术基础简明教程[M].北京:高等教育出版社,2002. [5] 岳怡.数字电路与数字电子技术[J].西安工业大学出版社,2004. [6] 路勇.电子电路实验及仿真[M].清华大学出版社,2004. [7] 张俊漠.单片机中级教程——原理与应用[M].北京航天航空大学出版社,2006. 完成期限2012.2.20——2012.3.1 指导教师李宏玉刘超 专业负责人 2012年3 月1 日

目录 1 任务和要求 (1) 2 稳幅文氏电桥正弦波发生器 (5) 3文氏电桥正弦波发生器电路仿真 (5) 4设计总结 (6) 参考文献 (6)

1KHZ桥式正弦波振荡器电路的设计与制作

目录 摘要 (2) 1.系统基本方案 (2) 1.1 正弦波振荡电路的选择与论证 (2) 1.2. 运算放大器的选择 (3) 1.3最终的方案选择 (3) 2.正弦波发生器的工作原理 (3) 2.1正弦波振荡电路的组成 (3) 2.1.1 RC选频网络 (3) 2.1.2放大电路 (6) 2.1.3正反馈网络 (6) 2.2产生正弦波振荡的条件 (6) 2.3.判断电路是否可能产生正弦波的方法和步骤 (7) 3.系统仿真 (7) 4.结论 (8) 参考文献: (11) 附录 (13)

1KHZ 桥式正弦波震荡器电路的设计与制作 摘要 本设计的主要电路采用文氏电桥振荡电路。如图1-1文氏桥振荡电路由放大电路和选频网络两部分组成,施加正反馈就产生振荡,振荡频率由RC 网络的频 率特性决定。它的起振条件为: ,振荡频率为: 。运算放大 器选用LM741CN,采用非线性元件(如温度系数为负的热敏电阻或JFET )来自动调节反馈的强弱以维持输出电压的恒定,进而达到自动稳幅的目的,这样便可以保证输出幅度为2Vp-p ;而频率范围的确定是根据式RC f π21 0= 以及题目给出的频 率范围来确定电阻R 或电容C 的值,进而使其满足题目的要求。 关键词:文氏电桥、振荡频率、LM741CN 1.系统基本方案 1.1 正弦波振荡电路的选择与论证 本设计选用文氏电桥振荡电路。

图1 RC 桥式振荡电路 这种电路的特点是:它由放大器即运算放大器与具有频率选择性的反馈网络构成,施加正反馈就产生振荡。振荡频率由RC 网络的频率特性决定。它的起振条件为: 12R R f > 。它的振荡频率为:RC f π21 0= 。 1.2. 运算放大器的选择 考虑到综合性能和题目要求的关系这里我们选用LM741CN 作为运算放大。 1.3最终的方案选择 文氏电桥振荡电路适用的频率范围为几赫兹到几千赫兹,可调范围宽,电路简单易调整,同时波形失真系数为千分之几。很适合我们题目的要求。故采用文氏电桥振荡电路. RC 文氏电桥振荡电路是以RC 选频网络为负载的振荡器. 这个电路由两部分组成,即放大电路和选频网络。放大电路由集成运放所组成的电压串联负反馈放大电路,取其输入阻抗高和输出阻抗低的特点。而选频网络则由Z1、Z2组成,同时兼做正反馈网络。 2正弦波发生器的工作原理 2.1正弦波振荡电路的组成 放大电路 选频网络 正反馈网络 2.1.1 RC 选频网络

文氏桥电路产生正弦波,方波要点

电子线路课程设计 院部: 专业: 姓名: 学号: 指导教师: 完成时间:

电子线路课程设计任务书姓名班级指导老师

目录 目录 (1) 第1章引言 (1) 第2章基本原理 (2) 2.1基本文氏振荡器 (2) 2.2振荡条件 (2) 第3章参数设计及运算 (4) 3.1结构设计 (4) 3.2参数计算 (5) 第4章仿真效果与实物 (8) 心得体会 (9) 参考文献 (9)

第1章引言 无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器和正交振荡器。

第2章 基本原理 2.1 基本文氏振荡器 基本文氏电桥反馈型振荡电路如图1所示,它由放大器即运算放大器与具有频率选择性的反馈网络构成,施加正反馈就产生振荡。运算放大器施加负反馈就为放大电路的工作方式,施加正反馈就为振荡电路的工作方式。图中电路既应用了经由R 3和R 4的负反馈,也应用了经由串并联RC 网络的正反馈。电路的特性行为取决于是正反馈还是负反馈占优势。 图2-1 将这个电路看作一个同相放大器,它对V p 进行放大,其放大倍数为 o 3p 4 V R A 1V R = =+ 在这里为了简化我们假设运算放大器是理想的。令,R 1=R 2=R,C 1=C 2=C 。反过来,V p 是由运算放大器本身通过两个RC 网络产生的,其值为V P =[Z P /(Z P +Z 1)]V o 。式中Z p =R ∥﹙1/j2πfC ﹚, Z 1/2s R j fC π=+。展开后可以得到 ()()o p 00V 1V 3//B jf j f f f f = = +- 上式中 01/2f fC π=。信号经过整个环路的总增益是()T jf AB =或者表示为

文氏桥振荡电路

文氏桥振荡电路 一、问题背景 将RC串并联选频网络和放大器结合起来即可构成RC振荡电路,放大器件可采用集成运算放大器。 RC串并联选频网络接在运算放大器的输出端和同相输入端 之间,构成正反馈,接在运算放大器的输出端和反相输入端之间的电阻,构成负反馈。正反馈电路和负反馈电路构成一文氏电桥电桥。 文氏电桥振荡器的优点是:不仅振荡较稳定,波形良好,而且振荡频率在较宽的范围内能方便地连续调节。 二、问题简介 由文桥选频电路和同相比例器组成的正弦波发生器如图1 所示。(1)若取R1=15kΩ,试分析该振荡电路的起振条件(R f的取值);(2)仿真观察R f取不同值时,运放同相输入端和输出端的电压波形; 图1 由文桥选频电路和放大器组成正弦波发生器的电路原理图

(3)若在反馈回路中加入由二极管构成的非线性环节(如图2所示),仿真观察R2取不同值时,运放同相输入端和输出端的电压波形。也可同时改变R f和R2的值。 图2 加入非线性环节的正弦波发生器的电路原理图 三、理论分析 (1)由图一的电路可以看出,电路在回路网络中加入了文氏选频网络,下面对文氏选频网络进行理论上的分析,从电路总提取文氏电路如图三所示。 图3 文氏选频网络

图中o U 是运放的输出量,f U 是反馈量。为了能够使电路振荡起 来,就必须通过选定参数即确定频率,使得在某一频率下o U 和 f U 同 相。 那么,当信号频率很低时,有 1R C ω>> 故将会有f U 的相位超前o U 的相位,当频率接近0时,相位超前接近于 90度。相反地,当信号频率很高以至于趋于无穷大时,可以得出 f U 的 相位滞后o U 的相位几乎-90度。 所以,在信号频率由0到无穷大的变化过程中,必然有某一个频率,使得输出量与反馈量同相,从而形成正反馈。下面就具体来求解此振荡频率。 由反馈系数 1//11//f o R U j C F U R R j C j C ωωω==++ 整理可得 1 13()F j CR CR ωω=+- 若电路的信号频率为f ,令特征频率 01 2f RC π= 代入F 的表达式,可以得到 001 3()F f f j f f =+-。

正弦波产生电路的设计

电子系统综合设计实验报告

正弦波产生电路设计报告 一、实验设计目的和作用 1. 进行基本技能训练,如基本仪器仪表的使用,常用元器件的 识别、测量、熟练运用的能力,掌握设计资料、手册、标准 和规范以及使用仿真软件、实验设备进行调试和数据处理 等。 2. 学习较复杂的电子系统设计的一般方法,提高基于模拟、数 字电路等知识解决电子信息方面常见实际问题的能力,由学 生自行设计、自行制作和自行调试。 3. 培养理论联系实际的正确设计思想,训练综合运用已学过的 理论和生产实际知识去分析和解决工程实际问题的能力。 4.通过学员的独立思考和解决实际问题的过程,培养学员的创 新能力 二、设计的具体实现 实验要求用TL084设计正弦波产生电路。正弦波产生方式有多种,本次试验采用较为简单的文氏桥振荡电路。通过图书馆和上网查阅有关资料,确定如下电路。 Multisim原理图:

sch图 调节w1使电路起振,w2调节幅度 仿真结果:频率162Hz,幅度范围0.8—10V

三、实际制作调试和结果分析

频率:133.33Hz 幅度范围:1~9V 四、总结 第一次进行电路设计,遇到了很多麻烦。Multisim、Protel等软件不熟悉,第一次焊电路焊工也不行。通过实验,基本学会了这些软件的操作,制作过程中,自己的焊工有了很大进步。虽然做了好几次才把电路调出来,但还是很满意。 五、参考文献 1.于红珍.通信电子电路【M】.北京:清华大学出版社,2005 2.康华光,陈大钦.电子技术基础模拟部分(第四版). 北京:高等教育出版社,1999.6 3.黄智伟.全国大学生电子设计竞赛【M】.北京:北京航空航天大学出版社,2006

文氏桥振荡电路

文氏桥振荡电路的设计与测试 电子工程学院 一、实验目的 1.掌握文氏桥振荡电路的设计原理 2.掌握文氏桥振荡电路性能的测试方法 二、实验预习与思考 1.复习应用集成运放实现文氏振荡桥电路的原理 2.设计文氏桥振荡电路,实现正弦信号的产生,并设计实验报告,记录实验数据。 3.文氏桥振荡电路中,D 1、D 2是如何稳定幅的? 三、实验原理 如图1所示,RC 文氏桥振荡电路其中RC 串,并联电路构成真反馈支路,并起选频作用,R 1、R 2、R W 及二极管等原件构成负反馈和稳幅环节。调节R W 可改变负反馈深度,以满足振荡的振幅条件与改变波形。利用两个反向的并联二极管D 1、D 2要求特性匹配,以确保输出波形正,负半周期对称。R 3的接入是为了消弱二极管死区的影响,改善波形失真。 电路的振荡频率:01 2f RC π= 图1 文氏桥振荡电路 起振的幅值条件:1 13f f R A R =+ ≥

调整R W,使得电路起振,且失真最小。改变选频网络的参数C或R,即可调节振荡频率。 四、实验内容 1.文氏桥振荡器的实现 根据元件,应用集成运放设计并搭建实现文氏桥振荡电路,调节电路中参数使得电路输出从无到有,从正弦波到失真。定量地绘出正弦波的波形,记录起振时的电路参数,分析负反馈强弱规律对起振条件及输出波形的影响。并记录出最大不失真输出时的振幅。 1.当Rw=550Ω时电路开始拥有输出波形; 2.当增加Rw的值时,振幅逐渐增加;且当Rw=750Ω时,输出波形开始出现失真,此时的正弦波振幅为8.569,周期为约2.188ms

3.当继续增加Rw的值时,失真将加剧,如下两图所示: 此时Rw=10kΩ

稳幅文氏电桥正弦波发生器说课讲解

* 课程设计报告 题目:文氏电桥正弦波振荡 学生姓名:** 学生学号:*** 系别:电气信息工程学院专业:通信工程 届别:2014届 指导教师:** 电气信息工程学院制 2013年5月

文氏电桥正弦波振荡 学生:** 指导教师:** 电气信息工程学院通信工程专业 1 课程设计的任务与要求 1.1 课程设计的任务 1. 培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 2. 学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 3. 进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 1.2 课程设计的要求 (1)熟悉multisim的使用方法,掌握文氏电桥正弦波振荡原理,以此为基础在软件中画出电路图。 (2)绘制出文氏电桥正弦波振荡的波形,观察其波形,通过对分析结果来加强对其原理的理解。 (3)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。 1.3 课程设计的研究基础(设计所用的基础理论) 以文氏电桥正弦波振荡电路仿真为例,分析了基本及稳幅文氏电桥正弦波发生器的特点,并采用Multisim 10软件对文氏电桥正弦波发生器进行了仿真,仿真结果与理论分析结果一致。软件仿真在课堂教学、电路设计、及实验教学中的应用,使得课堂教学信息量饱满,设计、实验变得轻松,使教学的效果得到提升,在教学领域具有重要的推广、应用价值。 在自控、测量、无线电通讯、测量等技术领域中,需用到波形发生器,较常用的是正弦波振荡器和多谐振荡器两大类。采用Multisim10仿真软件对正弦波振荡器进行仿真,该软件是NI 公司下属的Electronics WorkbenchGroup 发布的交

文氏电桥正弦波发生器

目录 第1章摘要 (2) 第2章引言 (2) 第3章基本原理 (2) 3.1 基本文氏振荡器 (2) 3.2 振荡条件 (4) 第4章参数设计及运算 (5) 4.1 结构设计 (6) 4.2 参数计算 (7) 第5章结论 (9) 心得体会 (11) 参考文献 (11)

第1章摘要 本文中介绍了一种基于运算放大器的文氏电桥正弦波发生器。经测试,该发生器能产生频率为100-1000Hz的正弦波,且能在较小的误差范围内将振幅限制在2.5V以内。 第2章引言 无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器和正交振荡器。 第3章基本原理 3.1 基本文氏振荡器 基本文氏电桥反馈型振荡电路如图1所示,它由放大器即运算放大器与具有频率选择性的反馈网络构成,施加正反馈就产生振荡。运算放大器施加负反馈就为放大电路的工作方式,施加正反馈就为振荡电路的工作方式。图 中电路既应用了经由R 3和R 4 的负反馈,也应用了经由串并联RC网络的正反馈。 电路的特性行为取决于是正反馈还是负反馈占优势。

图1 将这个电路看作一个同相放大器,它对V p 进行放大,其放大倍数为 o 3p 4 V R A 1V R = =+ 在这里为了简化我们假设运算放大器是理想的。令,R 1=R 2=R,C 1=C 2=C 。反过来, V p 是由运算放大器本身通过两个RC 网络产生的,其值为V P =[Z P /(Z P +Z 1)]V o 。式中Z p =R ∥﹙1/j2πfC ﹚,Z 1/2s R j fC π=+。展开后可以得到 ()()o p 00V 1V 3//B jf j f f f f = = +- 上式中01/2f fC π=。信号经过整个环路的总增益是()T jf AB =或者表示为 ()()34 001/3//R R T jf j f f f f += +- 这是一个带通函数,因为它在高频和低频处均趋于零。它的峰值出现在0f f =处,其值为 ()34 1/3R R T jf += ()T jf 为实数表明了一个频率为 0f 的信号经过环回路一周后,其净相移为零。 根据()T jf 的大小,可有三种不同的可能性:

实验七 文氏桥正弦振荡器

实验七 文氏桥正弦振荡器 一、 实验目的 1.掌握振荡条件和稳幅措施。 2.研究文氏桥网络的选频特性和传输特性。 3. 学习文氏桥振荡器的调试与测试技术。 二、 实验原理 1. 振荡器的振荡条件 振荡过程是一个正反馈过程,振荡常常是一个微扰引起的,如果这个微扰经过反馈,弱于原输入的讯号,循环一次减弱一次,直至消亡,即为负反馈或环增益小于1, 无法起振。如果经过反馈后的信号强于原来的输入讯号,循环一次增强一次,振幅越来越大,直至晶体管的非线性或外部稳幅系统限制了它的振幅为止。我们把这个放大与反馈的过程表达为 ? ? F A ,即称为环路增益,简称环增益。电压放大倍数?A 与反馈系数? F 都是复数: A F j j e A A e F F φφ? ? ? ? == 7-1 ??F A =) (F A j e F A φφ+? ? 7-2 令 A A =? , F F =? ,因此 起振条件有两个: 振幅条件: 1>AF (6-3) 相位条件:2 n=0,1,2A F n φφπ+= (6-4) 起振以后,振幅逐渐增大,但由于晶体管的非线性或稳幅系统起控,A 逐渐变小,达到一个平衡状态,此时1=AF ,所以振荡器的振幅平衡条件为: 1=AF (6-5) A 与F 都是频率的函数,在某个频率上,这两个条件都满足了,这个频率便是振荡器的

振荡频率。 2. 文氏桥正弦振荡器 文氏桥振荡器是低频振荡器中最常见的一种电路。它使用的元件只需电阻、电容,而不需要难于制作的电感元件,且波形比较好,故得到广泛应用。文氏桥原是电学中的交流电桥,用来测量电容的容量,以及交流电频率的电桥。原名是维恩电桥(Wien Bridge ),我国简称为文氏桥。 这个电桥的电路如图7-1(a )所示 图7-1 文氏电桥 如果电桥的R 1=R 2=R ,C 1=C 2=C ,R 4=2R 3,那么从A 、C 两端输入一个频率为:12f R C π=的正弦波电压,B 、D 两端的电压便为零。 我们可以将这个桥路分解为图7-1(b )与7-1(c )两个网络。网络(b )具有以下的传输函数F b (j ω): ) 1 (11 )(2 1121 22 1R C R C j C C R R V V j F F i o b c ???- +++= = =? ? ? (6-6) 上式仅在2112 1 0C R C R ωω- =时,F(j ω)才能成为实数,此时的ω0为: 021012 1 C R C R ωω= 有 2 01212 1 C C R R ω= (6-7) 如果选R 1=R 2=R ,C 1=C 2=C ,(6-7)式可以简化为: 01R C ω= 或RC f π210= (6-8) 此时的F b 为极大值: 3 1)(==o b bm F F ? (6-9) 由于虚部为零,故此时的相位为

文氏电桥正弦波振荡电路

文氏电桥正弦波振荡电路(2007-05-22 09:33:33) (这是一个很基本也很简单的电路,但很多细节的东西还值得去仔细研究,那次小组会面对老师的提问我没能讲清楚,没有被批评的够惨,但我的确认识到了自己的不足,下来后我好好把这个电路研究了一下,总结出了这些知识。希望所有的同行在做一个项目的时候,不能为了完成任务而去做,有的东西有必要把细节的东西好好研究一下,多问几个为什么,这样才能真正的学到东西,积累经验,在掌握好基础知识的基础上再研究新问题,那才是真正意义上的科研。可能下面的总结会有遗漏之处,欢迎大家提出问题,共同学习。) 文氏电桥正弦波振荡电路 (2007.4.27总结) 一、振荡原理 如上图所示,信号Xi经过一个放大环节A放大后得到放大信号Xo=A*Xi。 如果在上图中加一个反馈环节,如下图所示: Xo经过反馈环节F后得到反馈信号Xf=A*F*Xi。当反馈信号Xf与输入信号Xi幅值和相位都相同时,即以Xf作为输入Xi,则可以在输出端维持原有的信号Xo,也就是自激。所以,要使得上图中的系统平衡,则应有A*F=1。 即|A*F|=1(幅度平衡条件) 且Ψa+Ψf=2*n*PI (n为整数)Ψa和Ψf分别为A、F的幅角,此式说明反馈环节F 是一个正反馈。

A*F=1是振荡平衡的条件,也就是可维持等幅振荡输出;如果A*F<1,则电路的振荡输出将越来越小,直到停止振荡;如果A*F>1,振荡电路的输出将越来越大,直到电路中器件达到饱和或者截止。所以电路维持等幅振荡的唯一条件是A*F=1。 二、振荡的建立和稳定 前面讨论的自激振荡条件,是假设先给振荡电路的放大环节有一个外加的输入信号。但实际振荡电路一般不会外加激励信号。 对于一个正弦波振荡器来说,有一个选频网络,所以振荡电路只可能在某一个频率f0下满足相位平衡的条件(在后面的内容中将会对此做详细的叙述)。放大电路中存在噪声或干扰(例如接通直流电源时电路中就会产生电压或者电流的瞬变过程),它的频谱范围很广,必然包括振荡频率的分量。这些噪声和干扰经过选频网络选频后,只有f0这一频率分量满足相位平衡条件,只要此时A*F>1则可以增幅振荡,将此信号放大,建立起振荡。而除了 f0之外的其他频率的分量则衰减。 所以电路起振的条件为A*F>1且Ψa+Ψf=2*n*PI(n为整数)。除了要求电路的相位满足条件之外还要满足|A*F|>1。 从A*F>1到A*F=1:接通电源后,频率为f0的分量将逐渐增大,当幅值达到一定程度后,放大环节的非线性期间就会接近甚至进入非线性工作区(饱和区或者截止区),这时候放大增益A将逐渐下降,输出波形产生失真,所以经过选频网络后其输入也将随之下降。形成失真振荡。所以为了避免失真振荡,应尽量避免放大器件进入非线性工作区。解决办法是在放大器件在没有进入非线性工作期前加稳幅环节,使A*F从大于1逐渐减小到1,从而达到稳幅振荡的目的。 三、文氏电桥振荡电路

文氏桥振荡电路(multisim仿真)

高频电子线路课程设计 题目: 院(系、部): 学生姓名: 指导教师: 年月日 河北科技师范学院教务处制

摘要 无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器和正交振荡器。 本文中介绍了一种基于运算放大器的文氏电桥正弦波发生器。文氏桥振荡电路由两部分组成:即放大电路和选频网络。由集成运放组成的电压串联负反馈放大电路,取其输入电阻高、输出电阻低的特点。经测试,该发生器能产生频率为100-1000Hz的正弦波,且能在较小的误差范围内将振幅限制在2.5V以内。 关键词:正弦波;振荡器;文氏电桥

目录 摘要.................................................... 错误!未定义书签。1设计任务及要求. (9) 1.1.................................................................................................... 错误!未定义书签。 1.2 ***............................................................................................ 错误!未定义书签。 2 方案论证 (10) 3 单元电路设计 (11) 4 电路原理图及PCB版图 (11) 5 总结................................................... 错误!未定义书签。附录及参考文献........................................... 错误!未定义书签。

RC文氏电桥振荡电路知识分享

R C文氏电桥振荡电路

RC文氏电桥振荡器的电路如图1所示,RC串并联网络是正反馈网络,由运算放大器、R3和R4负反馈网络构成放大电路。 C1R1和C2R2支路是正反馈网络,R3R4支路是负反馈网络。C1R1、C2R2、R3、R4正好构成一个桥路,称为文氏桥。 图1 RC文氏电桥振荡器 RC串并联选频网络的选频特性 RC串并联网络的电路如图2所示。RC串联臂的阻抗用Z1表示,RC并联臂的阻抗用Z2表示。 图2 RC串并联网络 RC串并联网络的传递函数为

式(1) 当输入端的电压和电流同相时,电路产生谐振,也就是式(1)是实数,虚部为0。令式(1)的虚部为0,即可求出谐振频率。 谐振频率 对于文氏RC振荡电路,一般都取R=R1 = R2,C=C1 = C2时,于是谐振角频率: 频率特性幅频特性 相频特性 文氏RC振荡电路正反馈网络传递函数的幅度频率特性曲线和相位频率特性曲线如图3所示。

(a) 幅频特性曲线 (b) 相频特性曲线 图3 RC串并联网络的频率响应特性曲线 反馈系数当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数 当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数 此时反馈系数 与频率f0的大小无关,此时的相角 jF=0°。文氏RC振荡电路可以通过双连电位器或双连电容器来调节振荡电路的频率,即保证R=R1 = R2,C=C1 = C2始终同步跟踪变化,于是改变文氏桥RC振荡电路的频率时,不会影响反馈系数和相角,在调节频率的过程中,不会停振,也不会使输出幅度改变。 根据振荡条件丨AF丨>1,在谐振时,放大电路的电压增益应该Au=3。由图1可知,RC串并联网络的反馈信号加在运算放大器的同相输入端,运算放大器的电压增益由R3和R4确定,是电压串联负反馈,于是应有 振荡的建立和幅度的稳定 振荡的建立 所谓振荡的建立,就是要使电路自激,从而产生持续的振荡输出。由于电路中存在噪声,噪声的频谱分布很广,其中也包括f0及其附近一些频率成分。由于噪声的随机性,有时正有时负,有时大一些有时小一些。为了保证这种微弱的信号,经过放大通过正反馈的选频网络,使输出幅度愈来愈大,振荡电路在起振时应有比振荡稳定时更大一些的电压增益,即丨AF丨>1,所以Au f>3,丨AF丨>1称为起振条件。 通过热敏元件稳定输出幅度 加入R3、R4支路,电路是串联电压负反馈,其放大倍数

文氏电桥正弦波振荡电路

文氏电桥正弦波振荡电路 (2007.4.27总结) 一、振荡原理 如上图所示,信号Xi经过一个放大环节A放大后得到放大信号Xo=A*Xi。 如果在上图中加一个反馈环节,如下图所示: Xo经过反馈环节F后得到反馈信号Xf=A*F*Xi。当反馈信号Xf与输入信号Xi幅值和相位都相同时,即以Xf作为输入Xi,则可以在输出端维持原有的信号Xo,也就是自激。所以,要使得上图中的系统平衡,则应有A*F=1。 即|A*F|=1(幅度平衡条件) 且Ψa+Ψf=2*n*PI(n为整数)Ψa和Ψf分别为A、F的幅角,此式说明反馈环节F是一个正反馈。 A*F=1是振荡平衡的条件,也就是可维持等幅振荡输出;如果A*F<1,则电路的振荡输出将越来越小,直到停止振荡;如果A*F>1,振荡电路的输出将越来越大,直到电路中器件达到饱和或者截止。所以电路维持等幅振荡的唯一条件是A*F=1。 二、振荡的建立和稳定 前面讨论的自激振荡条件,是假设先给振荡电路的放大环节有一个外加的输入信号。但实际振荡电路一般不会外加激励信号。

对于一个正弦波振荡器来说,有一个选频网络,所以振荡电路只可能在某一个频率f0下满足相位平衡的条件(在后面的内容中将会对此做详细的叙述)。放大电路中存在噪声或干扰(例如接通直流电源时电路中就会产生电压或者电流的瞬变过程),它的频谱范围很广,必然包括振荡频率的分量。这些噪声和干扰经过选频网络选频后,只有f0这一频率分量满足相位平衡条件,只要此时A*F>1则可以增幅振荡,将此信号放大,建立起振荡。而除了f0之外的其他频率的分量则衰减。 所以电路起振的条件为A*F>1且Ψa+Ψf=2*n*PI(n为整数)。除了要求电路的相位满足条件之外还要满足|A*F|>1。 从A*F>1到A*F=1:接通电源后,频率为f0的分量将逐渐增大,当幅值达到一定程度后,放大环节的非线性期间就会接近甚至进入非线性工作区(饱和区或者截止区),这时候放大增益A将逐渐下降,输出波形产生失真,所以经过选频网络后其输入也将随之下降。形成失真振荡。所以为了避免失真振荡,应尽量避免放大器件进入非线性工作区。解决办法是在放大器件在没有进入非线性工作期前加稳幅环节,使A*F从大于1逐渐减小到1,从而达到稳幅振荡的目的。 三、文氏电桥振荡电路 1.选频网络

方波、三角波、正弦波信号产生

课程设计报告 题 目 方波、三角波、正弦波信号 发生器设计 课 程 名 称 模拟电子技术课程设计 院 部 名 称 机电工程学院 专 业 电气工程及其自动化 班 级 电气及其自动化(2)班 学 生 姓 名 李丽 学 号 1104102067 课程设计地点 C206 课程设计学时 1周 指 导 教 师 赵国树 金陵科技学院教务处制

目录 1、绪论 (4) 1.1相关背景知识 (4) 1.2课程设计条件................................................... . (4) 1.3课程设计目的.......... (4) 1.4课程设计的任务 (4) 1.5课程设计的技术指标 (5) 2、信号发生器的基本原理 (5) 2.1原理框图 (4) 2.2总体设计思路 (5) 3、各组成部分的工作原理 (5) 3.1 正弦波产生电路 (5) 3.1.1正弦波产生电路 (5) 3.1.2正弦波产生电路的工作原理 (6) 3.2 正弦波到方波转换电路 (8) 3.2.1正弦波到方波转换电路图 (6) 3.2.2正弦波到方波转换电路的工作原理 (8) 3.3 方波到三角波转换电路 (11) 3.3.1方波到三角波转换电路图 (11) 3.3.2方波到三角波转换电路的工作原理 (13) 4、电路仿真结果 (13) 4.1正弦波产生电路的仿真结果 (14) 4.2 正弦波到方波转换电路的仿真结果 (14) 4.3方波到三角波转换电路的仿真结果 (15) 5、设计结果分析与总结 (16)

1、绪论 1.1相关背景知识 信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途,可以用于生产测试、仪器维修和实验室,还广泛使用在其它科技领域,如医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等。它是一种不可缺少的通用信号源。 1.2课程设计条件 以本学期学习的电子技术基础(模拟部分)为知识背景,我们知道通过放大器、比较器等元器件可构成集成电路、反馈放大电路、运算放大电路等一系列组合放大电路。信号在我们的生活中是无处不在的,模拟信号是时间和幅度连续变化的信号。通过传感器我们可以将各种物理信号转换为电信号,再进过一系列信号的处理。如滤波、幅度放大等,我们可以获得自己需要的信号。 正弦波振荡电路。在通信、广播、医疗、电视系统中,都有广泛的应用。非正弦波产生电路。在一些电子系统中,如数学领域,方波、三角波的应用都是极其广泛的。 1.3课程设计目的 通过本次课程设计所要达到的目的是:提高学生在模拟集成电路应用方面的技能,树立严谨的科学作风,培养学生综合运用理论知识解决实际问题的能力。学生通过电路设计初步掌握工程设计方法,逐步熟悉开展科学实践的程序和方法,为后续课程的学习和今后从事的实际工作打下必要的基础。 1.4课程设计的任务 ①设计一个方波、三角波、正弦波函数发生器; ②能同时输出一定频率一定幅度的三种波形:正弦波、方波、三角波; ③用±5V电源供电。 产生正弦波、方波、三角波的方案有多种,如: ①首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;②也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波;③也可以通过单片集成函数发生器8038来实现… 先是对电路的分析,参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济。最方便。最优化的死亡合剂策略。然后运用仿真软件Multisim对电路进行仿真。观察效果并与要求的性能指标作对比。

基于multisim的正弦波发生器.

成绩 学生姓名:朱世旺 学生学号: 1214040147 系别:电子工程学院 专业:电子信息科学与技术 年级: 2012级 指导教师:王宜结 电子工程学院制 2015年3月

基于multisim的正弦波发生器 学生:朱世旺 指导教师:王宜结 电子工程学院电子信息科学与技术 1、设计任务与要求 1.1.设计任务 以文氏电桥正弦波振荡电路仿真为例,分析了基本及稳幅文氏电桥正弦波发生器的特点,并采用Multisim 10软件对文氏电桥正弦波发生器进行了仿真,仿真结果与理论分析结果一致。软件仿真在课堂教学、电路设计、及实验教学中的应用,使得课堂教学信息量饱满,设计、实验变得轻松,使教学的效果得到提升,在教学领域具有重要的推广、应用价值。 在自控、测量、无线电通讯、测量等技术领域中,需用到波形发生器,较常用的是正弦波振荡器和多谐振荡器两大类。采用Multisim10仿真软件对正弦波振荡器进行仿真,该软件是NI 公司下属的Electronics WorkbenchGroup 发布的交互式SPICE 仿真和电路分析的软件。前期发展经历了EWB5.0、EWB6. 0、Multisim2001、Mult-isim7、Multisim8、Multisim9 等版本。Multisim10 的特点有:1) 器件丰富。Multisim10比老版本新增了1200 多个器件、500多个SPICE 模块和100 多个开关模式电源模块。2) 虚拟仪器种类齐全。通用仪器有数字万用表、信号源,双通道示波器、波特图示仪、字信号发生器、逻辑分析仪、失真度测试仪、频谱分析仪和网络分析仪等。3) 软件分析功能更强大。分析功能包括静态工作点 分析、交流小信号分析、瞬态分析、灵敏度分析、参数扫描分析、温度扫描分析、传输函数分析、最坏情况分析、特卡洛分析、批处理分析、噪声指数分析、射频分析等。

RC文氏电桥振荡器

RC 文氏电桥振荡器 一、实验目的 1、 学习RC 正弦波振荡器的组成及其振荡条件。 2、 学会测量、测试振荡器。 二、实验原理 下图是运用放大器组成的文氏电桥RC 正弦波振荡电路,图中3R 、4R 构成负反馈支路,1R 、2R 、1C 、2C 串联选聘网络构成正反馈支路并兼做选频网络,二极管构成稳幅电路。调节电位器p R 可以改变负反馈的深度,以满足振荡的振幅条件和改善波形。二极管1D 、2D 要求温度稳定性好且特性匹配,这样才能保证输出波形正负半周对称,同时接入4R 以消除二极管的非线性影响。 图一正弦波振荡电路 三、实验内容 1、 按照图一电路图连接好电路。 2、 启动仿真按钮,用示波器观测有无正弦波输出。如无输出,可调节p R 使O V 从无到有直至不失真。绘出O V 的波形,并记录临界起振、正弦波输

出及出现失真情况下的p R 值。记录结果。 3、 调节电位器p R 使输出波形幅值最大且不失真,分别测量出输出电压 O V ,记录结果,分析振荡的幅值条件。 4、 断开二极管,重复步骤3,将结果与步骤3进行比较。 5、 观察1R =2R =10k Ω,12=C C =0.01μF 和1R =2R =10k Ω,12=C C =0.02μF 两种情况下,分别测量O V 的幅值、反馈电压f V 和频率。 四、实验数据及相应图 1、 调节p R ,输出波形从无到有直至不失真。测试数据下 图2 起振波形

图3 振幅最大不失真 图4 临界失真

2、断开二极管,在上述三种相同情况下,对输出波形的影响。 图5 断开二极管,起振波形 图6 断开二极管,振幅最大不失真波形 图7 断开二极管,临界失真波形

文氏电桥振荡电路仿真实验报告

模拟电子技术课程 文氏电桥振荡器电路仿真实验报告 学号:515021910574 姓名:梁奥 一、 本仿真实验的目的 1.理解RC桥式正弦波震荡电路的原理和功能。 2.能够调节反馈电阻使电路产生正弦波振荡。 3.能够选择适当的RC参数选出特定频率。 4.能够选择适当的稳幅网络,实现稳幅功能,且失真较小。 二、 仿真电路 图2.1 注:集成运放使用LM324,其电源电压为±15V,图中Multisim默认为电源端4、11已接电源。XSC1示波器观察输出电压。

三、 仿真内容 (1)设计电路参数使 f0=500Hz。 (2)计算RC串并联选频网络的频响特性。 (3)使用二极管稳幅电路,使输出振荡波形稳幅,且波形失真较小。 四、 仿真结果 选择RF1=1kΩ,RF2=1.8kΩ,电路产生正弦波,起振过程如图4.1。由于二极管存在动态电阻,因此RF2与RF1的比值小于2。 图4.1 (1)由选频网络特性可知: f = 1 2πRC 因此,选择电阻R=31.8kΩ,电容C=0.01μF,经计算可得 f0理论值为500.7Hz。 实验结果为: f = 1 T =498.0Hz。

图4.2 (2)已知RC 串并联网络的幅频特性为: F i 相频特性为: ?F =?arctan 13f f 0?f 0f ????? ? 当 f =f 0时, F i =13, U f i =13U 0i , ?F =00 如图4.3所示

图4.3 通过一个电路图测试RC串并联电路的频率响应: 图4.4 输入为1kHz,1V的正弦信号,由XBP1可以看出:

基于运算放大器的正弦波发生器

目录 第1章摘要 (2) 第2章设计目的及设计要求 (2) 第3章基本原理 (2) 3.1 基本文氏振荡器 (2) 3.2 振荡条件 (3) 3.3 振荡频率与振荡波形 (5) 第4章参数设计及运算 (6) 4.1 器件选择 (6) 4.2 参数计算 (6) 4.3 波形仿真图 (9) 第5章结论及误差分析 (13) 心得体会 (14) 参考文献 (15)

第1章摘要 本文中介绍了一种基于运算放大器的文氏电桥正弦波发生器。经测试,该发生器能产生频率为100-1000Hz的正弦波,且能在较小的误差范围内将振幅限制在2.5V以内,通过电位器的调节使频率在100HZ-1000HZ内变化。 无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器与正交振荡器,本文将对文氏桥振荡器进行讨论。 第2章设计目的及要求 2.1、设计目的: (1).掌握波形产生电路的设计、组装和调试的方法; (2).熟悉集成电路:集成运算放大器LN356N。并掌握其工作原理,组成文氏电桥振路。 2.2、设计要求: (1)设计波形产生电路。 (2)信号频率范围:100Hz——1000Hz。 (3)信号波形:正弦波。 (4)画出波形产生电路原理图,写出终结报告。 第3章基本原理 3.1正弦振荡器的组成 (1)放大电路:放大信号 (2)反馈网络:必须是正反馈,反馈信号即是放大电路的输入信号 (3)选频网络:保证输出为单一频率的正弦波,即使电路只在某一特定频率下满足自激振荡条件

几种正弦波产生电路的比较

龙源期刊网 https://www.doczj.com/doc/c81486582.html, 几种正弦波产生电路的比较 作者:陈亮施智兴 来源:《山东工业技术》2016年第08期 摘要:选择正弦波产生电路,一般根据高低频率要求、稳定性要求以及用处要求等等选 择具体电路。本文分别通过实验浅析三极管分立元件、555时基模块和集成运放几种产生正弦波电路,并对它们做了比较。 关键词:正弦波;三极管电路;555时基模块;集成运放 DOI:10.16640/https://www.doczj.com/doc/c81486582.html,ki.37-1222/t.2016.08.168 1 三极管RC移项振荡器 图1为分立元件RC移项振荡器,其原理是由C1把三极管TI的集电极信号反馈到RC移相电路上,由于该信号相位与基极进来的信号相位反相( 180°),信号经过三级RC移相电路移相(图1中一级RC移相约60°),相位被移了2π( 360°),也就是实现了正反馈,产生了正弦波。 如图1元件的参数产生的正弦波频率为1KHz左右。以下是经过实验得出的结论:(1) 当电源电压减小时,波形幅度减小,频率变大;当电压小于7V时,没波形产生;(2)当R1减小时,波形幅度减小,频率变大,频率不稳定;(3)当R2减小时,波形幅度减小,频率变大;(4)当R3减小时,波形幅度增大,频率变小;(5)当R5减小时,波形幅度减小,频 率变大;(6)当C2增大时,幅度不变,频率变小; R2、R4、R5三个电阻要相同,C1、C2、C3三个电容值也要相同,否则波形不稳定。调节R1可以改变正弦波的频率,同时也改变波形幅度。此电路分立元件简单便宜,并且容易起振。但是产生的波形不稳定,带负载能力差。 2 555时基模块波形产生电路 图2为555时基模块的正弦波产生电路。电路原理是:当接通电源Vcc时C2的电压为0,模块3脚输出电位Vo为高电位,此时VCC经R1 、R2和R3对C2充电,当Uc2≥2/3Vcc 时,Vo翻转成为低电位,此时模块7脚与1脚接通,并与地接通,C2经R3、R2放电,Uc2 下降;当Uc2下降到≤1/3Vcc时,Vo又翻转成高电位,此时模块7脚与1脚断开,C2放电停止,Vcc又经R1、R2和R3对C2充电,Uc2又从1/3Vcc上升到2/3Vcc, Vo又从高电位变为低电位,周而复始,Vo就是一个脉冲波形(矩形波)。脉冲宽度TL≈0.7(R1+R2+R3)C,脉冲占空TH≈0.7(R2+R3)C,所以脉冲周期。矩形波经积分电路后输出正弦波。该正弦波信号弱、杂波多、不稳定、带负载能力差。调整R3可改变频率,改变C3、C5可以调整波形失真。

基于运算放大器的正弦波发生器

目录 第1章引言 (2) 第2章摘要 (2) 第3章设计目的及设计要求 (2) 第4章基本原理 (3) 4.1 基本文氏振荡器 (3) 4.2 振荡条件 (3) 4.3 振荡频率与振荡波形 (5) 第5章参数设计及运算 (6) 5.1 器件选择 (6) 5.2 参数计算 (6) 5.3 波形仿真图 (9) 第6章结论及误差分析 (13) 心得体会 (14) 参考文献 (15)

第1章引言 毫无疑问,无论是从数学的意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅立叶组合;而从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛地应用。尽管正弦波本身非常简单,但是,如果对其纯度要求较高,那么正弦波的产生也是一项具有挑战的工作。在运算放大器电路中,最适于发生正弦波的是文氏电桥振荡器和正交振荡器,本课程设计采用的是文氏电桥振荡器产生正弦波。 第2章摘要 本文中介绍了一种基于运算放大器的文氏电桥正弦波发生器。经测试,该发生器能产生频率为100-1000Hz的正弦波,且能在较小的误差范围内将振幅限制在2.5V以内,通过电位器的调节使频率在100HZ-1000HZ内变化。 无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器与正交振荡器,本文将对文氏桥振荡器进行讨论。 第3章设计目的及要求 3.1、设计目的:

(1).掌握波形产生电路的设计、组装和调试的方法;(2).熟悉集成电路:集成运算放大器

相关主题
文本预览
相关文档 最新文档