当前位置:文档之家› [资料]抽样定理与信号恢复

[资料]抽样定理与信号恢复

[资料]抽样定理与信号恢复
[资料]抽样定理与信号恢复

[资料]抽样定理与信号恢复

本科实验报告

实验名称: 抽样定理与信号恢复

学员: 学号:

年级: 2012 级专业: 电子工程

所属学院: 指导教员:

实验室: 实验日期:2014年4月25日

一、实验目的和要求

1. 验证抽样定理,进一步理解抽样过程。

2. 掌握对频谱混叠现象的分析。

3. 深入理解信号恢复的条件。

二、实验原理和内容

1. 原理

(1) 离散信号不仅可从离散信号源获得,也可从连续信号抽样获得。

抽样信号,其中为连续信号(例如三角波),是周期为

xt()xtxtPt()()(),,Pt()s

T的矩形窄脉冲。T又称抽样间隔,称为抽样频率,为抽样信号波

1/FT,xt()sssss

xt()形。、Pt()、xt()波形如图1。 s

xt()

t

0T(a)

Pt()

A

t

(b)

xt()s

t0T

(c)

图1 连续信号抽样过程 (2) 连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱

,,mt,A,s (j)S()j,,,ω,,XXm,,,,,sas,,2Tm,,,

m,,A,,ss它包含了原信号频谱以及重复周期为()、幅度按规律S()ff,sas2T2, 变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。因此,抽样信号占有的频带比原信号频带宽得多。以三角波被矩形脉冲抽样为例。三角波的频谱:

,,4E (),,,,,,,,,,,,Xj()()Akk,,k112,kkk,,,,,,

抽样信号的频谱:

,m,,A,1s,,,, XESkm(j)4()(),,,,,,1sas2Tk2,k,,,m,,,

取三角波的有效带宽为,其抽样信号频谱如图2所示。 3,1

X()fE

22E2,2E2(3),

,3f,ff3f01111

X()f

mω,A,s包络线按规律变化S()aT2

ff03f5f7f12ffs111s

(a)三角波频谱 (b)抽样信号频谱

图2 抽样信号频谱图

fB,2f(3) 抽样信号在一定条件下可以恢复出原信号,其条件是,其中为抽sfs B样频率,为原信号占有频带宽度。由于抽样信号频谱是原信号频谱的周期性

f

fffff,,,f延拓,因此,只要通过一个截止频率为(,是原信号频谱中cmcsmm

的最高频率)的低通滤波器就能恢复出原信号。

如果,则抽样信号的频谱将出现混迭,此时将无法通过低通滤波器fB,2sf 获得原信号。

H(j),1

0.707

0,,c

图3 实际低通滤波器在截止频率附近频率特性曲线

在实际信号中,仅含有限频率成分的信号是极少的,大多信号的频率成分是无限的,并且实际低通滤波器在截止频率附近频率特性曲线不够陡峭(如图3 ,,恢复出的信号难免有失真。为了减小失真,所示),若使fB,2ffB,,sfcmf 应将抽样频率取高(),低通滤波器满足。 fB>2fffff,,,sfsmcsm

为了防止原信号的频带过宽而造成抽样后频谱混迭,实验中常采用前置低通滤波器滤除高频分量,如图3所示。若实验中选用的原信号频带较窄,则不必设置前置低通滤波器。

2. 内容

(1) 信号抽样:异步抽样

开关S2拨至“异步”,使得抽样频率分别为1KHz,2KHz,4KHz, 8KHz,分别观察和对比频率f=500Hz,幅度A=5V的正弦波原始信号和抽样信号的波形。

需要说明的是“异步”,为了贴近实际的信号抽样过程,被抽样信号的产生时钟与开关信号的产生时钟不是同一时钟源,并且抽样频率连续可调。

(2) 信号抽样:同步抽样

开关S2拨至“同步”,使得抽样频率分别为1KHz,2KHz,4KHz, 8KHz,分别观察和对比频率f=500Hz,幅度A=5V的正弦波原始信号和抽样信号的波形。

需要说明的是“同步”,为了便于试验操作时信号的观察,被抽样信号的产生时钟与开关信号的产生时钟是同一时钟源。

(3) 信号恢复:同步抽样信号的恢复

开关S2拨至“同步”,使得抽样频率分别为1KHz,2KHz,4KHz, 8KHz,分别观察和对比频率500Hz,2500Hz,幅度A=5V原始信号和恢复信号的波形。

三、实验项目

抽样定理与信号恢复

四、实验器材

LTE-XH-03A信号与系统综合实验箱一个

GDS-1102 100MHz数字存储示波器一台

SD卡一张

连接线若干

五、实验步骤

1、产生频率f=500Hz,幅度A=5V的正弦波作为被抽信号 (1)将扫频开关S3拨至“OFF”档;

(2)按动波形切换开关S4,选择正弦波档;

(3)调节模拟输出幅度调节旋钮W1,使P2处输出正弦波幅度A=5V;

(4)调节频率调节旋钮ROL1,使P2处输出正弦波频率f=500Hz。

2、信号抽样:异步抽样

(1)连接模块S2中模拟信号源输出端P2与模块S3中连续信号输入端P17 ;

(2)开关S2拨至“异步”,用示波器对比观察模块S2中TP2处原始信号(示波器CH1)以及模块S3中TP20处抽样信号(示波器CH2)的波形;

(3)调整模块S3中电位器W1,使得抽样频率分别为1KHz,2KHz,4KHz, 8KHz,观察抽样信号的变化。

(4)记录实验数据和图形,填写表1。

3、信号抽样:同步抽样

(1)保持模块S2中模拟信号源输出端P2与模块S3中连续信号输入端P17的连接;

(2)连接模块S2中时钟输出P5与模块S3上外部开关信号输入点P18;

(3)开关S2拨至“同步”,用示波器对比观察模块S2中TP2处原始信号(示

波器CH1)以及模块S3中TP20处抽样信号(示波器CH2)的波形;

(4)调整模块S2中时钟频率设置按钮S7 ,使得抽样频率分别为

1KHz,2KHz,4KHz, 8KHz,观察抽样信号的变化。

(5)记录实验数据和图形,填写表2。

4、信号恢复:同步抽样信号的恢复

(1)保持“同步”,调整模块S2中时钟频率设置按钮S7,使得抽样频率为

4KHz;

(2)连接模块S3中抽样信号输出端P20与低通滤波器输入端P19;

(3)用示波器对比观察模块S2中TP2处原始信号(示波器CH1)以及模块S3中TP22处恢复信号(示波器CH2)的波形;

(4)单独调节模块S2中频率调节旋钮ROL1,使P2处输出信号频率变为

f=2.5KHz,对比观察示波器中的原始信号和恢复信号波形的变化;

(5)调节模块S2中频率调节旋钮ROL1,使P2处输出正弦波频率f=500Hz;调整模块S2中时钟频率设置按钮S7,使得抽样频率分别为2KHz和1KHz,对比观察示波器中的原始信号和恢复信号波形的变化;

(6)调整模块S2中时钟频率设置按钮S7,使得抽样频率为8KHz,调节模块S2

中频率调节旋钮ROL1,使P2处分别输出正弦波频率f=500Hz和2.5KHz,对比观察示波器中的原始信号和恢复信号波形的变化。

(7)记录实验数据和图形,填写表3、4。

六、实验结果与分析

在此实验时,由于为注意题目的要求,将示波器的两信号端口接反,即示波器CH1为恢复后信号,CH2为原信号。

1(异步抽样

表1 幅度A=5V,f=500Hz的正弦波的异步抽样实验记录

抽样频

抽样信号(X(t))的波形 s

1K

2K

4K

8K

2(同步抽样

表2 幅度A=5V,f=500Hz的正弦波的同步抽样实验记录抽样频

抽样信号(X(t))的波形 s

1K

2K

4K

8K

3(同步抽样信号的恢复

表3 幅度A=5V,f=500Hz的正弦波的同步抽样和恢复实验记录表原始信号(x(t))的波形与抽样频率

恢复信号(y(t))的波形

1K

2K

4K

8K

表4 幅度A=5V,f=2500Hz的正弦波的同步抽样和恢复实验记录表

原始信号(x(t))的波形与抽样频率恢复信号(y(t))的波形

1K

2K

4K

8K

(附:1K和2K的图中黄色的为原始信号,4K和8K中绿色的为原始信号)

七、问题与思考

1. 实验中遇到的问题

抽样信号在一定条件下可以恢复出原信号,其条件是,其中为抽样fB,2fsfs 频率,为原信号占有频带宽度。 Bf

但是实际上要很好地实现信号的恢复,会要求更大一些。 fs

2. 思考题

(1) 如何从抽样信号的时域波形判读抽样频率,

答:抽样信号,其中为连续信号(例如三角波),是周xtxtPt()()(),,xt()Pt()s 期为的矩形窄脉冲。又称抽样间隔,称为抽样频率。可以从图中TT 1/FT,ssss 测出抽样间隔Ts。

(2) 异步抽样与同步抽样的不同点,

答:异步抽样:被抽样信号的产生时钟与开关信号的产生时钟不是同一时钟

源,并且抽样频率连续可调。

同步抽样:被抽样信号的产生时钟与开关信号的产生时钟是同一时钟源。

(3) 对f=500Hz的正弦波进行抽样再恢复时,实际抽样频率要达到多少Hz

(1KHz,2KHz,4KHz,8KHz,)才不失真,为什么,

答:实际抽样频率达到4kHz时才不失真,由题意,500Hz的正弦波信号频带宽度Bs=1000Hz,而fs>=2Bs,所以抽样频率要达到4kHz时,才不失真。(4) 理论上抽样信号只要通过一截止频率为fc(fm?fc?fs-fm,fm是原信号频谱中的最高频率)的低通滤波器就能恢复出原信号,那么实际低通滤波器相比较理想低通滤波器来说,在无失真恢复原信号时还需要考虑哪些影响,

实验五(信号抽样与恢复)

实验五 信号抽样与恢复 一、实验目的 学会用MA TLAB 实现连续信号的采样和重建 二、实验原理 1.抽样定理 若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱 )(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。因此,当s ω≥m ω时,不会发生频 率混叠;而当 s ω

信号的抽样与恢复

信号与系统 实验报告 实验六信号的抽样与恢复 实验报告评分:_______ 实验六信号的抽样与恢复 一、实验目的 1.了解电信号的抽样方法与过程以及信号恢复的方法 2.观察连续时间信号经抽样后其波形图,了解其波形特点。3.验证抽样定理并恢复原信号。

二、实验内容及步骤 1.观察抽样信号的波形。 (1)实验实验布局如图8-7所示;实验电路如图8-8所示;有源低通滤波器如图8-6所示; (2)在输入端TP801处输入频率f = 1kHz,Uim = 1V的三角波信号;(3)用示波器分别观测输入信号、周期矩形脉冲信号及抽样信号的波形; 2.验证抽样定理与信号恢复 (1)信号恢复实验电路如图8-6所示,R1 = R2 = R = 5.1k ,电容器有两组不同的数据,需根据截止频率,利用式(8-1)、(8-2)计算出其电容量C1 、C2,再决定抽样信号fs ( t )从实验板的SG802或SG803输入到低通滤波器。 (2)信号发生器输出频率f = 1kHz,Uim = 1V的三角波,接于输入端TP801处;示波器接于低通滤波器的输出端。 (3)设1kHz的三角波信号的有效带宽为3kHz,fs(t)信号分别通过截止频率为fc1和fc2 的低通滤波器,观察其原信号的恢复情况,并完成表8-1的观测任务。 (4)将三角波信号换成正弦波信号,观察其抽样过程及信号恢复过程。 (a). 当抽样频率为3KHz、截止频率为2KHz时: Fs(t)的波形F'(t)波形

(b). 当抽样频率为6KHz、截止频率为2KHz时: Fs(t)的波形F'(t)波形 (c). 当抽样频率为12KHz、截止频率为2KHz时: Fs(t)的波形F'(t)波形 (d). 当抽样频率为3KHz、截止频率为4KHz 时:Fs(t)的波形F'(t)波形

信号的采样与恢复

实验报告 课程名称:信号分析与处理 指导老师: 成绩: 实验名称:信号的采样与恢复 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 了解信号的采样方法与过程以及信号恢复的方法。 2. 验证采样定理。 二、实验内容和原理 2.1信号的自然采样 采样信号为周期Ts ,宽度τ的矩形脉冲信号S(t)。 s(t)的傅里叶变换为: 2(t)Sa( )()2 s s s n S n T ωτ πτ δωω+∞ -∞ = -∑ 采样的过程可以视为两个信号相乘:()()()s f t f t s t = 在频域中,1 ()()()2Sa()()2 s s s s F F S n F n T ωωωπ ωττωω+∞ -∞= *=-∑ 可以看到自然采样后的频谱除了左右平移采样信号的角频率ωs 外,还按取样函数Sa(x)的 规律衰减。 时域采样定理:如果采样信号的频率为fs ,原信号的最大频率为f m ,为了采样后信号的频谱不混叠,需要有fs ≥2f m 。

2.2信号的恢复 在不发生频谱混叠的时候,将信号通过的低通滤波器,理论上可以完全恢复原信号。低通滤波器的截止频率略大于fm,即“频谱加窗”的方法。 如果发生了频谱混叠,则原信号的频谱不能完全被恢复,通过低通滤波器后输出的信号将产生失真。 本实验分别用500Hz三角波和正弦波作为输入信号,占空比50%和10%的0.4kHz、1kHz、2kHz、5kHz、10kHz的矩形脉冲作为采样信号,使用截止频率1kHz以及2kHz的低通滤波器,观察输出波形,验证采样定理。 实验中,受自然采样、实验滤波器效果的限制,恢复后的波形难免都会有失真。三、主要仪器设备 PC一台、myDAQ设备一套、面包板一块、导线、电容、电阻若干。 四、操作方法和实验步骤 1.编辑波形文件:正弦波峰峰值4V、频率500Hz,与10kHz、幅值1V、占空比50%的方 波相乘,保存波形文件。改变方波频率为5kHz、2kHz、1kHz、400Hz,重复以上过程。 改方波占空比为10%,重复以上过程。改正弦波为峰峰值1V、频率500Hz三角波,重复以上过程。共获得5*2*2=20个波形文件。 2.连接线路: 3.加载步骤1中生成的波形,打开slope,观察并保存两个通道的波形。 4.改变参数,变为截止频率2kHz的滤波器,重复步骤1-3。共获得40个波形图。 5.参数: 1kHz滤波器:R1=R2=5.1kΩ,C1=C2=10nF (103) 仿真结果:截止频率约1.1kHz

2021年信号与系统 抽样定理实验

*欧阳光明*创编 2021.03.07 信号与系统 欧阳光明(2021.03.07) 实验报告 实验六抽样定理 实验六抽样定理 一、实验内容:(60分) 1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。 2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。 (1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m三种情况下抽样信号的波形; 程序如下: dt=0.1; f0=0.2; T0=1/f0;

fm=5*f0; Tm=1/fm; t=-10:dt:10; f=sinc(t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('?-á?D?D?o?oí3é?ùD?o?'); for i=1:3; fs=i*fm;Ts=1/fs; n=-10:Ts:10; f=sinc(n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 运行结果如下: (2)求解原连续信号和抽样信号的幅度谱; 程序: dt=0.1;fm=1; t=-8:dt:8;N=length(t);

f=sinc(t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(- j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-6:Ts:6; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1; w=k*wm/N; F=f*exp(-1i*n'*w)*Ts; subplot(4,1,i+1);plot(w/(2*pi),abs(F)); axis([0,max(4*fm),0.5*min(abs(F)),1.1*max(abs(F))]); end 波形如下:

通信原理抽样定理及其应用实验报告

实验1 抽样定理及其应用实验 一、实验目的 1.通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点; 3.学习PAM调制硬件实现电路,掌握调整测试方法。 二、实验仪器 1.PAM脉冲调幅模块,位号:H(实物图片如下) 2.时钟与基带数据发生模块,位号:G(实物图片见第3页) 3.20M双踪示波器1台 4.频率计1台 5.小平口螺丝刀1只 6.信号连接线3根 三、实验原理 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 PAM实验原理:它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无 信号输出 图1-2 PAM信道仿真电路示意图

四、可调元件及测量点的作用 32P01:模拟信号输入连接铆孔。 32P02:抽样脉冲信号输入连接铆孔。 32TP01:输出的抽样后信号测试点。 32P03:经仿真信道传输后信号的输出连接铆孔。 32W01:仿真信道的特性调节电位器。 五、实验内容及步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.信号线连接: 用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。 4.输入模拟信号观察: 将DDS信号源产生的正弦波(通常频率为2KHZ)送入抽样模块的32P01点,用示波器在32P01处观察,调节电位器W01,使该点正弦信号幅度约2V(峰一峰值)。5.取样脉冲观察: 当DDS信号源处于《PDM波1》状态,旋转SS01可改变取样脉冲的频率。示波器接在32P02上,可观察取样脉冲波形。 6.取样信号观察: 示波器接在32TP01上,可观察PAM取样信号,示波器接在32P03上,调节“PAM脉冲幅度调制”上的32W01可改变PAM信号传输信道的特性,PAM取样信号波形会发生改变。 7.取样恢复信号观察: PAM解调用的低通滤波器电路(接收端滤波放大模块,信号从P14输入)设有两组参数,其截止频率分别为2.6KHZ、5KHZ。调节不同的输入信号频率和不同的抽样时钟频率,用示波器观测各点波形,验证抽样定理,并做详细记录、绘图。(注意,

信号的采样与恢复

信号的采样与恢复实验 一、任务与目的 1. 熟悉信号的采样与恢复的过程。 2. 学习和掌握采样定理。 3. 了解采样频率对信号恢复的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 采样定理 采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值表示。这些值包含了该连续信号全部信息,利用这些值可以恢复原信号。采样定理是连续时间信号与离散时间信号之间的桥梁。 采样定理:对于一个具有有限频谱,且最高频率为ωmax的连续信号进行采样,当采样频率ωs满足ωs>=ωmax时,采样信号能够无失真地恢复出原信号。三角波信号的采样如图4-1-1所示。 图4-1-1信号的采样 2. 采样信号的频谱 连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为

它包含了原信号频谱以及重复周期为的原信号频谱的搬移,且幅度按规律变化。所以抽样信号的频谱便是原信号频谱的周期性拓延。某频带有限信号被采样前后频谱如图4-1-2。 图4-1-2 限带信号采样前后频谱 从图中可以看出,当ωs ≥2Bf 时拓延的频谱不会与原信号的频谱发生重叠。这样只需要利用截止频率适当的滤波器便可以恢复出原信号。 3. 采样信号的恢复 将采样信号恢复成原信号,可以用低通滤波器。低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。实验中采用的低通滤波器原理图如图4-1-3所示,其截止频率固定为 1802f Hz RC π=≈ 图4-1-3 滤波器电路 4. 单元构成 本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。其中的采样保持部分电路由一片CD4052完成。此电路由两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲,经过采样后的信号如图4-1-1所示。 三、内容与步骤 本实验在脉冲采样与恢复单元完成。 1. 信号的采样

通信原理实验-抽样定理

学生实验报告

) 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语言信号,通常采用8KHz 抽样频率,这样可以留出1200Hz的防卫带。见图4。如果fs<fH,就会出现频谱混迭的现象,如图5所示。 在验证抽样定理的实验中,我们用单一频率fH的正弦波来代替实际的语音信号。采用标准抽样频率fs=8KHZ。改变音频信号的频率fH,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。 验证抽样定理的实验方框图如图6所示。在图8中,连接(8)和(14),就构成了抽样定理实验电路。由图6可知。用一低通滤波器即可实现对模拟信号的恢复。为了便于观察,解调电路由射随、低通滤波器和放大器组成,低通滤波器的截止频率为3400HZ

2、多路脉冲调幅系统中的路际串话 ~ 多路脉冲调幅的实验方框图如图7所示。在图8中,连接(8)和(11)、(13)和(14)就构成了多路脉冲调幅实验电路。 分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。N路抽样脉冲在时间上是互不交叉、顺序排列的。各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。本实验设置了两路分路抽样电路。 多路脉冲调幅信号进入接收端后,由分路选通脉冲分离成n路,亦即还原出单路PAM信号。 图7 多路脉冲调幅实验框图 冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。这样大的衰减带来的后果是严重的。但是,在分路选通后加入保持电容,可使分路后的PAM信号展宽到100%的占空比,从而解决信号幅度衰减大的问题。但我们知道平顶抽样将引起固有的频率失真。 PAM信号在时间上是离散的,但是幅度上趋势连续的。而在PAM系统里,PAM信只有在被量化和编码后才有传输的可能。本实验仅提供一个PAM系统的简单模式。 3、多路脉冲调幅系统中的路标串话 路际串话是衡量多路系统的重要指标之一。路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中各路通话之间的串话。 在一个理想的传输系统中,各路PAM信号应是严格地限制在本路时隙中的矩形脉冲。但是如果传输PAM信号的通道频带是有限的,则PAM信号就会出现“拖尾”的现象。当“拖尾”严重,以至入侵邻路时隙时,就产生了路标串话。 在考虑通道频带高频谱时,可将整个通道简化为图9所示的低通网络,它的上截止频率为:f1=1/(2

信号取样与恢复实验报告概要

实验四信号取样与恢复 一、实验目的 1.了解模拟信号取样及恢复的基本方法。 2.理解和掌握时域取样定理,掌握无混叠和有混叠条件下信号取样与恢复的频域分析方法。 3.了解取样频率、取样脉冲宽度、恢复滤波器截止频率等对取样信号和恢复信号的影响。 4.熟悉DDS-3X25虚拟信号发生器的使用方法。 二、实验内容 1.无混叠条件下正弦信号取样与恢复测试分析,比较不同取样频率和取样脉冲宽度对取样及恢复信号的影响。 2.有混叠条件下正弦信号的取样与恢复测试分析。 3.非正弦周期信号的取样与恢复测试分析,比较不同恢复滤波器截止频率对恢复信号的影响。 三、实验仪器 1.信号与系统实验硬件平台一台 2.信号取样与恢复实验电路板一块 3.DSO-3064虚拟示波器一台 4.DDS-3X25虚拟信号发生器二台 5.PC机(含DSO-3064、DDS-3X25驱动及软件)一台 四、实验原理 1. 信号取样 信号取样与恢复实验电路板,如图4.1所示。该电路板通过背面的两个DB9公头插接到硬件实验平台上使用。

) ()()(t s t f t f s =图4.1 信号取样与恢复实验电路板 电路板左侧为一个采用模拟开关进行取样的信号取样电路,取样脉冲序列为高电平(高电平对应电压应大于+1V )时模拟开关接通、为低电平(低电平电压应小于-1V )时模拟开关断开。在“信号输入”端接入被取样模拟信号,通过改变取样脉冲序列(通常为矩形脉冲序列)的频率(该电路取样频率不宜超过256kHz )和占空比,即可在“取样输出”端获得不同频率和不同取样脉冲宽度的取样信号。取样信号()s f t 可用(4-1)式来描述 (4-1) 式中()f t 表示被取样模拟信号,()s t 为模拟开关的开关函数,当模拟开关接通时,()1s t =,反之则 ()0s t =。 电路板右侧是两个用作恢复滤波器的低通滤波器,可根据实验需要选用。其中“恢复滤波器1”是一个截止频率约为1kHz 、通带增益等于4的二阶低通滤波器,其截止频率不可调节。“恢复滤波器2”是一个截止频率可调,通带增益等于1的八阶巴特沃斯滤波器,其截止频率(转折频率)调节范围为0.1Hz~25kHz ,通过外接“控制时钟”信号f0来调节,滤波器转折频率为f0时钟频率的1/100。 由(4-1)式获取的取样信号()s f t 依然是一个时域信号。设()f t 的频谱为()F j ω,()s t 的频谱为()S j ω,则根据频域卷积定理,()s f t 的频谱 1 ()()*()2s F j F j S j ωωωπ = (4-2) 设取样脉冲序列的周期为s T 、脉冲宽度为τ,则 ()()Sa 2s s s n n S j n ωτωτωδωω∞ =-∞ ?? =- ??? ∑ (4-3) 式中2s s ωπ=为取样角频率、Sa()g 为取样函数,即()S j ω为取样函数包络下的冲激序列。此时 ()()1()()*()Sa 222 Sa 2s s s s n s s n s n F j F j S j F j n n F j n T ωωτ ωωωτωωππωττωω∞=-∞∞ =-∞?? ==-?? ????? ?? = -?? ?? ???∑∑ (4-4) 因此,取样信号的频谱()s F j ω是将原信号频谱()F j ω在ω轴上以s ω为间隔的非等幅周期延拓,如图4.2所示。若()F j ω的幅度归一化为1,则第n 个延拓()s F j n ωω-???? 的幅度为 ()Sa 2 s s n A n T ωτ τ ??= ??? (4-5)

试验八抽样定理

实验八抽样定理 一实验目的 1 了解电信号的采样方法与过程以及信号恢复的方法。 2 验证抽样定理。 二原理说明 1 离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。抽样信号f S(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。即: f S(t)= f(t)×s(t) 如图8-1所示。T S为抽样周期,其倒数f S =1/T S称为抽样频率。 图8-1 对连续时间信号进行的抽样 对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限多个经过平移的原信号频谱。平移后的频率等于抽样频率f S及其各次谐波频率2 f S、3f S、4f S、5f S ……。 当抽样信号是周期性窄脉冲时,平移后的频谱幅度按sinx/x规律衰减。抽样信号的频谱是原信号频谱周期性的延拓,它占有的频带要比原信号频谱宽得多。 2 正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。只要用一截止频率等于原信号频谱中最高频率f max的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。 (a)连续信号的频谱 (b)高抽样频率时的抽样信号及频谱(不混叠) (c)低抽样频率时的抽样信号及频谱(混叠) 图8-2冲激抽样信号的频谱图 3 信号得以恢复的条件是f S>2B,其中f S为抽样频率,B为原信号占有的频带宽度。而f min =2B为最低的抽样频率,又称为“奈奎斯特抽样率”。当f S <2B时,抽样信号的频谱会了生混叠,从发生混迭后的频谱中,我们无法用低通滤波器获胜者得原信号频谱的全部内容。在实际使用中,仅包含有限频谱的信号是极少的,因此即使f S=2B,恢复后的信号失真还是难免的。图8-2画出了当抽样频率f S>2B(不混迭时)及f S<2B(混迭时)两种情况下冲激抽样信号的频谱图。 实验中选用f S <2B、f S =2B、f S >2B三种情况抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f S必须大于信号频率中最高频率的两倍即f S >2 f max。 4 为了实现对连续信号的抽样和抽样信号的复原,可用实验原理框图8-3的方案。除

实验信号的抽样与恢复.doc

实验一信号的抽样与恢复(PAM) 一、实验目的 1、验证抽样定理 2、观察了解PAM信号形成的过程; 二、实验原理 由于模拟通信的有效性和可靠性很低,不能满足实际通信的需要,现在普遍采用数字通信,可大大提高可靠性和有效性。但是实际的信号一般都是模拟信号,所以模拟信号数字化是实现数字通信的基础,而模数转化的第一步就是信号的抽样。我们的目的就是用离散值来代替模拟信号,以便于在新道中传输,而且由这些离散值能准确无误地恢复原来的模拟信号。 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息,并且从抽样信号中可以无失真地恢复出原始信号。 抽样定理在通信系统、信息传输理论方面占有十分重要的地位。数字通信系统是以此定理作为理论基础。抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。 抽样定理指出,一个频带受限信号m(t),如果它的最高频率为fh,则可以唯一地由频率等于或大于2fh的样值序列所决定。抽样信号的时域与频域变化过程及原理框图如下。 抽样定理实验原理框图 抽样:一个频带限制在(0—Fm)范围内的信号f(t),如果用频率为fs>=2fm 的脉冲序列对其进行等间隔抽样,则抽样信号能完全确定原信号f(t),这也就是奈奎斯特定理。 此外实际中还有一类带通信号,频带限制在(f1—f2)范围内,此时抽样频率最小为fs=2B+2(f2-nB)/n,其中n为小于f2/B的最大整数。上面的定理也可以从频谱的角度来说明。

抽样信号为s(t)=f(t) (t) f(t) 相乘s(t) 冲激序列 2 恢复 由频谱图标显示的频谱图可知通过适当的滤波器既可恢复原信号。

信号的采样与恢复

信号的采样与恢复 (安徽建筑工业学院电子与信息学院课程设计) 2012年06月29日 此稿仅为借鉴 摘要 (2) 正文 一、设计目的与要求 (3) 二、设计原理 (4) 三、设计内容和步骤 (5) 1.用MATLAB产生连续信号y=sin(t)和其对应的频谱 (6) 2.对连续信号y=sin(t)进行抽样并产生其频谱 (7) 3. 通过低通滤波恢复原连续信号 (9) 四、总结 (12) 五、数据分析 (13) 六、参考文献 (1) 摘要

数字信号处理是一门理论与实践紧密结合的课程。做大量的习题和上机实验,有助于进一步理解和巩固理论知识,还有助于提高分析和解决实际问题的能力。过去用其他算法语言,实验程序复杂,在有限的实验课时内所做的实验内容少。MATLAB强大的运算和图形显示功能,可使数字信号处理上机实验效率大大提高。特别是它的频谱分析和滤波器分析与设计功能很强,使数字信号处理工作变得十分简单、直观。 本实验设计的题目是:信号的采样与恢复、采样定理的仿真。通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对采样后的频谱进行分析,最后通过设计低通滤波器滤出抽样所得频谱中多个周期中的一个周期频谱,并显示恢复后的时域连续信号。实验中,原连续信号的频谱由于无法实现真正的连续,所以通过扩大采样点的数目来代替,理论上当采样点数无穷多的时候即可实现连续,基于此尽可能增加采样点数并以此来产生连续信号的频谱。信号采样过程中,通过采样点的不同控制采样频率实现大于或小于二倍最高连续信号的频率,从而可以很好的验证采样定理。信号恢复,滤波器的参数需要很好的设置,以实现将抽样后的信号进行滤波恢复原连续信号。 一、设计目的与要求 1.设计目的和要求 1.掌握利用MATLAB在数字信号处理中的基本应用,并会对结果用所学知识进 行分析。 2.对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连 续信号和采样信号进行FFT频谱分析。 3.从采样信号中恢复原信号,对不同采样频率下的恢复信号进行比较分析。 4.基本要求:每组一台电脑,电脑安装MATLAB6.5版本以上软件。 二、设计原理

实验1、抽样定理实验

∞ 2 f 实验 1 PAM 调制与抽样定理实验 一、实验目的 1. 掌握抽样定理原理,了解自然抽样、平顶抽样特性; 2. 理解抽样脉冲脉宽、频率对恢复信号的影响; 3. 理解恢复滤波器幅频特性对恢复信号的影响; 4. 了解混迭效应产生的原因。 二、实验原理 1. 抽样定理简介 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽 样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输 模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 图 1-1 信号的抽样与恢复 假设 m (t ) 、δT (t ) 和 m s (t ) 的频谱分别为 M (ω) 、δT (ω) 和 M s (ω) 。按照频率卷积定 理, m (t ) δT (t ) 的傅立叶变换是 M (ω) 和δT ( ω) 的卷积: M (ω) = 1 [M (ω) *δ (ω)] = 1 ∑ M (ω- n ω) s 2π T n =-∞ 该式表明,已抽样信号m s (t ) 的频谱 M s (ω) 是无穷多个间隔为ωs 的 M (ω) 相迭加而成。 需要注意,若抽样间隔 T 变得大于 1 , 则 M (ω) 和δ (ω) 的卷积在相邻的周期内存在 2 f H T 重叠(亦称混叠),因此不能由 M s (ω) 恢复 M (ω) 。可见,T = 1 是抽样的最大间隔,它被 H 称为奈奎斯特间隔。下图所示是当抽样频率 f s ≥2B 时(不混叠)及当抽样频率 f s <2B 时 (混叠)两种情况下冲激抽样信号的频谱。 s T

实验四抽样定理

实验四:抽样定理
一、实验目的
1、理解信号的抽样及抽样定理以及抽样信号的频谱分析。 2、掌握和理解信号抽样以及信号重建的原理。
二、实验原理
1、信号的抽样及抽样定理
抽样(Sampling),就是从连续时间信号中抽取一系列的信号样本,从而,得到一个离 散时间序列(Discrete-time sequence),这个离散序列经量化(Quantize)后,就成为所谓的 数字信号(Digital Signal)。今天,很多信号在传输与处理时,都是采用数字系统(Digital system)进行的,但是,数字系统只能处理数字信号,不能直接处理连续时间信号或模拟信 号(Analog signal)。为了能够处理模拟信号,必须先将模拟信号进行抽样,使之成为数字 信号,然后才能使用数字系统进行传输与处理。所以,抽样是将连续时间信号转换成离散时 间信号必要过程。模拟信号经抽样、量化、传输和处理之后,其结果仍然是一个数字信号, 为了恢复原始连续时间信号,还需要将数字信号经过所谓的重建(Reconstruction)和平滑 滤波(Smoothing)。图 4.1 展示了信号抽样与信号重建的整个过程。
Antialiasing
xa (t) filter
Sampler/ Holder
p(t)
A/D convertor
Digital Processor
图 4.1 模拟信号的数字处理过程
图 4.2 给出了信号理想抽样的原理图:
x(t)
×
xs (t)
D/A convertor
X( jω)
Antialiasing
filter y(t)
p(t)
ω
?ωm ωm
(a)
(b)
图 4.2 (a) 抽样原理图,(b) 带限信号的频谱
上图中,假设连续时间信号是一个带限信号(Bandlimited Signal),其频率范围为
? ωm ~ ωm ,抽样脉冲为理想单位冲激串(Unit Impulse Train),其数学表达式为:

p(t) = ∑δ (t ? nTs )
4.1
?∞
由图可见,模拟信号 x(t)经抽样后,得到已抽样信号(Sampled Signal)xs(t),且:
xs (t) = x(t) p(t)
4.2

5.信号抽样及抽样定理

1、结合抽样定理,利用MATLAB编程实现信号经过冲激脉冲抽样后得到的抽样信号及其频谱,并利用构建信号,并计算重建信号与原升余弦信号的误差。 解: wm=2; wc=1.2*wm; Ts=1; dt=0.1; t1=-10:dt:10; ft=sinc(t1/pi); N=5000; k=-N:N; W=2*pi*k/((2*N+1)*dt); n=-100:100; nTs=n*Ts; fst=sinc(nTs/pi); subplot(221); plot(t1,ft,':'),hold on; stem(nTs,fst),grid on; axis([-10,10,-0.4,1.1]); xlabel('Time(sec)'),ylabel('fs(t)'); title('Sa(t)抽样后信号'),hold off,

Fsw=Ts*fst*exp(-j*nTs'*W); subplot(222); plot(W,abs(Fsw)),grid on; axis([-20 20 0 4]); xlabel('\omega'),ylabel('Fs(w)'); title('Sa(t)抽样信号频谱'); t=-10:dt:10; f=fst*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); subplot(223); plot(t,f),grid on; axis([-10 10 -0.4 1.1]); xlabel('t'),ylabel('f(t)'); title('重建新号'); error=abs(f-ft); subplot(224); plot(t,error),grid on xlabel('t'),ylabel('error(t)'); title('误差');

抽样定理

实验一 抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性 2、掌握自然抽样及平顶抽样的实现方法 3、理解低通采样定理的原理 4、理解实际的抽样系统 5、理解低通滤波器的幅频特性对抽样信号恢复的影响 6、理解低通滤波器的相频特性对抽样信号恢复的影响 7、理解平顶抽样产生孔径失真的原理 8、理解带通采样定理的原理 二、实验内容 1、验证低通采样定理原理 2、验证低通滤波器幅频特性对抽样信号恢复的影响 3、验证低通滤波器相频特性对抽样信号恢复的影响 4、验证带通抽样定理原理 5、验证孔径失真的原理 三、实验原理 抽样定理原理:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤ H f 21 秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。(具体可参考《信号与系统》) 我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路

输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。抽样定理实验的原理框图如下: 抽样/ 保持被抽样信号 抽样脉冲 低通滤波器抽样恢复信号 图1抽样定理实验原理框图 抽样/保持被抽样信号 抽样脉冲低通滤波器抽样恢复信号 低通滤波器 图2实际抽样系统 为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。 另一种方案是采用较复杂的信号,但这种信号不便于观察,如错误!未找到引用源。所示: 被抽样信号抽样恢复后的信号 图3复杂信号抽样恢复前后对比 你能分辨错误!未找到引用源。中抽样恢复后信号的失真吗 因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+

实验2:连续信号的采样和恢复

电 子 科 技 大 学 实 验 报 告(二) 学生姓名: 学 号: 指导教师: 一、 实验室名称:信号与系统实验室 二、 实验项目名称:连续信号的采样和恢复 三、实验原理: 实际采样和恢复系统如图3.4-1所示。可以证明,奈奎斯特采样定理仍然成立。 ? ) x t ) (t P T ) 图3.4-1 实际采样和恢复系统 采样脉冲: 其中,T s π ω2= ,2/)2/sin(τωτωτs s k k k T a =,T <<τ。 采样后的信号: ∑∞ -∞ =-=?→← k s S F S k j X T j X t x )((1)()(ωωω 当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的信号)(t x S 恢复原始信号)(t x 。 ()()2() F T T k s k p t P j a k ωπδωω+∞ =-∞ ←?→=-∑

四、实验目的与任务: 目的:1、使学生通过采样保持电路理解采样原理。 2、使学生理解采样信号的恢复。 任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。 五、实验内容: 1、采样定理验证 2、采样产生频谱交迭的验证 六、实验器材(设备、元器件): 数字信号处理实验箱、信号与系统实验板的低通滤波器模块U11和U22、采样保持器模块U43、PC机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。 七、实验步骤: 打开PC机端软件SSP.EXE,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。 【1.采样定理验证】 1、连接接口区的“输入信号1”和“输出信号”,如图1所示。 图1 观察原始信号的连线示意图 2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz”。按“F4”键把采样脉冲设为10kHz。 3、点击SSP软件界面上的按钮,观察原始正弦波。 4、按图2的模块连线示意图连接各模块。

低通信号的抽样定理

实验一抽样定理 一.概述 抽样的分类: (1) 根据信号是低通型的还是带通型的,抽样定理分低通抽样定理和带通抽样定理。 (2) 根据用来抽样的脉冲序列是等间隔的还是非等同隔的,又分均匀抽样定理和非均匀抽样。 (3) 根据抽样的脉冲序列是冲击序列还是非冲击序列,又可分理想抽样和实际抽样。 二.实验原理及其框图 抽样定理是通信原理中十分重要的定理之一,是模拟信号数字化的理论基础。 低通型连续信号的抽样定理 一个频带限制在内的时间连续信号,若以的间隔对它进行等间隔抽样,则将被所得到的抽样值完全确定。 原理框图 图1 抽样 说明:抽样过程中满足抽样定理时,PCM系统应无失真。这一点与量化过程有本质区别。量化是有失真的,只不过失真的大小可以控制。

三.实验步骤 1、根据抽样原理,用Systemview 软件建立一个仿真电路,如下图所示: 图2 仿真电路 元件参数配制 Token 0: 被采样的模拟信号—正弦波(频率=100Hz,电平=1V,相位=0)Token 2: 乘法器 Token 5 抽样脉冲——窄脉宽矩形脉冲(脉宽=1us ) Token1,3: 模拟低通滤波器(截止频率=100 Hz ) Token 4,6,7: 观察点—分析窗(6频率=100Hz 电压=-1V) 2、运行时间设置 运行时间=0.3 秒采样频率=10,00 赫兹 3、运行系统 在Systemview 系统窗内运行该系统后,转到分析窗观察Token 5,6,8三个点的波形。 4、功率谱 在分析窗绘出该系统调制后的功率谱。 四、实验报告 1)观察实验波形:Token 0-被采样的模拟信号波形;Token 2-采样后波形;Token 3-恢复信号的波形。 2)整理波形,存入文档。

实验九信号的自然采样与恢复

实验九信号的自然采样与恢复 一、实验目的: 1、理解信号的采样及采样定理以及自然采样信号的频谱特征。 2、掌握和理解信号自然采样以及信号重建的原理,并能用MATLAB实现。 二、实验原理及方法: 本实验主要涉及采样定理的相关内容以及低通滤波器恢复原连续信号的相关知识。信号的抽样与恢复示意图如图7-1所示。 图7-1 信号的抽样与恢复示意图 信号抽样与恢复的原理框图如图7-2所示。

图 7-2 信号抽样与恢复的原理框图 由原理框图不难看出,A/D 转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A 转换环节实现数/模转换,得到连续时间信号;低通滤波器的作用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号。 原信号得以恢复的条件是B f s 2≥,其中s f 为采样频率,B 为原信号占有的频带宽度。B f 2min =为最低采样频率,当B f s 2<时,采样信号的频率会发生混迭,所以无法用低通滤波器获得原信号频谱的全部内容。 三、实验内容及步骤: 给定带限信号 f(t),其频谱为 1、画出此信号的频谱图(ω的取值:-0.5π <ω <0.5π ,精度取0.01rad )。 答:画出f(t)的频谱图即F(W)的图像 程序代码如下: #include #include #define PI 3.14 double f(double w) {

if (w>=-0.5*PI && w<=0.5*PI) return cos(w); else return 0; } main() { double w,F; FILE *fp; for (w=-0.5*PI;w<=0.5*PI;w+=0.01) { F=f(w); printf("w=%.2f, F(w)=%f\n",w,F); fp=fopen("d:\\2.txt","w"); fprintf(fp,"%f\t",F); } system("pause"); } ③F(W)的图像

抽样定理与信号恢复(学生用)

实验五 抽样定理与信号恢复 一、实验目的 1、观察离散信号频谱,了解其频谱特点。 2、验证抽样定理并恢复原信号。 二、实验原理 1、离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。抽 样信号 ()()()S f t f t s t =? 其中()f t 为连续信号(例如三角波),()s t 是周期为S T 的矩形窄脉冲。S T 又称抽样间隔,1S S f T = 称抽样频率。()f t 、()s t 、()S f t 波形如图5-1。 t (a) t t 图5-1 连续信号的抽样过程 将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,信号抽样与恢复实验原理如图5-2所示。

) t 图5-2 信号抽样与恢复实验原理图 2、连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱为 []∑ Ω-Ω= )()2 ( )(S S S m j F m Sa T A j F ωττω 它包含了原信号频谱以及重复周期为S f (2S S f π Ω= )、幅度按()2 S m A Sa T ττΩ规 律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。因此,抽样信号占有的频带比原信号频带宽得多。 以三角波被矩形脉冲抽样为例。三角波的频谱 [][]∑ ∑∞ -∞ =∞ -∞ =-= -=k k k k j k E k j A j F )(4)()(1 2 1ωωσπωωσπ ω 抽样信号的频谱 ∑ ∞ -∞ =-∞=Ω--Ω?= m k S S S m k m Sa k E T A j F )()2 ( 1 4)(12 ωωστπτω 取三角波的有效带宽为13ω,三角波的频谱如图5-3所示,抽样信号的频谱如图5-4所示。 f 图5-3 三角波的频谱

实验6抽样定理与信号恢复

实验6 抽样定理与信号恢复 一、实验目的 1. 观察离散信号频谱,了解其频谱特点; 2. 验证抽样定理并恢复原信号。(对比三个不同频率的抽样信号,在不同脉冲宽度条件下,通过不同截止频率的滤波器后,恢复原信号的效果)。 二、实验原理说明 1. 离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。抽样信号 Fs (t )=F (t )·S (t ) 其中F (t )为连续信号(例如三角波),S (t )是周期为Ts 的矩形窄脉冲。Ts 又称抽样间隔,Fs=1Ts 称抽样频 率,Fs (t )为抽样信号波形。F (t )、S (t )、Fs (t )波形如图6-1。 将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图6-2所示。 ()∑∞ ∞ --?=m s s m m Sa Ts A j )(22 s F ωωπδτ ωτ ω ----(1) 它包含了原信号频谱以及重复周期为fs (f s =π ω2s 、幅度按S T A τSa (2 τωs m )规律变化的原信号频谱,即抽样信号的 频谱是原信号频谱的周期性延拓。因此,抽样信号占有的频带比原信号频带宽得多。 以三角波被矩形脉冲抽样为例。三角波的频谱

t -4T S -T S 0T S 4T S 8T S 12T S t t 2 /1τ1 τ2 /31τ2 /1τ1τ2 /31τ2 /1τ-(a) (b) (c) 图6-1 连续信号抽样过程 F (j ω)=∑∞ -∞ =-K k k sa E )2()2 ( 1 2τ πωδππ

2.连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱 Fs (j ω)= 式中 取三角波的有效带宽为31ω18f f s =作图,其抽样信号频谱如图6-3所示。 如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。 3. 抽样信号在一定条件下可以恢复出原信号,其条件是fs ≥2B f ,其中fs 为抽样频率,B f 为原信号占有频带宽度。由于抽样信号频谱是原信号频谱的周期性延拓,因此,只要通过一截止频率为fc (fm ≤fc ≤fs-fm ,fm 是原信号频谱中的最高频率)的低通滤波器就能恢复出原信号。 )()2 (212s m k s m k k Sa m Sa TS EA ωωωδπτωτπ--??∑∞-∞ =-∞=1 11112ττπω==f 或(a) 三角波频谱 f 1 1 11

相关主题
文本预览
相关文档 最新文档