当前位置:文档之家› 变压吸附制氧可行方案及设备选型

变压吸附制氧可行方案及设备选型

如有你有帮助,请购买下载,谢谢!变压吸附制氧技术及工艺可行方案

0页

目录

一、***********气体科技有限公司简介 ................................... 错误!未定义书签。

二、气体外包业务简介.............................................................. 错误!未定义书签。

三、变压吸附制氧技术原理和发展现状..................................... 错误!未定义书签。

四、*******VPSA设备选型及优势............................................. 错误!未定义书签。

五、北大先锋业绩一览表 .......................................................... 错误!未定义书签。

一、***********气体科技有限公司简介

***********气体科技有限公司(以下简称“*******”)是****北大先锋气体科技有限公司(以下简称“北大先锋”)的控股子公司,专注于各类工业气体的现场供气业务,依托北大先锋雄厚的技术研发实力和丰富的工程设计建设经验,百达气体迅速成长为一家集设计、制造、建设、运营各类工业气体装置的专业气体公司。

*******可为钢铁、有色冶金、化工、电子、玻璃、玻纤、造纸、炭黑、水处理、垃圾焚烧、食品以及医疗保健等行业提供氧气、一氧化碳、氮气、氢气和其它气体及相关服务,并可处理高炉煤气、黄磷尾气、电石尾气等各种工业尾气。

*******始终坚持“专注供气业务”的战略,秉承“百分之百努力,百分之百达到”的宗旨,关注用户需求,为未来发展提供动力,保持与用户共同发展,真诚合作,立志于用先进的生产技术、完善的服务体系、丰富的运营管理经验为用户提供富于竞争力的气体产品,从而达到满足生产、节能减排、提高产量、保护环境等目的,在为用户创造经济效益的同时创造社会效益。

主要产品:

变压吸附空气分离制氧装置建造及管理

深冷空气分离制氧装置建造及管理

变压吸附提纯(富化)一氧化碳装置建造及管理

变压吸附提纯(富化)氢气装置建造及管理

变压吸附空气分离制氮装置建造及管理

高炉煤气、黄磷尾气、电石尾气净化、提纯装置建造及管理

技术服务:

提供可行性分析、根据具体需求打造技术方案

提供技术指导和培训

提供气体装置管理运行服务

提供气体分离技术相关分子筛和工艺的研发、开拓

二、气体外包业务简介

对作为用户的企业而言,供气业务的实质是工业气体外包业务。

工业气体业务外包是指把一些重要但非核心的业务职能(如空气分离、合成气工厂等)交给企业外部的专业气体公司去做,把企业的资金和资源集中于那些具有竞争优势的核心业务上,从而提升企业的核心竞争力和发展前景。

工业气体外包的优势:

(1)提升企业的核心竞争力

企业能力和资源的有限性决定了气体外包业务可使企业集中有限的资金和资源,发挥自己核心竞争力所在领域的技术优势和其他优势,并使之不断提升,确保使企业获得长期的、更高的利润,提升核心竞争力和行业地位,进而引导所在行业向更有利于企业自身的方向发展。

(2)降低成本

降低成本是企业核心竞争能力提升和获得更高利润的关键,气体外包业务可以减轻企业的投资和融资压力,减少由于资产专用性导致的企业沉没成本的增加,财务资本的解放可用于获取最大利润回报。专业的气体公司可以为企业量身打造成本最优化的供气方案,并可发挥专业团队的技术管理优势,进一步降低企业的生产成本。

(3)实现资源优化配置

气体业务具有专业性强、技术含量高、安全运营规范度高等特点,往往不是企业自身的强项,通过气体外包,可以使企业节约大量的人力、物力、财力,降低运营成本;又可使企业更专注于自身的发展,改善企业的资本结构,实现资源优化配置。

- 1 -页

商业计划书-变压吸附制氢工艺

0 工艺技术说明 1、吸附制氢装置工艺技术说明 1)工艺原理 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。 吸附剂: 工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残余量/弱吸附组分在吸附床中的总量)与(强吸附组分在吸附床死空间中残余量/强吸附组分在吸附床中的总量)之比。分离系数越大,分离越容易。一般而言,变压吸附气体分离装置中的吸附剂分离系数不宜小于3。 另外,在工业变压吸附过程中还应考虑吸附与解吸间的矛盾。一般而言,吸附越容易则解吸越困难。如对于C5、C6等强吸附质,就应选择吸附能力相对较弱的吸附剂如硅胶等,以使吸附容量适当而解吸较容易;而对于N2、O2、CO等弱吸附质,就应选择吸附能力相对较强的吸附剂如分子筛等,以使吸附容量更大、分离系数更高。 此外,在吸附过程中,由于吸附床内压力是周期性变化的,吸附剂要经受气流的频繁冲刷,因而吸附剂还应有足够的强度和抗磨性。 在变压吸附气体分离装置常用的几种吸附剂中,活性氧化铝类属于对水有强亲和力的固体,一般采用三水合铝或三水铝矿的热脱水或热活化法制备,主要用于气体的干燥。硅胶类吸附剂属于一种合成的无定形二氧化硅,它是胶态二氧化硅球形粒子的刚性连续网络,一般是由硅酸钠溶液和无机酸混合来制备的,硅胶不仅对水有极强的亲和力,而且对烃类和CO2等组分也有较强的吸附能力。 活性炭类吸附剂的特点是:其表面所具有的氧化物基团和无机物杂质使表面性质表现

变压吸附制氧技术方案

ZY-1000/80Nm3/h变压吸附制氧 技术方案 目录 第一章:公司简介

第二章:变压吸附制氧简介 第三章:技术方案 第四章:近两年变压吸附设备部分业绩表 第五章:公司投资成功案例 一、公司简介 宏达新元科技是一家专业从事气体设备及气体产品应用研究开发的专业公司。公司的核心业务包括:

设备销售、租赁、整改 ★VPSA真空变压吸附制氧 ★PSA变压吸附制氧设备 ★制氮设备、氮气纯化装置 ★LNG系统成套设备和LNG泵 企业拥有现代化标准生产车间和大批专业从事VPSA真空变压吸附、PSA变压吸附、气体分离及机械技术人员,为气体及气体设备领域用户提供独特的产品、服务、技术咨询和解决方案。 我公司下辖的企业有简阳天欣气体公司和广西聚源气体公司,为客户提供优质高纯度的气体。企业还在省与欣国力低温公司、简阳川空通用机械厂建立了良好的合作关系。 我公司于2011年3月17日在市苍梧县工商行政管理处登记注册成立的广西川桂气体科技。其性质为有限责任。注册资金2000万元人民币。 我们将不断完善售后服务、改善设备工艺、加强质量管理,并与研究机构密切配合,为广大用户提供更出色的产品与服务。。。。。。 二、变压吸附制氧技术简介 变压吸附制氧技术是近几十年发展起来的一种空分制氧工艺。与传统的深冷空分制氧装置相比,变压吸附制氧装置具有投资少、能耗低、运行维护费用低、工艺条件温和(常温、低压)、工艺流程简单、自动化程度高、操作灵活性高(可随时开停)、

建设工期短和安全性好等优点,因此得到国外大型气体公司和研究机构的广泛关注,并纷纷投入巨大的人力物力研究开发。自九十年代国外开发成功高效锂基制氧分子筛后,变压吸附空分制氧技术开始迅猛发展并得到广泛应用。目前,在很多用氧场合下变压吸附空分制氧可替代深冷空分制氧,并且装置的经济性明显优于传统的深冷空分制氧装置。 2.1.变压吸附空气分离制氧原理 空气中的主要组份是氮和氧,因此可选择对氮和氧具有不同吸附选择性的吸附剂,设计适当的工艺过程,使氮和氧分离制得氧气。氮和氧都具有四极矩,但氮的四极矩 (0.31?\u65289X比氧的(0.10 ?\u65289X大得多,因此氮气在沸石分子筛上的吸附能力比氧气强(氮与分子筛表面离子的作用力强,如图1 所示)。因此,当空气在加压状态下通过装有沸石分子筛吸附剂的吸附床时,氮气被分子筛吸附,氧气因吸附较少,在气相中得到富集并流出吸附床,使氧气和氮气分离获得氧气。当分子筛吸附氮气至接近饱和后,停止通空气并降低吸附床的压力,分子筛吸附的氮气可以解吸出来,分子筛得到再生并重复利用。两个以上的吸附床轮流切换工作,便可连续生产出氧气。

最新参考变压吸附制氢工艺

历史资料,供大家参考学习,下载后自行修改使用 工艺技术说明 1、吸附制氢装置工艺技术说明 1)工艺原理 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。 吸附剂: 工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残余量/弱吸附组分在吸附床中的总量)与(强吸附组分在吸附床死空间中残余量/强吸附组

空分制氧技术研究

空气分离制氧技术的研究

摘要:近年来,随着社会工业的发展,化学工业、冶金工业等部门中大量应用氧气,氧气是气体工业中数量最大的品种。本文首先介绍了空气分离制氧气的三种方法:深冷法、变压吸附法(PSA)、膜分离法,并比较了各自的优缺点,最终选用变压吸附法进行研究。随着新型吸附剂的开发、工艺不断改进以及控制手段的逐步完善,PSA制氧工艺的技术已有明显提高。本文又对变压吸附工艺的改进和吸附剂的改进和选型等方面进行介绍,最后对PSA空分制氧技术的发展前景进行展望。 关键词:氧气;深冷法;变压吸附;膜分离;吸附剂;PSA-MS联用 在过去的几个世纪里,物质生活水平不断提高和人口不断增长,人类对资源的需求日益增大,同时对环境的破坏也日趋加剧。如何以最低的环境代价确保经济持续增长,同时还能使资源可持续利用,已成为所有国家新世纪经济、社会发展过程中所面临的一大难题。我国实施了“科教兴国”和“可持续发展”两大战略,明确了依靠科技、资源节约、生态环境友好、人与自然协调的可持续发展道路,并提出了建设资源节约型与环境友好型社会的重要战略举措。从物质形态来说,可供人类使用的资源可以分为固体、液体、气体三大资源,其中气体资源是在常温常压条件下表现为气态的物资资源,它包括自然的空气资源、生物气体资源以及工业排放的尾气资源。气体资源的开发的主导意识主要是空气分离以及根据应用要求直接制备气体。空气是一种主要由氧、氮、氩气等气体组成的复杂气体混合物,其主要组成有氮气、氧气、氩气、二氧化碳、氖气、氦气等,除了固定组分外,空气中还含有数量不定的灰尘、水分、乙炔,以及二氧化硫、硫化氢、一氧化碳、一氧化二氮等微量杂质。 一、研究意义 随着国民经济的飞跃发展和技术进步,工业上对氧的需求与日俱增,应用领域不断扩大。冶金、化工、环保、机械、医药、玻璃等行业都需要大量氧气。就冶金来说,无论钢铁冶金或者有色金属、稀有金属、贵金属的冶金,如果用富氧取代空气供氧,冶金炉(或浸出槽)的产量必将大幅度提高,能源消耗显著降低,冶炼(或浸出)时间大大缩短,产品质量提高,这将使生产成本大幅度降低,还可以节约基建投资。1993年世界工业气体交易的市场价值估计超出200亿美元。如果将最终用户直接在现场生产的气体包括在内,估计数字则超过300亿美元。世界各国气体市场的传统增长率比本国生产总值高出1.5~2.0倍。继续促进这一增长的关键因素包括工业气体在加工业质量和效率改进上所起的重要作用,如节约能量的、环境治理和气体的新应用等。该市场主要集中在已高度发达的国家和新兴的工业化经济区域。未来十年预计在亚洲和南美洲的新兴发展中的经济区域有大的市场出现。1993年世界氧气市场需求统计见图1。

变压吸附制氢工艺

变压吸附制氢工艺 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

工艺技术说明 1、吸附制氢装置工艺技术说明 1)工艺原理 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。 吸附剂: 工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残

变压吸附制氧机

变压吸附制氧机 1.1 制氧机的发展简史 制氧机是以空气做原料,生产氧气(或液氧)、氮气(或液氮)和氩、氖-氦、氪-氙等混合气体的一种成套设备。在一般情况下,由于空气分离设备多用来生产氧气,故人们习惯地称“制氧机”。 世界上最早生产制氧机的国家是德国和法国。 1901年,德国的林德公司在慕尼黑市建立低温设备制造车间,并在1903年生产出第一台10m3/h制氧机。 1902年,法国在巴黎建立空气液化公司,继德国之后,于1910年开始生产制氧机。 在三十年代以前,基本上只有德国和法国能生产制氧机。当时制氧机主要只能满足焊接、切割用氧及化工所需的制氮设备。生产的制氧机为主要为中、小型,其容量为2m3/h~600m3/h,品种约200种。采用的制氧机流程为高压和中压流程。 1930~1950年,除德国、法国,尚有苏联、日本、美国、英国等国家也开始生产制氧机。在此期间,随着生产的发展,制氧机使用领域不断扩大,促进了大型制氧机的发展。由于大型制氧机每生产1m3氧气所需电力、金属材料都比中、小型底,故1930~1950年间,大型制氧机的品种增加较多,如西德的5000m3/h,苏联的3600m3/h,日本的3000m3/h等大型设备。当时所用的流程,除高、中压外,开始采用高低压流程。由于大型制氧机可制取廉价的氧气,从而在冶金和合成氨工业中得到应用。1932年,德国第一次把制氧机用于冶金和合成氨工业。 1950年以后,除上述国家生产制氧机以外,还有中国、捷克、东德、匈牙利、意大利等(中国发展较晚,且都为深冷法)。 由于钢铁工业、氮肥工业、火箭技术的发展,氧、氮耗量迅猛增加,促使制氧机向大型化发展。1957年起,10000m3/h制氧机相继问世。1967年起,据不完全统计,20000m3/h以上的大型制氧机不断出现,达87套之多,最大机组为50000m3/h,更大型的机组正在研制中。 20多年来,产品品种迅速增加,并逐步形成了系列,如西德林德公司大型制氧机有1000~40000m3/h典型产品;日本神钢有OF系列;日本日立制作所有TO型;日本氧气公司有NR型;英国全低压有50~1500吨/天系列产品等。同时,大型制氧机基本上采用全低压流程。 总之,制氧机的发展是一个不段完善的过程,设备由小型、中型向大型发展;流程由高压(200大气压)、中压(50大气压)、高低压向全低压(6大气压)方向发展,从而使制氧机的单位电耗、金属材料消耗降低,运转周期不断延长。

CO-H2分离变压吸附工艺方案

PSA净化项目 初步方案 附件1 装置设计要求 1.1 技术条件及规格 1.1.1 原料气条件 CO 理论含量为30.5%(此时H 含量为68.31%,其它组份的百分比同上表)。 2 流量:79200Nm3/h(CO含量为30.5%即理论含量时,装置所需的原料气量)压力:3.2 MPag 温度:40℃ 1.1.2 CO产品气 压力:0.005~0.02 MPag 温度:40℃ 产品气 1.1.3 H 2 压力:3.0MPag 温度:40℃ 1.2 装置工艺流程与物料平衡

图1 变压吸附提纯CO/H 2 流程框图 物流说明:1-原料气,2-CO产品气,3-氢气产品气, 4-PSA-CO吸附尾气,5-解吸废气,6-CO置换气 附件3 装置工艺流程描述 3.1工艺流程简述 本设计方案拟采用变压吸附(PSA)气体分离技术从原料气中分离提纯CO 和H 2 。整个工艺过程分为三个工序,即原料气预处理工序、变压吸附提纯CO工 序(PSA-CO)、变压吸附提纯氢气工序(PSA-H 2 )。 经过低温甲醇洗脱硫脱碳后的原料气,首先通过预处理将其中的重组分杂质 脱除,然后送入PSA-CO工序分离提纯得到CO产品气,PSA-CO吸附尾气送入PSA-H 2 工序,在PSA-H 2工序得到H 2 产品气。 流程框图见图1。 3.1.1预处理工序 经过低温甲醇洗脱硫脱碳后的原料气首先进入预处理工序。 预处理工序的目的是将经过低温甲醇洗后的原料气中的甲醇等重组分杂质脱除,保护PSA-CO工序吸附剂。 3.1.2变压吸附提纯CO工序(PSA-CO) PSA-CO工序的作用是使CO进一步与其它组份如H 2、N 2 等杂质组份分离,得 到CO产品。来自预处理工序的原料气,进入PSA-CO吸附塔,吸附尾气从塔顶流入PSA-H 2 工序。经过一定循环步骤后,吸附塔内合格的CO通过逆向放压和抽真空方式排出吸附塔,进入CO产品气缓冲罐。 为了保证CO产品的连续性,PSA-CO装置由18个吸附塔组成,任何时刻均有

变压吸附制氧技术

变压吸附制氧技术 对变压吸附制医用氧过程中的吸附剂选择、流程开发、多层过滤系统等技术问题进行了研究,它将有助于变压吸附制氧技术在我国各级医院中的使用。 变压吸附(简称PSA)制氧是国际上最近三十年新兴起来的制氧技术,它的特点是就地产氧,只要将制氧设备接通电源,就可由空气中生产出氧气,且设备的体积小、操作简单,可省去大量的人力、物力,尤其适合实施管道化中心供氧的医院以及工业不发达地区的医院。 1原理和方法 变压吸附制医用氧是采用物理吸附的方法,使用的吸附剂是沸石分子筛(zeolite molecular sieve)。空气中的主要成分是氮气、氧气及其它稀有气体,它们的分子极性各不相同,其中氮气的极性较氧气的极性要大。沸石分子筛是一种极性吸附剂,在等温条件下,当吸附压力增加时,它对氮气的平衡吸附量要比氧气增加很多;当吸附压力减少时,它对氮气的平衡吸附量比氧气减少很多。利用沸石分子筛的这一特性,可采用加压吸附,减压解吸循环操作的方法制取氧气。 2吸附剂的选择 在PSA吸附床中,至少有两层吸附剂,靠近进料端的吸附剂称为“预处理”吸附剂,它的主要作用是除去进料空气中的水和二氧化碳。氧化铝通常被用作预处理吸附剂,但是,使用中人们发现在氧化铝与其它吸附剂的接触面上会产生一个低温区,称为“冷点”,会影响吸附剂的再生。随着人们对“冷点”的进一步认识,氧化铝已被NaX型的沸石分子筛代替,因为它比氧化铝具有更高的氧、氮吸附容量和吸附热,可以帮助减少“冷点”的损害。目前,具有更高吸附容量的NaX吸附剂已经被开发出来,可以进一步减低“冷点”效应。靠近吸附床产品端的第二层吸附剂称为“主吸附剂”,它的主要作用是氧气、氮气的分离,一般选用具有优先吸附氮气的沸石分子筛。在有些场合,NaX既被用来作主吸附剂,也被用作预处理吸附剂,但CaA型的沸石分子筛是变压吸附法制氧最常用的吸附剂。为了提高分子筛的吸附性能,又开发其它类型的分子筛如CaX型的沸石分子筛,目前吸附选择性能最好的吸附剂是LiX型和MgA型沸石分子筛。 3制氧流程 变压吸附常压解吸制氧流程通常有四床、三床、两床三种形式。 四床吸附流程的特点是空气中氧气的收率比较高,可达40%,缺点是吸附床较多,工艺流程复杂,技术要求高,可靠性较差。 三床吸附流程的特点是氧气收率一般,可达35%,工艺也比较复杂。 二床吸附流程的缺点是空气中氧气收率比较低,只有30%,但这种流程比较简单,工艺也不复杂,操作容易,可靠性高,是目前制医用氧设备采用最多的流程。 4多层气体过滤系统

变压吸附流程说明

变压吸附流程说明 4.1工艺过程简述 本装置VPSA过程,以一个吸附塔T0101A为例,简述如下: a. 吸附过程(A) 压力为1.7~1.9Mpa的变换气自装置外来,首先进入原料气气水分离器中分离掉其中夹带的液滴,经FIRQ-0101计量后进入VPSA系统。 打开程控阀KS0101A、KS0102A,变换气自塔底进入T0101A (同时有2个吸附塔处 于吸附状态)内。在多种吸附剂的依次选择吸附下,其中的H 2O、CO 2 等组分被吸附下来, 未被吸附的氢氮气及一氧化碳等从塔顶流出,经压力调节系统PICA-0101稳压该工序。 当被吸附杂质的传质区前沿(称为吸附前沿)到达床层出口预留段时,关掉该吸附塔的原料气进料阀和产品气出口阀,停止吸附。吸附床开始转入再生过程。 b. 顺放-1过程(P1) 这是在吸附过程结束后,吸附塔内的气体与产品气非常接近,打开程控阀KS0103A、KS0110,缓慢打开随动调节阀HV0102顺着吸附方向将吸附塔内的气体流向产品气管道的过程,该过程不仅回收了吸附塔内有效气体,同时也降低了吸附塔内压力,相当于增加一次均压降。 c.均压降压过程(1D~10D) 这是在顺放-1过程结束后,顺着吸附方向将塔内的较高压力的氢氮气放入其它已完成再生的较低压力吸附塔或到均压罐的过程,该过程不仅是降压过程,更是回收床层死空间有效气体的过程,本流程共包括10次均压降压过程以保证有效气体的充分回收。 d.顺放-2过程(P2) 这是在均压降过程结束后,打开程控阀KS0106a,KS0114顺着吸附方向,将吸附塔内含量较高的有效气体放入煤气气柜的过程,该过程充分回收了吸附塔内有效气体,不仅降低工厂消耗,而且对工厂系统物料平衡和动力平衡有利。 E.逆放过程(D)

变压吸附制氧原理

VPSA制氧简介 变压吸附制氧原理 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。PSA制氧装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在高压下吸附而在低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。 装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:工业PSA-O 2 活性氧化铝类和分子筛类吸附剂。吸附剂最重要的物理特征包括孔容积、孔径分布、比表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残余量/弱吸附组分在吸附床中的总量)与(强吸附组分在吸附床死空间中残余量/强吸附组分在吸附床中的总量)之比。分离系数越大,分离越容易。一般而言,变压吸附气体分离装置中的吸附剂分离系数不宜小于3。

变压吸附基本原理(整理)

变压吸附技术 一、概况: 变压吸附(简称PSA)是一种新型的气体吸附分离技术,它有如下优点:(1)产品纯度高。(2)一般可在室温和不高的压力下工作,床层再生时不用加热,节能经济。(3)设备简单,操作、维护简单。(4)连续循环操作,可完全达到自动化。因此,当这种新技术问世后,就受到各国工业界的关注,竞相开发和研究,发展迅速,并日益成熟。 1960年Skarstrom提出PSA专利,他以5A沸石分子筛作为吸附剂,用一个两床PSA装置,从空气中分离出富氧,该过程经过改进,于60年代投入了工业生产。70年代,变压吸附技术的工业应用取得突破性的进展,主要应用在氧氮分离、空气干燥与净化以及氢气净化等。其中,氧氮分离的技术进展是把新型的吸附碳分子筛与变压吸附结合起来,将空气中的O2和N2加以分离,从而获得氮气。随着分子筛性能改进和质量提高,以及变压吸附工艺的不断改进,使产品纯度和回收率不断提高,这又促使变压吸附在经济上立足和工业化的实现。 二、基本原理: 利用吸附剂对气体的吸附有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异和一种特定的气体在吸附剂上的吸附量随压力的变化而变化的特性,实现气体混合物的分离和吸附剂的再生。变压吸附脱碳技术就是根据变压吸附的原理,在吸附剂选择吸附的条件下,加压吸附原料气中的CO2等杂质组分,而氢气、氮气、甲烷等不易吸附的组分则通过吸附床层由吸附器顶部排出,从而实现气体混合物的分离,而通过降低吸附床的压力是被吸附的CO2等组分脱附解吸,使吸附剂得到再生。 吸附器内的吸附剂对不同的组分的吸附是定量的,当吸附剂对有效组分的吸附达到一定量后,有效组分西欧哪个吸附剂上能有效的解吸,使吸附剂能重复使用时,吸附分离工艺才有实用的意义。故每个吸附器在实际过程中必须经过吸附和再生阶段。对每个吸附器而言,吸附过程是间歇的,必须采用多个吸附器循环操作,才能连续制取产品气。 多床变压吸附的意义在于:保证在任何时刻都有相同数量的吸附床处于吸附

制氧工艺流程

1.氧气和氮气的生产 原料空气自吸入塔吸入,经空气过滤器除去灰尘及其它机械杂质。空气经过滤后在离心式空压机中经压缩至0.52MPa左右,经空气冷却塔预冷,冷却水分段进入冷却塔内,下段为循环冷却水,上段为低温冷冻水。空气经空气冷却塔冷却后降至约10℃,然后进入切换使用的分子筛吸附器,空气中的二氧化碳,碳氢化合物及残留的水蒸气被吸附。分子筛吸附器为两只切换使用,其中一只工作时另一只再生,纯化器的切换周期为240分钟。 空气经净化后,分为两路:大部分空气在主换热器中与返流气体(纯氧、纯氮、污氮等)换热达到接近液化温度约-173℃进入下塔。另一路空气在主换热器内被返流冷气体冷却至-105℃时抽出进入膨胀机膨胀制冷,然后入上塔参加精馏同时补充冷量损失。 在下塔中,空气被初步分离成氮和含氧38-40%的富氧液空(下塔底部),顶部生成的氮气在冷凝蒸发器中被冷凝为液氮,同时主冷的低压侧液氧被汽化。部分液氮作为下塔回流液,另一部分液氮从下塔顶部引出,经过冷器中过冷后经节流送入上塔中部作回流液和粗氩塔Ⅰ冷凝器冷凝侧的冷源。下塔底部的富氧液空引出后经节流降温送入上塔做为回流液参与上塔精馏。 氧气从上塔底部引出,并在主换热器中与原料空气复热后出冷箱进入氧气压缩机加压后送往用户。 污氮气从上塔上部引出,并在过冷器及主换热器中复热后送出分馏塔外,大部分作为分子筛的再生气体(用量约21000/h)。小部分进入水冷

塔中作为冷源冷却循环水。 氮气从上塔顶部引出,在过冷器及主换热器中复热后出冷箱,经氮气压缩机加压后送往用户。 产品液氧从主冷中排出送入液氧贮槽保存。从液氧贮槽中排出的液氧,用液氧泵加压后的进入汽化器,蒸发成氧气然后进入氧气管网送用户。

变压吸附制氢工艺

工艺技术说明 1、吸附制氢装置工艺技术说明 1)工艺原理 吸附是指:当两种相态不同的物质接触时, 其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂, 被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类, 即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应, 吸附过程进行的极快, 参与吸附的各相物质间的动态平衡在瞬间即可完成, 并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同, 二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加, 随吸附温度的上升而下降。利用吸附剂的第一个性质, 可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质, 可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生, 从而构成吸附剂的吸附与再生循环, 达到连续分离气体的目的。 吸附剂: 工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒, 主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料, 如CO专用吸附剂和碳分子筛等。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质, 因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时, 要在工业上实现有效的分离, 还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时, (弱吸附组分在吸附床死空间中残余量/弱吸附组分在吸附床中的总量)与(强吸附组分在吸附床死空间中残余量/强吸附组

实验三 变压吸附

变压吸附实验 利用多孔固体物质的选择性吸附分离和净化气体或液体混合物的过程称为吸附分离。吸附过程得以实现的基础是固体表面过剩能的存在,这种过剩能可通过范德华力的作用吸引物质附着于固体表面,也可通过化学键合力的作用吸引物质附着于固体表面,前者称为物理吸附,后者称为化学吸附。一个完整的吸附分离过程通常是由吸附与解吸(脱附)循环操作构成,由于实现吸附和解吸操作的工程手段不同,过程分变压吸附和变温吸附,变压吸附是通过调节操作压力(加压吸附、减压解吸)完成吸附与解吸的操作循环,变温吸附则是通过调节温度(降温吸附,升温解吸)完成循环操作。变压吸附主要用于物理吸附过程,变温吸附主要用于化学吸附过程。本实验以空气为原料,以碳分子筛为吸附剂,通过变压吸附的方法分离空气中的氮气和氧气,达到提纯氮气的目的。 一实验目的 (1)了解和掌握连续变压吸附过程的基本原理和流程; (2)了解和掌握影响变压吸附效果的主要因素; (3)了解和掌握碳分子筛变压吸附提纯氮气的基本原理; (4)了解和掌握吸附床穿透曲线的测定方法和目的。 二实验原理 物质在吸附剂(固体)表面的吸附必须经过两个过程:一是通过分子扩散到达固体表面,二是通过范德华力或化学键合力的作用吸附于固体表面。因此,要利用吸附实现混合物的分离,被分离组分必须在分子扩散速率或表面吸附能力上存在明显差异。 碳分子筛吸附分离空气中N2和O2就是基于两者在扩散速率上的差异。N2和O2都是非极性分子,分子直径十分接近(O2为0.28nm,N2为0.3nm),由于两者的物性相近,与碳分子筛表面的结合力差异不大,因此,从热力学(吸收平衡)角度看,碳分子筛对N2和O2的吸附并无选择性,难于使两者分离。然而,从动力学角度看,由于碳分子筛是一种速率分离型吸附剂,N2和O2在碳分子筛微孔内的扩散速度存在明显差异,如:35℃时,O2的扩散速度为 2.0×106,O2

变压吸附制氧设备在国内的现状与应用..

变压吸附制氧设备在国内的现状与应用 四川科易科技 一、企业简介 四川科易科技成立于2000年,位于中国气体分离汇集地——成都,是一家专业从事气体分离与净化技术的研究开发的科技型公司。公司拥有科技开发楼、气体分离装置组装厂和旗下控股特种阀门厂。为用户提供变压吸附制氢,制氮,制氧,提纯或脱除二氧化碳,多晶硅尾气分离回收净化回收氯乙烯尾气,天然气净化,脱水等气体分离,提纯,净化技术和装置以及技术改造;程控阀,吸附剂维修,更换服务和工程设计等。产品广泛用于石油、天然气、化工、冶金、轻工等行业,获ISO9001认证和特种设备制造许可。 公司气体分离净化装置和技术涉足十一大领域,并先后推出:易氢系列——各种规模新型制氢装置;易氮系列——各种规模新型制氮机;易CNG净化系列——各种压力CNG全自动净化干燥装置等。科易净化装置具有性能稳定、性价比高、紧凑集成、占地少寿命长、操作控制简单、节能环保等特点受到成套商和广大用户的共同认可和高度评价,各项指标较传统气体分离技术有着质的飞跃,是对传统气体分离技术的一次“革命”,被誉为“新一代气体分离装置”和“未来中小装置发展方向”,成为国内最具创新精神和发展前景的气体分离与净化供应商。 公司的创新技术来源于长期专注气体分离和净化技术的发展;汇集了从事气体分离净化研制和开发20余年的工艺、自控仪表、阀门、

设备制造等志同道合知名专家;并借鉴依托国外最新技术并不断自主创新开发。公司现拥有六大气体净化技术和专利(统称“易气”技术),能为用户提供各种技术咨询、工程实施方案和具有特色的各种工业气体净化装置。 科易公司一直以来都与广大高校、科研院所、技术人才保持密切联系,如西南院、南京化工大学吸附剂研究所、复旦大学吸附剂研究中心、四川大学、成都理工大学和中国科学院大连物理化学所相关和基础研究单位;还与化工部甲级设计院有着长期、稳定的合作关系,并得到广大合作方的认可。 科易以“诚信、专业”作为企业文化;以为用户提供高性价比的产品和满意服务为目标;以做最有创新技术的产品来服务客户。专注气体净化技术,突破科技创新!科易人将把“易气”技术推广应用在更多的气体分离净化领域,为中国的复兴贡献自己的力量! 一.科易产品在节能减排与新能源应用 1.制氢装置上应用:氢能被视为21世纪最具发展潜力的清洁能源,人类对氢能应用自200年前就产生了兴趣,到20世纪70年代以

变压吸附制氢工艺

工艺技术说明 1、吸附制氢装置工艺技术说明 1)工艺原理 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。 吸附剂: 工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残余量/弱吸附组分在吸附床中的总量)与(强吸附组分在吸附床死空间中残余量/强吸附组

工业制氧原理及流程

工业制氧原理及流程 空气中含氮气78%,氧气21%。由于空气是取之不尽的免费原料,因此工业制氧/制氮通常是将空气中的氧气和氮气分离出来。制氧氧气用来炼钢;氮气用来搅拌钢水,氧气和氮气均是重要的冶金原料。本专题将详细介绍制氧/制氮的工艺流程,主要工艺设备的工作原理等信息。 【制氧/制氮目的】:制氧氧气用来炼钢;氮气用来搅拌钢水,氧气和氮气均是重要的冶金原料。 【制氮原理简介】:以空气为原料,利用物理的方法,将其中的氧和氮分离而获得。工业中有三种,即深冷空分法、分子筛空分法(PSA)和膜空分法。 A:深冷空分制氮 深冷空分制氮是一种传统的制氮方法,已有近几十年的历史。它是以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同(在1大气压下,前者的沸点为-183℃,后者的为-196℃),通过液空的精馏,使它们分离来获得氮气。深冷空分制氮设备复杂、占地面积大,基建费用较高,设备一次性投资较多,运行成本较高,产气慢(12~24h),安装要求高、周期较长。综合设备、安装及基建诸因素,3500Nm3/h以下的设备,相同规格的PSA装置的投资规模要比深冷空分装置低20%~50%。深冷空分制氮装置宜于大规模工业制氮,而中、小规模制氮就显得不经济。 B:分子筛空分制氮 以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称PSA制氮。此法是七十年代迅速发展起来的一种新的制氮技术。与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快(15~30分钟)、能耗低,产品纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点,故在1000Nm3/h以下制氮设备中颇具竞争力,越来越得到中、小型氮气用户的欢迎,PSA制氮已成为中、小型氮气用户的首选方法。 C:膜空分制氮 以空气为原料,在一定压力条件下,利用氧和氮等不同性质的气体在膜中具有不同的渗透速率来使氧和氮分离。和其它制氮设备相比它具有结构更为简单、体积更小、无切换阀门、维

变压吸附实验报告

变压吸附实验报告 篇一:分子筛变压吸附研究报告 院级本科生科技创新项目 研究报告 项目名称变压制富氧分子筛延长寿命的研究立项时间XX年10月 计划完成时间 XX年12月项目负责人储万熠 学院与班级冶金与生态工程学院冶金1302班 北京科技大学教务 摘要 变压吸附制氧关键的因素是制氧吸附剂和制氧工艺。制氧吸附剂的性能优劣和使用寿命直接影响产品气的氧浓度和收率,氮吸附容量是评价制氧吸附剂性能优劣的一项重要指标。本课题首先对分子筛进行XRF分析、XRD表征和TEM 表征探究分子筛的物理及化学性质,确定对分子筛造成影响的条件。 ANSYS FLUENT中的多孔介质模型可以模拟多孔介质内的流体流动、“三传一反”。PSA空分吸附床由固体吸附剂颗粒填充而成,气-固两相区可作为多孔介质,因此可基于多孔介质模型对变压吸附空分吸附床进行模拟,从而得到床层内气体的流动状态和组分浓度分布情况。为研究提高分子筛寿

命的研究提供可靠有效的实验数据。 Research of Prolong the Life of Pressure-Swinging-Oxygen-Making Molecular Sieve Abstract The keyfactorof thepressure swinging oxygen making is oxygen adsorbentandoxygenprocess. The quality and service life of oxygen adsorbentdirect impact on the oxygenconcentrationandyield of productgas, nitrogen adsorptioncapacity ofthe oxygensorbentperformanceevaluation ofthe meritsofan important indicator.This paperfirstdo XRFanalysis, XRDand ofmolecular TEMcharacterization sieveinquiryto ofphysicalandchemicalproperties theimpact onmolecular determine sievesconditions. The porous medium model in ANSYS FLUENT can simulate fluid flow in porous media. PSA air separation adsorbent bed is filled by a solid sorbent particles, gas - solid two phase region as a porous medium, thus can simulate the pressure swing adsorption air

医用分子筛变压吸附制氧技术的探讨

医用分子筛变压吸附制氧技术的探讨 [ 录入者:admin | 时间:2008-11-14 11:58:34 || 浏览:122次] 中国医学装备2006年11月第3卷第11期ChinaMedicalEquipment2006NovemberVol.3NO.11 1分子筛制氧设备的发展过程分子筛变压吸附PSA(PressureSwingAbsorption)气体分离和提纯技术是在20世纪60年代后,随着环境保护及污染治理的要求而迅速发展起来的技术,目前已经在钢铁生产,气体工业,电子工业,石油化工和医疗卫生等诸多行业得到广泛的应用.1962年美国联合碳化物公司(UCC)发现了分子筛对气体的选择性特性,并在实验设备上实现了对少数不同气体的分离;随即研制成功了世界上第一台制氢工业装置;随着分子筛材料与工艺的不断提升,70年代中期美国和德国首先将PSA技术应用于空气分离并在化工领域得到应用,到80年代中期化学工业的发展为分子筛的性能提高起到了关键作用,这使设备小型化成为可能,1985年美国的Praxair公司研制的第一台小型制氧机的问世标志着PSA技术小型化的开始,90年代初产品意义上的医用小型制氧机开始出现,美国材料实验学会(ASTM)于1993年颁布了医用小型制氧机标准规范(F1464-1993),国际标准组织于1996年发布了医用小型制氧机的安全性标准(ISO8359:1996).分子筛变压吸附气体分离和提纯技术是利用分子筛,依靠压力的变化来实现吸附和再生,其再生速度快,能耗低,属于节能型气体分离技术,特别符合在能源短缺的情况下其低品质资源的开发利用的世界潮流.分子筛变压吸附原理的制氧机仅仅利用空气就可以生产纯度在90-95%的氧气,并且其制氧机工艺流程简单,安全,投资少,能耗比较低,因此在中小规模的需要富氧的地方,如近年来各级医院的中心供氧系统的氧气气源愈来愈多的选用制氧机产氧,这类设备均采用分子筛变压吸附气体分离和提纯技术获取低成本的氧气. 2分子筛变压吸附气体分离和提纯技术 2.1分子筛技术医用分子筛变压吸附制氧技术的探讨冯念伦1,夏文龙2,孙铁军3 (1.3.山东省立医院;2.山东省药品审评认证中心;济南250021)〔文章编号〕1672-8270(2006)11-39-03〔中图分类号〕R197〔文献标识码〕 B【摘要】分子筛制氧机仅仅利用空气就可以生产纯度在90-95%的氧气,近年来各级医院的中心供氧系统愈来愈多的选用了分子筛制氧设备;这种制氧设备的核心技术是让大气通过分子筛利用变压吸附气体分离和提纯技术获取低成本的氧气.其制氧机工艺流程简单,安全,投资少,能耗比较低,符合低品质资源的开发利用的世界潮流. 【关键词】分子筛;变压吸附;硅铝酸盐晶体;气体分离和提纯

相关主题
文本预览
相关文档 最新文档