当前位置:文档之家› 太阳能电池面板自动追踪

太阳能电池面板自动追踪

太阳能电池面板自动追踪
太阳能电池面板自动追踪

太阳能电池板自动追踪装置的设计

【摘 要】以 STC12C2052AD 单片机为控制核心,舵机作为转动机构,光敏电阻作为传感器设计了一款自动追踪太阳的装置。 该装置能让 太阳能电池板时刻处于被太阳垂直照射的角度,达到了提高太阳能利用率的目的。 进行了样机的软、硬设计及制作,实验结果验证了硬件电路 和程序设计的正确性及方案的可行性。

【关键词】太阳能电池板;单片机;追踪

0 引言

随 着地球人口的增长, 能源已成为迫切需要解决的焦点问题之 一 。 越来越多的人将解决的关键投注在自然能源上,如太阳能、潮汐能 等。 目前,太阳能做为一种绿色无污染能源已经越来越受到人类的重 用,而且太阳能是取之不竭,用之不尽的能源。

太阳能跟踪器实现的关键是提高太阳光利用率,实时跟踪太阳的 位置,实现光线直射。 太阳光跟踪可以使太阳能更有效地转换为热能、 机械能、电能和化学能,其中太阳热能利用历史最为久远,开发最为普 遍;现在,太阳光能的应用也正变为一个新的研究领域。 大型建筑中应 用太阳光改善“室内采光”已经越来越受到建筑师们的极大关注,即采 集太阳光并利用光缆把它传输到需要的地方,如大型会议室、教室、危 险品仓库、矿井、地下商场、人防工程等等。 当然,太阳能跟踪系统也可 应用于太阳能热水器、太阳能发电等项目上,同时该系统也可作为普 通光源跟踪器而应用在其他方面。

1 硬件电路设计

1.1 光源检测电路 本设计的光源检测电路采用的是光敏电阻,由于光敏电阻

的线性

系数比较好,所以对其合理排布,并且采用 STC12C2052AD 单片机的 内部 A/D 转换功能对其进行电压转换。 比较各个传感器电压的大小并 且输出相应的信号。 具体原理图如图 1 所示:

各个地方的纬度。

1.2 A/D 转换电路

起初设计时本想采用专用的 A/D 转换芯片比如 A/D0809 或者其 他的,但是考虑到单片机采用了 STC12 系类,单片机的 I/O 引脚比较 少,如果以此结合,则 I/O 口使用非常紧张,而且要对两排光敏电阻进 行检测,势必要使用分时复用的方法,这样就会加大程序的复杂程度。 而同时考虑到 STC12 系类单片机本来就带 8 路 A/D 转换功能。 那样, 采用两片 STC12 系类单片机分别对两组光敏电阻进行 A/D 装换,并 且比较电压大小, 并用 3 位 I/O 口输出最小或最大的光敏电阻的位 置,那样两个 STC12 系类单片机输出的信号刚好构成一个反馈太阳位 置二维坐标。 可以供主单片机对伺服电机进行控制,从而达到设计的 要求;图 2 就是 A/D 转换电路的原理图。

图 2

A/D 转换电路的原理图

图 1 光源检测电路

本次设计中,影响系统精确度得有一个很大的因素就是光敏电阻

的排布。 在此设计的水平检测单元中,本设计将 8 个光敏电阻均匀的

安装在一个半圆的圆周上, 并且用黑色的挡板把它们彼此间隔离,那

样有利于提高 A/D 转换和检测的精度。 但是由于各个地区纬度不一

样,比如海南,由于海南处于北回归线以南,所以在盛夏的时候,太阳 是在北面的。 而像漠河,由于它所处的纬度比较高,因此不管什么季

节,太阳始终在南面,因此,在设计竖直方向的检测单元时,因考虑到

图 3 电源模块原理图

97

1.3 供电部分本次设计为了使模拟装置更加灵活而使用了镍氢电池对整个系

统进行供电,并用7805和7806三端稳压芯片分别对单片机及外围器件供电和舵机供电。7805和7806能向外输出的最大电流使 1.5A,完全满足本系统的设计要求。为了防止镍氢电池由于电压下降而引起系统工作不稳定,特在电池输出端加了电压检测和继电器,当电压下降到一定程度时,单片机I/O口输出高电平从而使继电器闭合,这样太阳能电池板就可以对电池进行充电。其原理图如图3所示。

2 系统软件设计

根据本次设计的要求,主程序的主要功能是要实现对伺服电机的控制和对可充电电池的电源管理。主程序经过对A/D装换了得到是数据进行判断,然后设置PWM相应的寄存器使之输出相应的PWM 波从而控制伺服电机。而电源管理则是通过自身的A/D装换从而获取当前电池的电压,如果电池电压低于设定的最低电压时,则给继电器高电平,使继电器导通,利用太阳能电池板对电池进行充电,如果电

池电压高于设定的最高值时,则关闭继电器。A/D转换流程和从单片机差不多,以下是主程序的流程图(图4)。

3 小结

本次设计的模拟装置基本上能满足自动追踪太阳的效果。但毕竟是模拟装置,由于购买的太阳能电池板的体积和重量都太大,所以没有将它放置在模拟装置上面。如果要在实际产品中应用,则需要考虑更多方面,比如伺服电机的功率什么的。通过本次设计,能够加深对一些传感器的认识和理解,也知道了一写新型传感器,比如PSD位置传感器。设计有很多地方没有完善。如果将此设计用ARM系列芯片进行嵌入式开发,可能效果会更加好,精度更高。但是由于用嵌入式开发的成本很高。所以,如果要将此设计推广,则还应考虑到成本的因数。

图4程序流程图

【参考文献】

[1]丁元杰.单片微机原理及应用[M].机械工业出版社,2004(3).

[2]马建,向平,等.基于步进电机的太阳跟踪系统设计[J].电力电子技术,2008 (9):0034-03.

[3]张翌翀.基于DSP的太阳跟踪控制系统研究[D].上海交通大学,2008.[4]夏小燕.大范围太阳光线跟踪传感器及跟踪方法的研究[D].河海大学,2007.[5]金晶晶.太阳光线自动跟踪装置[D].沈阳工业大学,2007.

[6]王青直,徐进.基于PSD传感器的太阳自动追踪系统的研究与实现[J].自动化技术与应用,2007(10):0123-03.

光伏电站电池板清洗合同-模板

光伏电站电池板清洗合同 合同编号: 签订地点: 发包方(甲方): 承包方(乙方): 第一条合同基本信息 第二条承包范围 1.清洗时间范围 2019年月日- 月日 2.清洗电池板范围 对XXX光伏电站电池板进行清洗,具体清洗数量以双方最终签字确定的验收证书为准。

第三条承包方清洗责任 1、安全总体要求 (1)检查上屋面爬梯、检修步道、围栏等安全设施情况,每次作业前要讲解登高作业注意事项、作业危险因素和防范措施,检查工作人员安全防护用品穿戴是否合规; (2)根据现场安全设施情况佩戴安全带、安全绳,防止高空坠落; (3)严禁风力大于4级、大雨、雷雨、大雪等恶劣天气状况下清洗组件,组件面板表温较高时不得用冷水冲洗; (4)清洗前,应通过监控后台检查各线路和电气元件电气参数是否正常,组件的连接线和相关元件有无破损和粘连,使用试电笔对铝框、支架和钢化玻璃表面进行测试,排除漏电隐患,确保人身、设备安全; (5)为确保安全,要根据天气情况及时调整工作进度,杜绝抢工期、违章指挥、违章作业导致不安全事件发生。 2、技术总体要求: 水源获取方式:运水车将水运至楼下或借用厂房内水源由管道从地面引水至屋面,并通过冲洗水泵加压处理;清洗步骤: (1)使用高压水枪冲洗,除去表面灰尘污渍, (2)软毛刷、拖布或软橡皮刮擦, (3)人工使用长柄无纺布或长绒布擦拭;

如现场条件允许,可采用专用的机洗工具清洗,但清洗前要将方案报发包方审批同意后方可实施。 3.清洗效果保证 清洗前、清洗后选择一天之中某一个时间段,记录光伏单元发电功率,对清洗效果进行对比。尤其记录同一个逆变器下电流偏小发电光伏组串,进行优先清理,并做对比;(现场值守人员提供) 清洗工程完工后,申请现场验收,对验收不合格部分重新清洗。 第四条清洗工期 自年月日至年月日。 第五条甲方责任: 1.保证在合同开工日期前,将清洗工程现场影响施工的障碍物加以保护或迁移。在工程现场提供符合清洗工程所需要的水源、电源或热源。 2.为乙方提供清洗工程使用材料、设备、运输工具及其它物品出入甲方单位及施工现场的通行证。 3.对工程范围内其它处于运行状态的设备采取安全有效的隔断措施,并负责指派专人进行现场监护。 4.按乙方要求提供工程范围内被清洗设备及相关环境条件有关资料。 5.如因上述各条或突然停电、停水等原因造成乙方窝工或材料损失,应给予乙方合理赔偿,并对由此引起的工程延期负责。 第六条乙方责任 1.严格遵守甲方单位的技术、安全、保密、保卫等工作制度,听从甲方监护人

光伏组件自动清洗系统的设计

光伏组件自动清洗系统的设计 针对现有清洗方式效率低、成本较高,不能满足大规模光伏阵列的清洗需求,导致光伏电站发电量损失严重。设计了一种高压水清洗系统,通过电磁阀将光伏阵列进行分组清洗,设计了雨水、污水收集系统,降低了用水成本,设计了光伏组件清洁度传感器,可以为科学安排清洗计划提供数据参考。该系统可以提高清洗效率,降低清洗成本,提高光伏电站的发电量和光伏组件的使用寿命,从而提高光伏电站的经济效益。 标签:光伏阵列;清洗;清洁度;发电量 Abstract:Because of the low efficiency and high cost,the existing cleaning methods can not meet the cleaning needs of large-scale photovoltaic arrays,resulting in a serious loss of power generation in photovoltaic power plants. A high pressure water cleaning system is designed,so that photovoltaic array is cleaned by solenoid valve. Rain water and sewage collection system is designed,so that water cost is reduced. And photovoltaic module cleanliness sensor is designed,so that it can provide data reference for scientific arrangement of cleaning plan. The system can improve the cleaning efficiency,reduce the cost of cleaning,increase the power generation of photovoltaic power station and the service life of photovoltaic module,thus improving the economic benefits of photovoltaic power station. Keywords:photovoltaic array;cleaning;cleanliness;electricity generation 引言 光伏发电作为一种清洁可再生能源,在国家政策的支持下,近年来得到了迅速的发展。据国家能源局统计,截止2016年底,我国光伏发电新增装机容量3454万千瓦,累计装机容量7742万千瓦,新增和累计装机容量均为全球第一。美国圣地亚哥市某光伏电站对灰尘导致的发电量损失率进行了研究,现有光伏电站运行情况显示,光伏组件积灰对光伏电站发电量存在着较大的影响,当光伏组件积灰严重时,发电量损失最大可以达到20%左右,现有清洗方式效率低、成本较高,不能满足大规模光伏阵列的清洗,导致光伏电站发电量损失严重。本文设计了一种大规模光伏阵列自动清洗系统,提高清洗效率,降低清洗成本,提高光伏电站的发电量和光伏组件的使用寿命,从而提高光伏电站的经济效益。 1 清洗系统设计 采用高压水清洗的方式,将清洗水管网分成一级水管、二级水管和三级水管。其中一级水管由高压水泵供水并且内部压力保持在设定的压力范围内;一级水管通过一级电磁阀向二级水管供水;二级水管通过二级电磁阀向三级水管供水;三级水管与清洗机构连接。清洗时通过一级电磁阀和二级电磁阀的控制就可以将整个光伏整列分成一定组别依次进行清洗。该方案的优点是,二级水管和三级水管

太阳能电池

太阳能电池及材料研究 引言 太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染; 4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电 池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等

太阳能电池材料的发展及应用

太阳能电池材料的发展及应用 材料研1203 Z石南起新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占85%。我国高技术 (863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。

太阳能板制作工艺

太阳能电池板(组件)生产工艺 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 流程: 1、电池检测—— 2、正面焊接—检验— 3、背面串接—检验— 4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)—— 5、层压—— 6、去毛边(去边、清洗)—— 7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)—— 8、焊接接线盒—— 9、高压测试——10、组件测试—外观检验—11、包装入库 组件高效和高寿命如何保证: 1、高转换效率、高质量的电池片; 2、高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 3、合理的封装工艺 4、员工严谨的工作作风; 由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 太阳电池组装工艺简介: 工艺简介:在这里只简单的介绍一下工艺的作用,给大家一个感性的认识. 1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 2、正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连 3、背面串接:背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。 4、层压敷设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。 5、组件层压:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA 时,层压循环时间约为25分钟。固化温度为150℃。 6、修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应

光伏电站太阳能板清洗方案

光伏电站太阳能板清洗方案 1、概述 华电****有限公司所辖三个光伏电站,分别是康保脑包图30MWp光伏站、**白**20MWp 光伏电站、**观日亭4MWp光伏电站。光伏组件安装在户外,其表面附着的细小粉尘颗粒、积雪等会影响光线的透射率,进而影响组件表面接受到的辐射量,影响发电效率;表面泥土、鸟粪等局部遮挡的污浊会在光伏组件局部造成热斑效应,降低发电效率甚至烧毁组件。为了提高太阳能电池板发电效率,需要定期对太阳能电池板进行清洗。上述三个光伏电站站址及装机情况如下: 1.脑包图光伏电站位于康保县二十倾村,装机容量30MW,其中太阳能电池板单体功率310W,目前共安装100044块光伏板。 2.白**光伏电站位于**县白土窑村,装机容量20MW,其中太阳能电池板单体功率 310W,共69120块电池板。 3.观日亭光伏电站位于塞北区东大门村,装机容量4MW,其中太阳能电池板单体功率260W,共15840块电池板。 2、清洗光伏板周期及方式 1. 清洗周期 定期:拟定在每年春季4-5月、秋季8-9月,进行两次集中清洗。现场常驻清洗人员,不间断地开展光伏组件的维护清理。 特殊天气:在冬季降雪较大时或局地沙尘暴对发电量影响较大时,组织施工人员对影响发电的光伏板进行针对性的临时清理。 2.清洗方式 工作模式:临时清洗+集中清洗 临时清洗主要是针对日常,避免组件表面因清理不及时产生较厚积尘,主要是避免因日常清理不及时导致组件效率下降或损坏。 集中清洗,选在春秋季节和特殊天气时段。 机具选用:脑包图光伏电站及白**光伏电站地势平坦,适宜大型清洗设备机场作业。但白**光伏电站站区排水不畅,如遇雨雪天气雪融化,极易结冰、积水,路况复杂,大部分区域车辆无法进入光伏阵列,需要人工携带清洗工具进行清洗。 观日亭光伏电站地处山地丘陵地带,如遇雨雪天气雪融化,极易结冰、积水,路况十分复杂,大部分区域车辆无法进入光伏阵列,不适宜采用大型清洗设备进场,需要人工携带清洗工具进行清洗。 2.2清洗工作组织及清洗标准 2.2.1清洗工作组织及要求 清洗工作由一个工作负责,多名清洗人员组成,分为至少6个组;每个清洗工作组织少由4人组成,1人负责驾驶工作车辆(皮卡),携带清水,发电机、高压水枪,车后斗1人向光伏组件喷洒清洗用清水,2人负责使用无纺布或毛刷擦拭光伏组件表面,直至光伏组件表面干净无污垢无灰尘。 如遇光伏组件表面有油性物质,可使用调有酒精的水涂在染色区域,等溶液将污染物渗透后,用毛刷擦拭去除。必要时可使用商业玻璃清洁剂连同无纺布或者玻璃刮对组件进行最后的清洁工作。不得使用塑料,橡胶刮板,防止对光伏板表面造成损伤。 如果需要清理积雪,应使用毛刷轻柔除雪,也可使用气吹的方式。禁止清除在组件上的冷冻住的雪或冰。 如光伏组件附近杂草高度可在光伏组件上形成阴影,清洗人员应将过高的杂草清除。 2.2.2清洗效果保证 清洗前、清洗后选择一天之中某一个时间段,记录光伏单元发电功率,对清洗效果进行对比。尤其记录同一个逆变器下电流偏小发电光伏组串,进行优先清理,并做对比;(现场值守人员提供)

太阳能电池板自动除尘装置

太阳能电池板自动除尘装置 研制背景及意义 太阳能电池板表面除尘的传统方法有两种:一种是采用水冲刷,这种方法会耗费大量人力和水资源,且这种方法只能应用于安装在低矮位置的太阳能电池板,如太阳能草坪灯、太阳能地灯等,对安装在较高位置的太阳能电池板,如太阳能路灯、屋顶太阳能供电装置,则除尘极为不便;另一种是通过控制器用电机带动传动装置对太阳能电池板表面进行 除尘,此类装置结构复杂,可靠性差,且初始投入与后期维护成本较高,大大增加了发电成本,不易推广应用。 针对以上问题,我们研制出了一种结构相对简单、能够自动运行并且节约能源的太阳能电池板自动除尘装置。本装置仅使用太阳能,不消耗其他能源,在能源危机日益加剧的今天具有很好的发展前景。 设计方案 太阳能电池板自动除尘装置基本结构图如图1所示,包括装有自主研制的相变材料的集热装置、气缸、除尘刷、压力真空表及阀门。气缸布置在太阳能电池板的一侧,通过气缸支架与太阳能电池板边框固定连接。集热管的出气口通过管道连接气缸的进气口,管道上安装有一个四通接头。四通

接头的一端连按压力真空表,用于测量管道内的压力值;一端连接阀门,用于对管道和集热管抽真空,使气动装置的管道内在初始阶段为负压;四通接头的另外两端与管道相连。气缸的滑块与气缸支架下端之间装有相吸的磁铁片,确保活塞在气压增加的条件下能直接运动到导轨上端,不会在导轨中间停留。滑块同时与除尘杆相连,除尘杆与滑块一体或者固定在一起,除尘刷安装于除尘杆上,位于太阳能电池板的正面,与太阳能电池板的上、下两边缘平行,其起始位置位于太阳能电池板的下端。 太阳能电池板自动除尘装置选取膨胀度高、相变潜热小的相变材料为工质,利用相变材料的热膨胀产生推动力驱动装置运行。 装置的工作原理见图2。白天,太阳能电池板自动除尘装置接受阳光照射,集热管吸热升温,同时一部分阳光通过反光壁面反射到集热管上,使得集热管的温升加剧,引起管内相变材料汽化,随着汽化的液体增加,管道内的压力也随着增大。当温度升高到一定值时,集热管内的高压气体将推动气缸内的活塞移动,从而推动除尘刷上移,直到升至太阳能电池板的最顶端,达到清洁太阳能电池板的目的。 夜间温度下降,管道内的气体由于降温而开始液化,管道压力逐渐减小。当压力减小到一定程度时,由于管道中初始状态是负压,大气压通过出气口推动活塞带动气缸滑块向

太阳能电池片生产工艺常用化学品及其应用

太阳能电池片生产工艺常用化学品及其应用 一般来说,半导体工艺是将原始半导体材料转变为有用的器件的一个过程,太阳能电池工艺就是其中的一种,这些工艺都要使用化学药品。 1.常用化学药品 太阳能电池工艺常用化学药品有:乙醇(C2H5OH)、氢氧化钠(NaOH)、盐酸(HCl)、氢氟酸(HF)、异丙醇(IPA)、硅酸钠(Na2SiO3)、氟化铵(NH4F)、三氯氧磷(POCl3)、氧气(O2)、氮气(N2)、三氯乙烷(C2H3Cl3)、四氟化碳(CF4)、氨气(NH3)和硅烷(SiH4),光气等。 2.电池片生产工艺过程中各化学品的应用及反应方程式: 2.1一次清洗工艺 2.1.1去除硅片损伤层: Si + 2 NaOH + H2O = Na2SiO3 + 2 H2 ↑ 28 80 122 4 对125*125的单晶硅片来说,假设硅片表面每边去除10um,两边共去除20um,则每片去处的硅的重量为:△g=12.5*12.5*0.002*2.33 = 0.728g。(硅的密度为2.33g/cm3) 设每片消耗的NaOH为X克,生成的硅酸钠和氢气分别为Y和Z克,根据化学方程式有: 28 :80 = 0.728 :XX= 2.08g 28 :122 = 0.728 :Y Y=3.172g 28 :4 = 0.728 :Z Z= 0.104g 2.1.2制绒面: Si + 2 NaOH + H2O = Na2SiO3 + 2 H2 ↑ 28 80 122 4 由于在制绒面的过程中,产生氢气得很容易附着在硅片表面,从而造成绒面的不连续性,所以要在溶液中加入异丙醇作为消泡剂以助氢气释放。另外在绒面制备开始阶段,为了防止硅片腐蚀太快,有可能引起点腐蚀,容易形成抛光腐蚀,所以要在开始阶段加入少量的硅酸钠以减缓对硅片的腐蚀。 2.1.3 HF酸去除SiO2层 在前序的清洗过程中硅片表面不可避免的形成了一层很薄的SiO2层,用HF酸把这层SiO2去除掉。 SiO2 + 6 HF = H2[SiF6] + 2 H2O 2.1.4HCl酸去除一些金属离子,盐酸具有酸和络合剂的双重作用,氯离子能与Pt 2+、Au 3+、Ag +、Cu+、Cd 2+、Hg 2+等金属离子形成可溶于水的络合物。 2.2扩散工艺 2.2.1扩散过程中磷硅玻璃的形成: Si + O2=SiO2 5POCl3=3 PCl5 + P2O5(600℃) 三氯氧磷分解时的副产物PCl5,不容易分解的,对硅片有腐蚀作用,但是在有氧气的条件下,可发生以下反应: 4PCl5 + 5O2=2 P2O5 + 10Cl2↑(高温条件下) 磷硅玻璃的主要组成:小部分P2O5,其他是2SiO2·P2O5或SiO2·P2O5。这三种成分分散在二氧化硅中。 在较高温度的时候,P2O5作为磷源和Si反应生成磷,反应如下:

太阳能电池板灰尘如何清洗

太阳能电池板的灰尘如何清理 来源:中国电力电子产业网 日期:2014-07-22 [复制链接] 责任编辑:oammin 打印收藏评论(0)[订阅到邮箱]阳光工匠光伏网讯:小小的灰尘竟能导致我国太阳能光伏发电项目每年损失数亿元。这并不是杞人忧天,而是事实!据了解,我国太阳能发电站因受到粉尘等污染,导致太阳能电池板的发电效率下降,所造成的巨额损失正日益引起业界的关注。 而在此前举行的“6·18”海峡项目成果交易会上传来消息,泉州企业与来自白俄罗斯的专家欲牵手研发可“抗污”“增强转化率”的太阳能电池板涂层。这到底是怎样的一种技术,会对太阳能光伏发电产业带来怎样的影响? 1太阳能发电一年被灰尘“吞掉”2.5亿元 太阳能电池板的洁净程度对发电效率的影响究竟有多大?我们举一个例子来说明。 陕西榆林某20MW太阳能光伏电站,该电站的占地面积约700亩,总投资大概2亿元。当初设计年发电量2000多万度,按政府每度电补贴1元计,年收益可达2000多万元。但这只是理想状态的收益率,事实上,因为无法彻底解决电池板清洗问题,电池板的实际发电效率由23%~25%下降到17%~18%左右,由此造成的损失,每年至少在200万元以上。 显然,遇到“灰尘”难题的不仅只有榆林这一家发电站。据了解,我国绝大多数太阳能发电站都或多或少受到这个问题的困扰。数据显示,2012年,我国光伏产业发电量达到2吉瓦(1吉瓦等于10亿瓦),而这也意味着2012年我国太阳能发电行业因为灰尘造成的损失高达2. 5亿元。 事实上,小小的灰尘一直是降低太阳能电池板发电量的致命问题,即便是代表顶尖科技的太空探索也无法避免地受到这一问题的困扰。 美国“机遇”号空间探测器刚开始火星探测任务时,1.3米的太阳能电池板每天可以提供90 0瓦时的电能,然而到2010年6月,随着太阳能面板沾上火星灰尘,每天提供的电能降到了500~600瓦时,NASA(美国宇航局)不得不尽量让两台火星车停靠在朝南的斜坡上,

《太阳能电池基础与应用》太阳能电池-第四章-4

第四章
4.1 3 4.2 4.3 3 4.4 4.5 4.6
太阳电池基础
光生伏特效应 光生载流子的浓度和电流 太阳电池的伏安特性 太阳电池的性能表征 太阳电池的测试技术 太阳电池的效率分析

4.6 太阳电池效率分析-极限效率
太阳电池的理论效率
VOC I SC ? FF ?? ?100% Pin
当入射太阳光谱AM0或AM1.5确定后, 为获得较高的转换效率, 需要增加Voc、Isc和FF
填充因子FF
在理想情况下(当voc>10),填充因子FF仅是开路电压Voc的函数
Voc的函 数
voc ? ln(voc ? 0.72) q FF ? voc ? Voc , voc ? 1 kT

4.6 太阳电池效率分析-极限效率
短路电流Isc
I sc ? ? I L I L ? qAG ? Le ? W ? Lh ? ,
假设到达电池表面的每一个能量大于材料禁 带宽度Eg的光子,会产生一个电子-空穴对。 将光通量对波长进行积分,可以得到产生率G。
开路电压Voc
Voc ?
2
? kT ? I L ln ? ? 1? q ? I0 ?
? Eg ? I 0 =1.5 ? 10 exp ? ? ? kT ? ?
5
Eg ) I0∝ ni ? N C N V exp(? kT
禁带宽度Eg减小,I0增加,Voc减小

4.6 太阳电池效率分析-极限效率
最佳带隙宽度
禁带宽度Eg减小
Isc增加
Voc减小

太阳能电池板自动除尘装置

研制背景及意义 太阳能电池板表面除尘的传统方法有两种:一种是采用水冲刷,这种方法会耗费大量人力和水资源,且这种方法只能应用于安装在低矮位置的太阳能电池板,如太阳能草坪灯、太阳能地灯等,对安装在较高位置的太阳能电池板,如太阳能路灯、屋顶太阳能供电装置,则除尘极为不便;另一种是通过控制器用电机带动传动装置对太阳能电池板表面进行除尘,此类装置结构复杂,可靠性差,且初始投入与后期维护成本较高,大大增加了发电成本,不易推广应用。 针对以上问题,我们研制出了一种结构相对简单、能够自动运行并且节约能源的太阳能电池板自动除尘装置。本装置仅使用太阳能,不消耗其他能源,在能源危机日益加剧的今天具有很好的发展前景。 设计方案 太阳能电池板自动除尘装置基本结构图如图1所示,包括装有自主研制的相变材料的集热装置、气缸、除尘刷、压力真空表及阀门。气缸布置在太阳能电池板的一侧,通过气缸支架与太阳能电池板边框固定连接。集热管的出气口通过管道连接气缸的进气口,管道上安装有一个四通接头。四通接头的一端连按压力真空表,用于测量管道内的压力值;一

端连接阀门,用于对管道和集热管抽真空,使气动装置的管道内在初始阶段为负压;四通接头的另外两端与管道相连。气缸的滑块与气缸支架下端之间装有相吸的磁铁片,确保活塞在气压增加的条件下能直接运动到导轨上端,不会在导轨中间停留。滑块同时与除尘杆相连,除尘杆与滑块一体或者固定在一起,除尘刷安装于除尘杆上,位于太阳能电池板的正面,与太阳能电池板的上、下两边缘平行,其起始位置位于太阳能电池板的下端。 太阳能电池板自动除尘装置选取膨胀度高、相变潜热小的相变材料为工质,利用相变材料的热膨胀产生推动力驱动装置运行。 装置的工作原理见图2。白天,太阳能电池板自动除尘装置接受阳光照射,集热管吸热升温,同时一部分阳光通过反光壁面反射到集热管上,使得集热管的温升加剧,引起管内相变材料汽化,随着汽化的液体增加,管道内的压力也随着增大。当温度升高到一定值时,集热管内的高压气体将推动气缸内的活塞移动,从而推动除尘刷上移,直到升至太阳能电池板的最顶端,达到清洁太阳能电池板的目的。 夜间温度下降,管道内的气体由于降温而开始液化,管道压力逐渐减小。当压力减小到一定程度时,由于管道中初始状态是负压,大气压通过出气口推动活塞带动气缸滑块向下移动,直至回到太阳能电池板的最下端,除尘刷也回到初

解读“光伏之喜”:我国太阳能电池板清洗技术填补世界空白

解读“光伏之喜”:我国太阳能电池板清洗技术填补世界空白 八九点家政服务公司“三位一体”太阳能电池板清洗技术填补世界空白日前,从山东济南传来消息,当地一企业成功探索出新型太阳能电池板“三位一体”清洗技术,填补了该领域的世界空白。消息传出,引发各界广泛关注。 “该项技术是我国光伏产业的重大喜讯,意味着我国太阳能发电厂每年至少能挽回数以亿计的损失!”一位新能源专家对此高度赞誉。 为了解其来龙去脉,记者进行了专门调查走访。 触目惊醒的损失:太阳能发电行业一年被灰尘吞噬2.5个亿 一粒灰尘代表什么?如果有人说代表每年流失的数以亿计的人民币,每个人都会惊讶不已!但事实的确如此。 “因为无法彻底解决电池板清洗问题,电池板实际发电效率只有17-18%左右,我们每年的损失在200万以上。”调研中,陕西榆林一家20MW太阳能光伏电站负

责人不无苦恼的介绍。 该电站设计年发电量2000万度,按政府每度电补贴1元钱计,年收益可达2000多万元,但实际上他们根本拿不到这么多钱,导致这一问题的原因就是小小的灰尘。 小小的灰尘让我国太阳能发电产业每年最低损失2.5亿元 事实上,小小的灰尘一直是降低太阳能电池板发电量的致命问题,即便是代表顶尖科技的太空探索也无法避免的受到这一问题的困扰。 美国“机遇”号空间探测器刚开始火星探测任务时,1.3米的太阳能电池板每天可以提供900瓦时的电能,然而到2010年6月,随着太阳能面板沾上火星灰尘,每天提供的电能降到了500到600瓦时,NASA不得不尽量让两台火星车停靠在朝南的斜坡上,让它们可以接受到更多的太阳光。 数据显示,2012年,我国光伏产业增速达到100%,全年设计发电量达到2吉瓦,而这也意味着2012年我国太阳能发电行业因为灰尘造成的损失高达2.5个亿!

太阳能电池工作原理和应用

太阳能电池的分类简介 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降 低其成本很困难,为了节省硅材料,发展了多晶硅 薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代 产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10%(截 止2011,为17%)。因此,多晶硅薄膜电池不久 将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

2)多晶体薄膜电池 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产 品。 砷化镓(GaAs)III-V化合物电池的转换效率 可达28%,GaAs化合物材料具有十分理想的光学 带隙以及较高的吸收效率,抗辐照能力强,对热 不敏感,适合于制造高效单结电池。但是GaAs 材料的价格不菲,因而在很大程度上限制了用 GaAs电池的普及。 (3)有机聚合物电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 (5)有机薄膜电池 有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的 6)染料敏化电池 染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。色素受到光的照射,生成自由电子和空穴。自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。它的能量转换效率为12%左右。 (7)塑料电池 塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。但塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。 太阳能工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能发电有两种方式,一种是光一热一电转换方式,另一种是光一电直接转换方式。其中,光一电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光一电转换的基本装置就是太阳能电池。太阳能电池是一种大有前途的新型

大型并网光伏电站电池组件自动水清洗系统

大型并网光伏电站电池组件自动水清洗系统 【摘要】光伏电站在节能减排、减少大气污染做出了贡献,但是大型并网光伏电站电池组件清洗一直是电站经营管理人员比较头疼的问题。目前光伏组件表面清洗基本靠人工完成,效率低下,成本较高,如不及时清洗,又影响发电量。本文提出水清洗系统,实现光伏电站电池组件清洗工作高效和环保。 【关键词】光伏电站;组件;水清洗 1引言 为响应国家大力发展清洁绿色能源,节能减排、减少空气污染,国内大型并网光伏电站不断建设为此做出了不小的贡献。但是,目前大型光伏电站电池清洗清洗目前靠人工完成,费时费力,效率低下,水资源浪费十分严重,每年几十、上百甚至几百万元的清洗费用也增加了光伏电站不少的运营成本。因此亟待需要一套光伏电站电池组件自动清洗系统,提高水资源利用率,提高电站电池组件的清洗效率和降低电站运营成本。 2发明的必要性 国内大型并网光伏电站基本建设在西北地区的荒滩戈壁,灰尘遮蔽是影响发电量的重要因素,风沙很大,组件受到灰尘遮蔽的情况严重,图1所示。灰尘遮蔽会减少组件接收的光辐照量,影响系统效率,降低发电量;局部遮蔽会引起热斑效应,造成发电量损失,影响组件的寿命,同时造成安全隐患。所以电池组件表面清洗工作十分重要。 目前靠人工清洗大型并网光伏电站电池组件的方法,费时费力,效率低下,浪费水资源十分严重。一个容量为1MWp的子阵,电池组串数一般为:200至230个,电池组件表面积总和为7000m2左右,一个容量200MWp大型光伏电站其电池组件表面清洗面积可达近140万m2,按0.2元/m2清洗费计算,靠人工每次的清洗费可达28万元。由于人工清洗效率低下,对于容量200MWp大型光伏电站,基本上是清洗一遍需时间25天左右,因为西部风沙较大,25天后前面清洗过的电池组件表面又落了一定厚度的浮灰,往往导致清洗速度赶不上积灰的速度。因此大型光伏电站靠人工清洗的方式已不可取,因此大型光伏电站急需要高效、环保、可靠、稳定的清洗系统。 光伏电池组件清洗生产厂家及规程明确规定,清洁时用清水冲洗,冲洗水压不超过厂家规定值,电池板与水的温差不大于10℃,冲洗时间在11时前或16时后为宜,冬季水洗以组件表面不结冰为原则。人工清洗一般安排在白天,这样清洗过程中会对电池组件造成阴影,影响电池组件的正常发电。还有靠水车,人工用水管冲洗的方法,冲洗后的水白白流入地表造成浪费,没有进行回收循环使用,造成用水量很大。目前国家也对地下水资源开采逐步进行了限制,因此靠水车,人工用水管冲洗,用水量不受节制的方法不久将会受到限制。为了提高清洗

太阳能电池板的生产工艺流程

太阳能电池板的生产工艺流程 太阳能电池板的生产工艺流程 封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的太阳能电池板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以太阳能电池板的封装质量非常重要。 (1)流程 电池检测——正面焊接——检验——背面串接——检验——敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试——外观检验——包装入库。 (2)组件高效和高寿命的保证措施高转换效率、高质量的电池片;高质量的 原材料,例如,高的交联度的 EVA高黏结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 合理的封装工艺,严谨的工作作风, 由于太阳电池属于高科技产品,生产过程中一些细节问题,如应该戴手套而不戴、应该均匀地涂刷试剂却潦草完事等都会严重地影响产品质量,所以除了制定合理的工艺外,员工的认真和严谨是非常重要的。 (3)太阳能电池组装工艺简介 ①电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效地将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的太阳能电池组件。如果把一片或者几片低功率的电池片装在太阳电池单体中,将会使整个组件的输出功率降低。因此,为了最大限度地降低电池串并联的损失,必须将性能相近的单体电池组合成组件。 ②焊接:一般将6?12个太阳能电池串联起来形成太阳能电池串。传统 上,一般采用银扁线构成电池的接头,然后利用点焊或焊接(用红外灯,利用红外线的热效应)等方法连接起来。现在一般使用60%的Sn、38%的Pb、2%的Ag 电镀后的铜扁丝(厚度约为100?200卩m)。接头需要经过火烧、红外、热风、激光处理。由于铅有毒,因此现在越来越多地采用 96.5 %的铜和 3.5 %的银合金。但是

《太阳能电池基础与应用》太阳能电池-第四章-1

第四章 太阳电池基础 光生载流子的浓度和电流4.2太阳电池的测试技术4.4光生伏特效应34.1太阳电池的伏安特性34.34.5太阳电池的效率分析 太阳电池的性能表征4.6

太阳电池基本结构 以晶体硅太阳电池为例。 (1)以p型晶体硅半导体材料为衬底; (2)为了减少光的反射损失,常制作绒面减反结构(3)采用扩散法在硅衬底上制作重掺杂的n型层(4)PECVD生长SiO 减反层 2 (5)在n型层上面制作金属栅线,作为正面接触电极(6)在衬底背面制作金属膜,作为背面欧姆接触电极

半导体 吸收光子产生电子空穴对,电子空穴对在p-n结内建电场作用下分离,从而在p-n结两端产生电动势。 p-n结是太阳电池的核心 光生载流子形成一个与热平衡结电场方向相反的电场,使得势垒降低;光生电流与正向结电流相等时,pn结建立稳定的电势差,即光生电压 Electric Field

载流子运动的角度 太阳电池工作原理:当太阳光照射到太阳电池上并被吸收时,其中 的光子能把价带中电子激发到导带上去,形成 能量大于禁带宽度E g 自由电子,价带中留下带正电的自由空穴,即电子—空穴对,通常 称它们为光生载流子。自由电子和空穴在不停的运动中扩散到p-n结的空间电荷区,被该区的内建电场分离,电子被扫到电池的n型一例,空穴被扫到电池的p型一侧,从而在电池上下两面(两极)分别形成了正负电荷积累,产生“光生电压”,即“光伏效应”。如果在电 池的两端接上负载,在持续的太阳光照下,就会不断有电流经过负载。这就是太阳电池的基本工作原理。

能带的角度 持续光照条件下,大量的光生载流子产生,光生电子和空穴被源源不断地分别扫到n型和p型一两侧,致使n区和p区费米能级的分裂,若太阳电池断路,光生电压V即为开路电压V 。若外电路短路,pn结正向电流为 oc 零,外电路电流为短路电流,理想情况下也就是光电流。

光伏板清洗方案

光伏板清洗方案 1、光伏板清洗周期及方式: 定期:每年春季4-5月、秋季8-9月,进行两次集中清洗。 特殊天气:在冬季降雪较大时或局地沙尘暴对发电量影响较大时,组织施工人员对影响发电的光伏板进行针对性的临时光伏板清洁。 2、清洗方式 工作模式:临时清洗+集中清洗 临时清洗主要针对日常,主要是避免因日常清理不及时导致组件效率下降或损坏。 集中清理:选择春秋季节和特殊天气时段。 光伏板清洗机器人如何使用: (1)系统自带太阳能电池板发电、充电及蓄电装置,能够自供电,无需提供外部供电电源,可随时根据需要启动和停止。 (2)实现无水清扫,无需清洁介质; (3)清扫面积大,单程运行距离800-1000m; (4)清扫效果好,清洁效率在百分之九十五以上; (5)适应能力强,适用于屋顶、大棚、平原、丘陵、沙漠、湖面等多种区域和地形,控制系统整体的防护等级为IP55,可全天候工作; (6)清扫部分采用由高分子材料制成的柔软螺旋毛刷,不会损坏光伏组件表面的钢化玻璃; (7)清扫时间、清扫次数可以根据不同的地域和季节设定; 1

2 (8)系统具备两种运行方式:全自动远程控制运行模式和就地人工控制运行模式,两 种方式可相互切换; (9)配备无线模块,能实现遥控遥测功能;手机接收和发出操控功能。 (10)机械机构简捷、可靠、运行稳定性强,产品整体质保1年; (11)设备部件标准化、模块化,易于运输、安装和调试; (12)配备红外温度传感器组,可测量光伏板晶硅片温度,可分析单板发电。 山东豪沃电气有限公司以先进技术和满意的服务,竭诚为广大客户提供技术先进、可靠的光伏电池板智能清扫系列产品。可直接点击右侧电话进行免费咨询。也可拨打/进行咨询。

一种光伏板的清洁方法

一种光伏板的清洁方法 申请人: 发明人: 地址: 学院: 班级: 学号:

发明名称 一种光伏板的清洁方法 摘要 本发明提供了一种光伏板的清洁方法,当到达定时器设定的时间时,定时驱动装置动作,主转动轴转动并使转动轴两端的齿轮带动光伏板表面的高透薄膜移动。两转动轴内侧的两行毛刷固定在光伏板上,毛刷与薄膜以及光伏板三者紧密接触,毛刷清洁薄膜表面的污垢,同时,三者紧密接触可避免灰尘污染光伏板与薄膜之间的空间。设定的时间大于薄膜转动一周长的时间,清洁结束后等待进入下一次清洁时间段。本发明通过清洁光伏板上的高透薄膜相当于简介清洁光伏板的采光面,进而提高太阳能转换效率。 权利要求书 1.一种光伏板的清洁方法,其中光伏板包括支架(1)、蓄电池(2)、光伏板(3)、和光伏板清洁系统。特征在于:所述光伏板为矩形,两端有足够的空间固定清洁装置,。一端为副转轴(7),一端为主转轴(6)及定时驱动装置,定时驱动装置由定时器(5)和驱动(4)组成,驱动(4)与主转轴(6)之间由齿轮连接,定时驱动装置驱动主转轴旋转,主转轴旋转带动高透薄膜(9)移动,副转轴(7)起协助高透薄膜(9)转动的作用;转轴(6)、(7)内侧靠近转轴的地方为两行固定的毛刷(8),使薄膜之间、薄膜与光伏板之间紧密接触,并且,毛刷(8)起到清洁高透薄膜(9)的作用;进行光伏板(3)清洁时,驱动(4)在定时器(5)的控制下动作,使主转动轴(6)旋转,带动高透薄膜(9)移动,

与之紧密接触的具有清洁作用的毛刷(8)可以有效清洁薄膜表面污垢,转轴(7)辅助转动;动作时间及动作时间间隔以根据需要由定时器设定好,动作一周期后停止,进入动作间隔时间,下一次动作时间时重复清洁过程。 2.根据权利要求1所述的清洁方法,其特征在于定时驱动装置的定时器(5)及驱动(4)的能量来自蓄电池。 3.根据权利要求1或2所述的清洁方法,其特征在于:所述毛刷(8)具有较强清洁作用并且对高透薄膜(9)的损害为最小。 4.根据权利要求3所述的清洁方法,其特征在于:主转轴(6)及副转轴两端具有齿轮形状装置(10)。 5.根据权利要求4所述的清洁方法,其特征在于:高透薄膜(9)的非毛刷端边沿有均匀分布的小孔(11),小孔(11)间距刚好与齿轮形状装置(10)齿间距离契合,能很流畅的有齿轮形状装置(10)带动移动。 6.根据权利要求5所述的清洁方法,其特征在于:高透膜(9)的透射率极高,对光伏板(3)的采光的影响较小。 7.根据权利要求6所述的清洁方法,其特征在于:定时器(5)与驱动(4)组成的定时驱动装置具有较强抗外力能力及较好的防水能力。 专利说明书 一种光伏板的清洁方法 产品背景与介绍 1.本发明为一种光伏板的清洁方法,无论是太阳能路灯电池板还是较为庞大的光伏列阵中的独立光伏板都可应用的清洁方法。太阳能是21世纪不可或缺的能量来源,是重要的可再生资源,太阳能石清洁能源,应用广泛并对于改善环境与气候变化有积极作用。近年来,光伏板应用广泛。但是长期暴露在室外的光伏板表面容易积满灰尘,严重影响光伏板的转换效率,如果逐个由人工进行,不仅工作量大而且成本较高。 2.ZL01270896.8公开了一种太阳能高架路灯装置,在光伏板上方加设一个透明保护罩,该保护罩避免了光伏板上积尘的产生,但会使污垢寄存于保护罩上,同样影响光伏板的发电效率。本发明通过清洁光伏板上的高透薄膜相当于简介清洁光伏板的采光面,很好的解决了污垢累积的问题。 发明内容 3.一种光伏板的清洁方法,其中光伏板包括支架、蓄电池、光伏板、和光伏板清洁系统。特征在于:所述光伏板为矩形,两端有足够的空间固定清洁装置,。一端为副转轴,一端为主转轴及定时驱动装置,定时驱

相关主题
文本预览
相关文档 最新文档