当前位置:文档之家› 固体电解质的电化学

固体电解质的电化学

固体电解质的电化学
固体电解质的电化学

(完整word版)电解质溶液习题及答案

第七章(一)电解质溶液练习题 一、判断题: 1.溶液是电中性的,正、负离子所带总电量相等,则正、负离子离子的迁移数也相等。2.离子迁移数与离子速率成正比,某正离子的运动速率一定时,其迁移数也一定。 3.离子的摩尔电导率与其价态有关系。 4.电解质溶液中各离子迁移数之和为1。 5.电解池通过l F电量时,可以使1mol物质电解。 6.因离子在电场作用下可以定向移动,所以测定电解质溶液的电导率时要用直流电桥。 7.无限稀电解质溶液的摩尔电导率可以看成是正、负离子无限稀摩尔电导率之和,这一规律只适用于强电解质。 8.电解质的无限稀摩尔电导率Λ∞ m可以由Λm作图外推到c1/2 = 0得到。 下列关系式是否正确: (1) Λ∞,1<Λ∞,2<Λ∞,3<Λ∞,4 (2)κ1=κ2=κ3=κ4 (3)Λ∞,1=Λ∞,2=Λ∞,3=Λ∞,4 (4)Λm,1=Λm,2=Λm,3=Λm,4 10.德拜—休克尔公式适用于强电解质。 11.对于BaCl2溶液,以下等式成立: (1) a = γb/b0;(2) a = a+·a - ; (3) γ± = γ+·γ - 2; (4) b = b+·b-;(5) b±3 = b+·b-2; (6) b± = 4b3。 12.若a(CaF2) = 0.5,则a(Ca2+) = 0.5 ,a(F-) = 1。 二、单选题: 1.下列溶液中哪个溶液的摩尔电导最大:

(A) 0.1M KCl水溶液;(B) 0.001M HCl水溶液; (C) 0.001M KOH水溶液;(D) 0.001M KCl水溶液。 2.对于混合电解质溶液,下列表征导电性的量中哪个不具有加和性: (A) 电导;(B) 电导率; (C) 摩尔电导率;(D) 极限摩尔电导。 3.在一定温度和较小的浓度情况下,增大强电解质溶液的浓度,则溶液的电导率κ与摩尔电导Λm变化为: (A) κ增大,Λm增大;(B) κ增大,Λm减少; (C) κ减少,Λm增大;(D) κ减少,Λm减少。 4.在一定的温度下,当电解质溶液被冲稀时,其摩尔电导变化为: (A) 强电解质溶液与弱电解质溶液都增大; (B) 强电解质溶液与弱电解质溶液都减少; (C) 强电解质溶液增大,弱电解质溶液减少; (D) 强弱电解质溶液都不变。 5.分别将CuSO4、H2SO4、HCl、NaCl从0.1mol·dm-3降低到0.01mol·dm-3,则Λm变化最大的是: (A) CuSO4 ;(B) H2SO4 ; (C) NaCl ;(D) HCl 。 6.影响离子极限摩尔电导率λ∞ m的是:①浓度、②溶剂、③温度、④电极材料、 ⑤离子电荷。 (A) ①②③;(B) ②③④; (C) ③④⑤;(D) ②③⑤。 7.科尔劳施的电解质溶液经验公式Λ=Λ∞-Ac1/2,这规律适用于: (A) 弱电解质溶液;(B) 强电解质稀溶液; (C) 无限稀溶液;(D) 浓度为1mol·dm-3的溶液。 8.已知298K,?CuSO4、CuCl2、NaCl的极限摩尔电导率Λ∞分别为a、b、c(单位为S·m2·mol-1),那么Λ∞(Na2SO4)是: (A) c+a-b;(B) 2a-b+2c; (C) 2c-2a+b; (D) 2a-b+c。 9.已知298K时,(NH4)2SO4、NaOH、Na2SO4的Λ∝分别为3.064×10-2、2.451×10-2、 2.598×10-2 S·m2· mol-1,则NH4OH的Λ∝为:(单位S·m2·mol-1) (A) 1.474×10-2;(B) 2.684×10-2; (C) 2.949×10-2;(D) 5.428×10-2。 10.相同温度下,无限稀时HCl、KCl、CdCl2三种溶液,下列说法中不正确的是: (A) Cl-离子的淌度相同; (B) Cl-离子的迁移数都相同; (C) Cl-离子的摩尔电导率都相同; (D) Cl-离子的迁移速率不一定相同。 11.某温度下,纯水的电导率κ = 3.8×10-6 S·m-1,已知该温度下,H+、OH-的摩尔电导率分别为3.5×10-2与2.0×10-2S·m2·mol-1,那么该水的K w是多少(单

固体电解质

来源:仲恺农业工程学院绿色化工研究所作者:黄金辉等 提要:介绍了聚合物锂离子电池的关键材料聚合物电解质。叙述了聚合物电解质的发展、组成、分类,离子在聚合物中的传导机理以及国内外的研究进展和今后的研究重点及方向。信息、能源和环保是21 世纪人类社会关心的主要课题。二次电池对3 个问题的解决都起着关键作用。锂离子电池是最新型的二次电池,近10年来得到迅速发展。到2008 年,全球锂离子电池的销售额已远远超过镉镍(Ni-Cd)和氢镍电池(Ni-MH)。锂离子电池以其他电池所不可比拟的优势迅速占领了许多领域,从信息产业(移动电话、PDA、笔记本电脑)到能源交通(电网调峰、电动车辆),从太空(卫星、飞船)到水下(潜艇、水下机器人),锂离子电池在本世纪作为主要的二次电池,进入了人类社会的各个领域,为人类造福。 电解质作为锂离子电池的关键材料影响甚至决定着电池的比能量、寿命、安全性能、充放电性能和高低温性能等多种宏观电化学性质。现在的电解质已经从以前的液态电解发展到固态电解质也就是聚合物电解质。以聚合物电解质取代液态电解质,是锂离子电池发展的一个重大进步,其显著特点就是提高了电池的安全性能,易于加工成膜,可以做成全塑结构,从而可制造超薄和各种形状的电池;能够很好的适应电池冲放电过程中电极的体积变化,同时又有较好的化学和电化学稳定性能。因此在新型高能锂电池及电化学的应用上显示出很大的优越性。 1 聚合物电解质 聚合物电解质也就是高分子电解质,它是由极性聚合物和金属盐络合形成的一类在固态下具有离子导电性的功能高分子材料,实际上就是锂盐的聚合物溶液,广义的说是指具有离子传导性的导电聚合物材料,即在外加电场驱动力作用下,负载电荷的离子定向移动来实现导电过程的聚合物,它的溶剂无论是液体高分子还是固体高分子都具有能够和锂离子配位的基团,而且这些基团与锂离子配位能力越强,锂盐在聚合物中的溶解度就越大,相应的聚合物电解质电性能就越强。 作为各种电池等需要化学能与电能转换场合中的离子导电介质,它在工业和科研工作中的各种电解和电分析过程中有重要的用途,在锂离子电池中它作为锂离子的传输介质必须具备这些条件:工作温度下的电导率较高,一般要大于1 mS/cm,以保证组装成的电池电阻降较低;锂离子迁移数大,以防止产生浓差极化;对电子传输几乎绝缘,因而能够有效地隔离正负电极,以防止电池内部短路;对锂电极的化学和电化学稳定性高,以保证电解质-Li 界面性质稳定性良好;制造成本低廉,以利于市场开发;温和的化学成分,不会污染环境。基于对这种新型电解质的这些特点与要求,许多科研工作者进行了不懈地努力。从最开始的导电聚合物,到有机聚合物再到无机聚合物,再到有机-无机共混聚合物等等,进行了大量的理化性质、常温下的导电率和成膜强度的研究和测试。 电解质的发展到今,已形成了一定的体系,可以分成不同的类型。标准不同其分类也不同,根据导电离子不同,可分为单离子和双离子聚合物电解质;根据聚合形态不同,可分为固体

【CN110085909A】一种复合固体电解质材料及其制备方法和应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910367824.5 (22)申请日 2019.05.05 (71)申请人 中南大学 地址 410083 湖南省长沙市岳麓区麓山南 路932号 (72)发明人 刘晋 李梅  (74)专利代理机构 长沙市融智专利事务所(普 通合伙) 43114 代理人 张伟 魏娟 (51)Int.Cl. H01M 10/0562(2010.01) H01M 10/0565(2010.01) H01M 10/0525(2010.01) (54)发明名称 一种复合固体电解质材料及其制备方法和 应用 (57)摘要 本发明公开了一种复合固体电解质材料及 其制备方法和应用。复合固体电解质材料由导离 子聚合物、金属-有机框架材料、碱金属或碱土金 属盐组成,其中金属-有机框架材料包括MOF - 235、MIL -68、MIL -88、MIL -96等系列,这些金属- 有机框架材料具有特殊的拓扑结构,加入固体电 解质材料能有效降低聚合物电解质的结晶性,促 进碱金属或碱土金属盐的解离,得到的复合固体 电解质在宽温度范围(25~120℃)具有良好的离 子传导性能和电化学稳定性,同时具有柔韧性 好、可薄膜化等优点,其制备方法操作简单、可规 模化生产。该复合固体电解质可与不同类型的正 极材料、碱金属或碱土金属负极匹配,组装的全 固态电池可在上述温度表现出良好的电化学性 能。权利要求书2页 说明书6页 附图1页CN 110085909 A 2019.08.02 C N 110085909 A

电解质溶液习题答案

第五章 电解质溶液 1. 写出下列分子或离子的共轭碱:H 2O 、H 3O +、H 2CO 3、HCO - 3、NH + 4、NH + 3CH 2COO -、 H 2S 、HS -。写出下列分子或离子的共轭酸:H 2O 、NH 3、HPO 2- 4、NH - 2、[Al(H 2O)5OH]2+ 、CO 2- 3、 NH + 3CH 2COO -。 答:(1) 酸 H 2O H 3O + H 2CO 3 HCO 3- NH 4+ NH 3+CH 2COO - H 2S HS - 共轭碱 OH - H 2O HCO 3- CO 32- NH 3 NH 2CH 2COO - HS - S 2- (2) 碱 H 2O NH 3 HPO 42- NH 2- [Al(H 2O) 5OH] 2+ CO 32- NH 3+CHCOO - 共轭酸 H 3O + NH 4+ H 2PO 4- NH 3 [Al(H 2O) 6] 3+ HCO 3- NH 3+CH 2COOH 2. 在溶液导电性试验中,若分别用HAc 和NH 3·H 2O 作电解质溶液,灯泡亮度很差,而两溶液混合则灯泡亮度增强,其原因是什么? 答:HAc 和NH 3·H 2O 为弱电解质溶液,解离程度很小;混合后反应形成NH 4Ac 为强电解质,完全解离,导电性增强。 3. 说明: (1) H 3PO 4溶液中存在着哪几种离子?请按各种离子浓度的大小排出顺序。其中H 3O +浓度是否为 PO 3- 4浓度的3倍? (2) NaHCO 3和NaH 2PO 4均为两性物质,为什么前者的水溶液呈弱碱性而后者的水溶液呈弱酸性? 答:(1) 若c (H 3PO 4)=O.10mol·L -1,则溶液中各离子浓度由大到小为: 离子 H + H 2PO 4- HPO 42- OH - PO 43- 浓度/mol·L -1 2.4×10-2 2.4×10-2 6.2×10-8 4.2×10-13 5.7×10-19 其中H +浓度并不是PO 43-浓度的3倍。 (2) 当溶液的cK a2>20K w ,且c >20K a1 NaHCO 3:pH=2 1 (p K a1 + p K a2)= 2 1(6.37+10.25)=8.31 碱性 NaH 2PO 4: pH= 2 1 (p K a1 + p K a2) = 2 1(2.12+7.21)=4.66 酸性 4. 下列化学组合中,哪些可用来配制缓冲溶液?

蛋白质各种定量方法的优缺点的比较

1.蛋白质的常规检测方法 凯氏(Kjeldahl )定氮法 一种最经典的蛋白质检测方法。 原理:样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化, 含氮有机物分解产生氨, 氨又与硫酸作用变成硫酸铵。然后加碱蒸馏放出氨, 氨用过量的硼酸溶液吸收, 再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。 优点:范围广泛、测定结果准确、重现性好 缺点:操作复杂费时、试剂消耗量大 双缩脲法 常用于需要快速但并不需要十分精确的蛋白质检测。 原理:双缩脲(NHCONHCONH是3分子的脲经180C左右加热,放出1分子氨后得到的产物。在强碱性溶液中,双缩脲与硫酸铜形成紫色络合物(肽键中的氮原子和铜离子配价结合),称为双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,因此可用来测定蛋白质含量。 测定范围:1~10mg(有的文献记载为1~20mg) 优点:较快速,干扰物质少,不同蛋白质产生的颜色深浅相近 缺点:①灵敏度差; ② 三羟甲基氨基甲烷、一些氨基酸和EDTA等会干扰该反应。 Folin- 酚试剂法 原理:Folin- 酚法的原理与双缩脲法大体相同,利用蛋白质中的肽键与铜结合产生双缩脲反应。同时也由于Folin- 酚试剂中的磷钼酸- 磷钨酸试剂被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深蓝色的钼蓝和钨蓝的混合物。在一定的条件下, 蓝色深度与蛋白的量成正比,由此可测定蛋白质的含量。

测定范围:20~250ug 优点:灵敏度高,对水溶性蛋白质含量的测定很有效 缺点:①费时,要精确控制操作时间; ②Folin -酚法试剂的配制比较繁琐,且酚类和柠檬酸、硫酸铵、Tris缓冲液、甘氨 酸、糖类、甘油、还原剂(二硫代苏糖醇、巯基乙醇)、EDTA和脲素均会干扰反应。 紫外吸收法 原理:蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸残基使其在280nm 处具有紫外吸收,其吸光度与蛋白质含量成正比)。此外,蛋白质溶液在280nm的吸光度值与肽键含量成正比,利用一定波长下蛋白质溶液的吸光度值与蛋白质浓度的正比关系可以测定蛋白质含量。 优点:简便、灵敏、快速,不消耗样品,测定后能回收。 缺点:①测定蛋白质含量的准确度较差,专一性差; ②干扰物质多,若样品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物质,会出现较 大的干扰。 定氮法、双缩脲法、Filon- 酚试剂法和紫外吸收法为常用的 4 种古老的经典方法。 1.5 考马斯亮蓝法 原理:染料考马斯亮蓝G-250 在酸性溶液中与蛋白质中的碱性氨基酸(特别是精氨酸)及芳香族氨基酸残基相结合,使染料最大吸收峰的位置由465nm变为595nm,溶液的颜色也由棕黑色变为蓝色,在595nm下测定的吸光度值与蛋白质浓度呈正比。 优点:灵敏度高,测定快速、简便,干扰物质少,不受酚类、游离氨基酸和缓冲剂、络合剂的影响,适合大量样品的测定。 缺点:由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同有较大的偏 ,因此用于不同蛋白质测定时 差。

高中化学 第八章电解质溶液及电化学系统

第八章电解质溶液及电化学系统 主要内容 1.电解质溶液及电化学系统研究的内容和方法 2.电解质溶液的热力学性质 3.电解质溶液的导电性质 4.电化学系统的热力学 重点 1.重点掌握了解电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念; 2.重点掌握离子氛的概念和德拜—休克尔极限定律; 3.重点掌握理解原电池电动势与热力学函数的关系;掌握能斯特方程及其计算; 难点 1.电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念;2.离子氛的概念和德拜—休克尔极限定律; 3.原电池电动势与热力学函数的关系;能斯特方程及其计算 教学方式 1. 采用CAI课件与黑板讲授相结合的教学方式。 2. 合理运用问题教学或项目教学的教学方法。 教学过程 第8.1节电解质溶液及电化学系统研究的内容和方法

一、电解质溶液及电化学系统研究的内容 1、电解质溶液 ①电解质溶液的热力学性质 电解质由于存在电离,正负离子之间的静电作用力使其偏离理想稀薄溶液所遵从的热力学规律,所以引入了离子平均活度和离子平均活度因子等概念。 思考:理想稀薄溶液所遵从的热力学规律是什么? ②电解质溶液的导电性质 高中阶段就学过电解质溶液的导电性质,为了表征电解质溶液的导电能力,则引入了电导、电导率、摩尔电导率等概念。 2、电化学系统 在两相或数相间存在电势差的系统称为电化学系统。 ①电化学系统的热力学性质 电化学系统的热力学主要研究电化学系统中没有电流通过时系统的性质,即有关电化学平衡的规律。 ②电化学系统的动力学 电化学系统的动力学主要研究电化学系统中有电流通过时系统的性质,即有关电化学反应速率的规律。 二、电化学研究的对象 第8.2节电解质溶液的热力学性质 一、电解质的类型 1、电解质的分类 电解质的定义: 解离:电解质在溶剂中解离成正、负离子的现象。 强电解质: 弱电解质: 强弱电解质的分类除与电解质本身性质有关外,还取决于溶剂的性质。如

蛋白质电化学检测的新体系研究及应用

蛋白质电化学检测的新体系研究及应用 王学亮1,2,焦奎1,孙伟1(1.青岛科技大学化学与分子工程学院,青岛266042; 2.菏泽学院化学与化工系,菏泽274015) 摘要:在pH 3.5 B-R缓冲溶液中以溴百里香酚蓝为电化学探针建立了蛋白质测定新体系。溴百里香酚蓝在-0.458 V(vs.SCE)有一个灵敏的极谱伏安还原峰,加入人血清白蛋白(HSA)后,其峰电位不变而峰电流下降。峰电流的下降值同HSA质量浓度在 1.0~40.0 mg·L-1范围内呈线性关系,其回归方程为ΔI p″=133.52C-3.72,r=0.999,定量下限为1.0 mg·L-1。由试验结果求得蛋白质与溴百里香酚蓝相互作用的结合比为1∶4,结合常数βs=1.43×1019。应用于实际人血清样品的测定,结果与经典的考马斯亮蓝G-250光度法一致。此方法还可应用于牛血清白蛋白、牛血红蛋白、卵清白蛋白等的测定。 关键词:蛋白质;溴百里香酚蓝;电化学探针 Study of New Electrochemical Analytical System for Determination Protein and Its Analytical Application W ANG Xue-liang1,2, JIAO Kui1, SUN Wei1 (1. College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042,China; 2. Dept. of Chem. and Chem. Engineering, He′ze College, He′ze274015, China) Abstract:A new analytical system by using bromothymol blue (BTB) as an electrochemical probe in B-R buffer solution of pH 3.5 for determination of protein was proposed. A sensitive voltammetric reductive peak of BTB was observed at -0.458 V (vs.SCE). Upon the addition of human serum albumin (HSA) to the reaction system, the peak potential of BTB was not changed but the peak current was

南京大学《物理化学》考试第七章电解质溶液

第七章电解质溶液 物化试卷(一) 1. 离子电迁移率的单位可以表示成: (A) m·s-1 (B) m·s-1·V-1 (C) m2·s-1·V-1 (D) s-1 2.水溶液中氢和氢氧根离子的电淌度特别大,究其原因,下述分析哪个对? (A) 发生电子传导(B) 发生质子传导 (C) 离子荷质比大(D)离子水化半径小 3.电解质溶液中离子迁移数(t i) 与离子淌度(U i) 成正比。当温度与溶液浓度一定时,离子淌度是一定的,则25℃时,0.1 mol·dm-3 NaOH 中Na+的迁移数t1 与0.1mol·dm-3 NaCl 溶液中Na+ 的迁移数t2,两者之间的关系为: (A) 相等(B) t1> t2 (C) t1< t2 (D) 大小无法比较

4.在Hittorff 法测迁移数的实验中,用Ag 电极电解AgNO3溶液,测出在阳极部AgNO3的浓度增加了x mol,而串联在电路中的Ag 库仑计上有y mol 的Ag 析出, 则Ag+离子迁移数为: (A) x/y (B) y/x (C) (x-y)/x (D) (y-x)/y 5.298 K时,无限稀释的NH4Cl水溶液中正离子迁移数t+= 0.491。已知Λm(NH4Cl) = 0.0150 S·m2·mol-1 ,则: (A)λm(Cl-) = 0.00764 S·m2·mol-1 (B) λm(NH4+ ) = 0.00764 S·m2·mol-1 (C) 淌度U(Cl-) = 737 m2·s-1·V-1 (D) 淌度U(Cl-) = 7.92×10-8 m2·s-1·V-1 6.用同一电导池分别测定浓度为0.01 mol/kg和0.1 mol/kg的两个电解质溶液,其电阻分别为1000 W 和500 W,则它们依次的摩尔电导率之比为: (A) 1 : 5 (B) 5 : 1 (C) 10 : 5 (D) 5 : 10 7. CaCl2 摩尔电导率与其离子的摩尔电导率的关系是: (A) Λ∞(CaCl2) = λm(Ca2+) + λm(Cl-) (B)Λ∞(CaCl2) = 1/2 λm(Ca2+) + λm(Cl-)

电解质溶液分章习题

一、选择题 1. 下列关于电解质溶液的电导率的概念,说法正确的是( C ) (A)1m3导体的电导 (B) 两个相距为1m的平行电极间导体的电导 (C) 面积各为1m2且相距1m的两平行电极间导体的电导 (D) 含1mol电解质溶液的电导 2. AgCl 在以下溶液中溶解度递增次序为:( B ) (a) 0.1mol·dm-3 NaNO3 (b) 0.1mol·dm-3 NaCl (c) H2O (d) 0.1mol·dm-3Ca(NO3)2 (e) 0.1mol·dm-3 NaBr (A) (a) < (b) < (c) < (d) < (e) (B) (b) < (c) < (a) < (d) < (e) (C) (c) < (a) < (b) < (e) < (d) (D)(c) < (b) < (a) < (e) < (d) 3. z B、r B及c B分别是混合电解质溶液中 B 种离子的电荷数、迁移速率及浓度,对影响 B 离子迁移数(t B) 的下述说法哪个对? (D ) (A) │z B│愈大,t B愈大(B) │z B│、r B愈大,t B愈大 (C) │z B│、r B、c B愈大,t B愈大(D) A、B、C 均未说完全 4.在298 K无限稀释的水溶液中,下列离子摩尔电导率最大的是:(D ) (A)La3+ (B)Mg2+ (C)NH4+ (D)H+ 5. 0.001 mol·kg-1 K3[Fe(CN) 6] 水溶液的离子强度为:(A ) (A)6.0×10-3 mol·kg-1(B)5.0×10-3 mol·kg-1 (C)4.5×10-3 mol·kg-1(D)3.0×10-3 mol·kg-1 6.离子独立运动定律适用于( C ) (A) 强电解质溶液(B) 弱电解质溶液 (C) 无限稀电解质溶液(D) 理想稀溶液 7. 电解质水溶液属离子导体。其离子来源于( B ) (A) 电流通过溶液, 引起电解质电离 (B) 偶极水分子的作用, 引起电解质离解 (C) 溶液中粒子的热运动, 引起电解质分子的分裂 (D) 电解质分子之间的静电作用引起分子电离 8. 在电导测量实验中, 应该采用的电源是( D ) (A) 直流电源 (B) 交流电源 (C) 直流电源或交流电源 (D) 测固体电导用直流电源, 测溶液电导用交流电源 9.电位滴定法是广泛使用的一种电分析方法。在下列方法中能够用来确定电位滴定终点的是( B ) (A) 测量溶液电阻的变化(B) 测量电极电位的突跃变化 (C) 选用合适的指示电极(D) 测定溶液pH值的突跃变化 10. 离子的迁移数是指正负两种离子在作电迁移运动时各自的导电份额或导电的百分数, 因此, 离子的运动速度直接影响离子的迁移数。它们的关系是( C ) (A) 无论什么离子,它们的运动速度愈大,?迁移的电量就愈多,迁移数也愈大 (B) 同一种离子的运动速度是一定的, 故它在不同的电解质溶液中, 迁移数相同 (C) 在只含某种电解质的溶液中, 离子运动的速度愈大, 迁移数就愈大 (D) 在任何电解质溶液中, 离子运动的速度愈大, 迁移数就愈大 11 298K时,当H2SO4溶液的浓度从0.01mol/kg增加到0.1mol/kg时,其电导率k和摩尔电导率∧m将( D ) (A)k减少,∧m增加(B)k增加,∧m增加(C)k减少,∧m减少(D)k增加,∧m减少 12、用同一电导池分别测定浓度m1=0.01mol/kg和m2=0.1mol/kg的两种电解质溶液,其电阻分别为R1=1000Ω,R2=500Ω,则它们的摩尔电导率之比为(B ) (A)1:5 (B)5:1 (C)10:5 (D)5:10 13、在298的含下列离子的无限稀释的溶液中,离子摩尔电导率最大的是(C ) (A)Al3+(B)Mg2+(C)H+(D)K+ 14、CaCl2的摩尔电导率与其离子的摩尔电导率的关系是(C) (A)∧m∞(CaCl2)=λm∞(Ca2+)+λm∞(Cl-)(B)∧m∞(CaCl2)=1/2λm∞(Ca2+)+λm∞(Cl-) (C)∧m∞(CaCl2)=λm∞(Ca2+)+2λm∞(Cl-)(D)∧m∞(CaCl2)=2[λm∞(Ca2+)+λm∞(Cl-)] 15、298K时,∧m(LiI)、λm(H+)和∧m(LiCl)的值分别为1.17×10-2、3.50×10-2和1.15×10-2S?m2/mol,已知LiCl中的t+=0.34,则HI中的H+的迁移数为(设电解质全部电离)(A) (A)0.082 (B)0.18 (C)0.34 (D)0.66 16、298K时,有浓度均为0.001mol/kg的下列电解质溶液,其离子平均活度系数γ±最大的是( D ) (A)CuSO4(B)CaCl2(C)LaCl3(D)NaCl 17、1.0mol/kg的K4Fe(CN)6溶液的离子强度为( B ) (A)15mol/kg (B)10mol/kg (C)7mol/kg (D)4mol/kg 18、质量摩尔浓度为m的FeCl3容液(设其能完全电离),平均活度系数为γ±,则FeCl3的活度为( D )

电化学--电解质溶液

电化学――电解质溶液王振山 电化学是研究电能与化学能之间相互转化及转化过程中的有关现象的科学。 电化学发展历史如下: 1600年,吉尔伯特Gilbert(英)观察到毛皮擦过的琥珀能吸引微小物体,即后来称为摩擦生电的现象。 1799年,伏打Alessandro Volta(意大利)制得了银锌交替叠堆的可产生火花的 直流电源(即原电池),创制了第一个原电池,有了直流电。为电化学研究提供了 条件。 1807年,戴维Davy(英)用电解法成功从K,Na的氢氧化物中分离出金属K,Na。电解了水,电解制出了碱金属。 1833年,法拉第Faraday(英)据实验结果归纳出著名的法拉第定律,为电化学的定量研究奠定了理论基础。 1870年,爱迪生Edison(美)发明了发电机,电解才被广泛应用于工业生产中。1879年亥姆霍兹Helmholtz (德),电极界面双电层理论。 1884年,阿伦尼乌斯Arrhenius(瑞典),电离学说 1900年,能斯特Nernst(德)据热力学理论提出了Nernst方程。 1905年,塔菲尔Tafel(德)注意到电极反应的不可逆性,提出了半经验的Tafel 公式,以描述电流密度与氢超电势间的关系。 1923年,德拜Debey(荷兰)-休克尔Huckel(德))离子互吸理论。 20世纪40年代,弗鲁姆金A. H. Frumkin(苏联)以电极反应速率及其影响因素为主要研究对象,逐步形成了电极反应动力学。因电极上发生反应时,电子的跃迁距离小于1nm,利用固体物理理论和量子力学方法研究电极和溶液界面上进行反应的机理,更能反映出问题的实质,这是研究界面电化学反应的崭新领域, 称为量子电化学。今天电化工业已经成为国民经济中的重要组成部分;有色金属、稀有金属的冶炼和精炼采用电解,一些化工产品的制备(氢氧化钠、氯酸钾等),在医药领域,人们采用电化学分析手段在临床与科研方向发挥了重要作用。 *相关链接:伽伐尼(意大利Aloisio Galvani,Luigi Galvani,1737~1798),1780年发现蛙腿剧烈地痉挛,同时出现电火花。他还把这种电叫做“动物电”。火花放电或雷雨闪电能使青蛙腿肌肉收缩。伏达为了纪念伽伐尼,尊重伽伐尼的先驱性工作,在自己的著作中,总是把伏打电池叫做伽伐尼电池。 一、原电池和电解池 1、导体:能导电的物体称为导电体,简称导体。大致可分为两类: ⑴、第一类导体(电子导体):靠自由电子定向运动而传导电流的物质。又称电子导体,如金属、石墨等。

蛋白质各种定量方法的优缺点的比较

蛋白质各种定量方法的优缺点的比较 1.蛋白质的常规检测方法 1.1 凯氏(Kjeldahl)定氮法 一种最经典的蛋白质检测方法。 原理:样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化,含氮有机物分解产生氨,氨又与硫酸作用变成硫酸铵。然后加碱蒸馏放出氨,氨用过量的硼酸溶液吸收,再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。 优点:范围广泛、测定结果准确、重现性好 缺点:操作复杂费时、试剂消耗量大 1.2 双缩脲法 常用于需要快速但并不需要十分精确的蛋白质检测。 原理:双缩脲(NH3CONHCONH3)是3 分子的脲经180℃左右加热,放出1分子氨后得到的产物。在强碱性溶液中,双缩脲与硫酸铜形成紫色络合物(肽键中的氮原子和铜离子配价结合),称为双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,因此可用来测定蛋白质含量。 测定范围:1~10mg(有的文献记载为1~20mg) 优点:较快速,干扰物质少,不同蛋白质产生的颜色深浅相近 缺点:①灵敏度差; ②三羟甲基氨基甲烷、一些氨基酸和EDTA等会干扰该反应。

1.3 Folin-酚试剂法 原理:Folin-酚法的原理与双缩脲法大体相同,利用蛋白质中的肽键与铜结合产生双缩脲反应。同时也由于Folin-酚试剂中的磷钼酸-磷钨酸试剂被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深蓝色的钼蓝和钨蓝的混合物。在一定的条件下,蓝色深度与蛋白的量成正比,由此可测定蛋白质的含量。 测定范围:20~250ug 优点:灵敏度高,对水溶性蛋白质含量的测定很有效 缺点:①费时,要精确控制操作时间; ②Folin -酚法试剂的配制比较繁琐,且酚类和柠檬酸、硫酸铵、Tris缓冲液、甘氨酸、 糖类、甘油、还原剂(二硫代苏糖醇、巯基乙醇)、EDTA和脲素均会干扰反应。1.4 紫外吸收法 原理:蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸残基使其在280nm 处具有紫外吸收,其吸光度与蛋白质含量成正比)。此外,蛋白质溶液在280nm的吸光度值与肽键含量成正比,利用一定波长下蛋白质溶液的吸光度值与蛋白质浓度的正比关系可以测定蛋白质含量。 优点:简便、灵敏、快速,不消耗样品,测定后能回收。 缺点:①测定蛋白质含量的准确度较差,专一性差; ②干扰物质多,若样品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物质,会出现较 大的干扰。 定氮法、双缩脲法、Filon-酚试剂法和紫外吸收法为常用的4种古老的经典方法。

YSZ包覆YDC纳米晶复合固体电解质的制备

Z J Q包覆Z X5纳米晶复合固体电解质的制备! 甄"强(!)!严"凯(!陈瑞芳(!李"榕(!李"淼( !(+上海大学材料科学与工程学院"上海)..,,,#)+上海大学纳米科学与技术研究中心"上海)..,,,$ 摘"要!"研究了Z J Q包覆Z X5纳米晶复合固体电 解质的制备工艺"首先!以分析纯的5H#$’ *$ * % /G)’和Z#$’*$*%/G)’为原料!采用沉淀法制备了分散性较好的Z X5纳米粉体!然后将其均匀分散于 含有分析纯的Q>’5E )%C G )’ &Z#$’ * $ * %/G )’ 的醇 水溶液中!采用溶胶凝胶法制备了Q>’ )#Z )’* $包覆 5H’)#Z)’*$复合纳米粉体"S O X&1T%&_O分析结 果表明经/..@焙烧后的5H’ )#Z)’*复合纳米粉体为 单一萤石相!晶粒尺寸为(-&=左右且分散性良好’成功合成了的Z J Q包覆Z X5复合纳米粉体!其中反应温度在4-@时粉体的包覆性及其分散性较好"以合成的包覆型纳米粉体为原料!通过常压烧结制备了包覆型Z J Q(Z X5复合固体电解质"研究表明!在相同保温时间内#)8$!随着烧结温度从C..@提高到(*-.@!试样相对密度从-)F迅速增加2-F以上"当烧结条件为从室温升温到(*..@!迅速降温到()-.@保温)8后!烧结体的相对密度可达2-F以上!平均晶粒度为(..&=左右" 关键词!"钇稳定氧化锆"钇掺杂氧化铈"包覆"常压烧结"纳米晶"固体电解质 中图分类号!"1%2((文献标识码!3文章编号!(..(#24*(#)..4$.*#.,,(#.- ("引"言 固体氧化物燃料电池!J’R5$因高效"无污染"对燃料适应性强等优点而受到普遍关注"而氧离子固体电解质以其较高的离子导电性用于J’R5中备受青睐%目前"达到最新发展水平的固体氧化物燃料电池常用的电解质陶瓷材料是钇稳定的氧化锆!Z J Q$%然而传统的Z J Q材料仅在高温!(...@$才具有较高的离子电导率"燃料电池在过高的温度下运行将引发一系列的问题"如电极&电解质界面反应’阳极烧结等(("))%如果J’R5的工作温度降至C..@"其寿命可望延长*倍"且大大降低制作和材料的成本(*",)"困此迫切需要开发在中低温范围内具有较高的离子电导率的电解质材料以降低电池的工作温度%实验研究表明"降低J’R5工作温度的关键在于找到低温下离子电导率高’电阻小的电解质材料%目前"掺杂的5H’ ) 被认为是适合于作中低温J’R5的电解质(-)%人们在寻找这类材料的过程中发现"稀土!J=’]P’Z$氧化物掺杂的5H基氧化物在较低的温度下具有比其它材料都要高的电导率(/!(.)%但5H’ ) 在高温低氧分压条件 下会发生还原反应"并产生电子导电#而Q>’ ) 基快离子导体具有优良的化学稳定性和高温强度%按照优势 互补的材料设计原则"本文制备了Q>’ ) !Z )’* $包覆5H’)!Z)’*$固体电解质"以弥补5H’)基氧离子导体在高温低氧条件下不稳定的不足"并使之具有更高的离子电导率’强度’韧性和抗热震性能’更低的工作温度"更宽的工作氧分压范围"该材料有望在汽车尾气’大气环境监测’燃料电池’冶金等更广阔的领域里得到应用% 另一方面"国内外研究表明当固体电解质材料的晶粒尺寸达到纳米级时"不仅可以显著提高陶瓷材料的断裂韧性和抗热震性能"更重要的是可以大大降低固体电解质的工作温度((("())"因此"纳米晶包覆型Z X5&Z J Q固体电解质将是一种很有前途的固体电解质材料%制备致密纳米晶包覆型Z X5&Z J Q复合材料的基础是获得晶粒细小’分散性好’烧结性能好的包覆型Z X5&Z J Q纳米粉体%本文在醇水溶液中制备出了包覆型Z X5&Z J Q复合纳米粉体"并且通过常压烧结法制备了纳米晶的包覆型Z X5&Z J Q固体电解质% )"实"验 )+("试样制备 采用乙醇为分散剂和保护剂"用反向沉淀法制备Z)’*掺杂5H’)!Z X5$复合纳米粉末%首先"将分析 纯的5H!$’ * $ * */G )’ ’Z!$’ * $ * */G )’ 按摩尔比为C f)的比例称量溶入乙醇中"配制成总的金属离子!5H*7’Z*7$浓度为.+)-=6E&!的混合溶液%在室温条件下"将上述混合溶液以(.=E&="&的速度滴定到 预先配制好的)=6E&!的$G * *G )’ 酒精溶液!溶液 中加入适量的G )’) $中"同时用机械搅拌器搅拌"得到棕红色沉淀"洗涤后的胶体真空抽滤以尽可能除去多余的水分"胶体在烘箱内干燥后"在一定温度下于马弗炉中煅烧"最后得到Z X5复合纳米粉体% +!Q>’5E)*C G)’$f+!Z!$’*$**/G)’$? ( , , 甄"强等+Z J Q包覆Z X5纳米晶复合固体电解质的制备 !基金项目!国家自然科学基金资助项目!).(.(../$#上海市纳米专项基金资助项目!.,-)&=.4*$#上海市教委资助项目!.,3[).$ 收到初稿日期!)../#.2#(2收到修改稿日期!)../#((#(/通讯作者!甄"强 作者简介!甄"强"!(2/40$"男"河北石家庄人"博士"副教授"主要从事纳米功能陶瓷和固体电解质材料研究%万方数据

固体电化学

固体电化学 任何一个电化学装置都是由电介质和两个电极相互连接组成的。或用于传感器,或用于化学电源。为提高其性能就要对这三部分及他们之间的相互作用进行研究。 这不仅应对固体电解质本身的电学性质(电导率、离子电导率及与环境的关系、使用条件)进行研究;并且还要研究电介质与电极间的相互作用。本章将介绍电化学的有关基本知识。 第一节固体电解质的电导和极化 一电导和极化 固体电解质中存在离子的大量空位,在电场作用下,离子可以迁移,离子在迁移过程中受到的阻力是电阻,我们常用电阻(欧姆)的倒数电导(1/欧姆)来表示离子导体样品的导电能力。 ⒈、离子迁移率和离子电导率 离子的移动速度为V(cm/s ), 与电场强度E(V/cm )成正比.(E= dφ/dx; 电压梯度V/cm) V= U E 其中U是离子的迁移率:单位电场强度作用下载流子的迁移速度。单位:(cm2/Vs)。 载流子产生的电流密度I 与导电粒子浓度C、粒子带电量(q = Z e)及粒子的迁移速度U 成正比:I = C q V 具有多种电荷载体的固体电解质在电场中产生的总电流密度I

等于各种载流子产生的分电流密度之和: I =∑I =I i +I e +I h I = ∑C k q k V k = ∑C k q k U k E k 固体电解质中载流子的电导率 σ :单位长度单位截面电介质的电阻的倒数,或:当长度为1厘米的1立方厘米物体两端加1伏电压时,通过的电流安培数: 因为: I =∑σk E k σ = ∑ σk = ∑ C k q k U k 如果是混合导体,σi 为离子电导率,σe 为电子电导率;σ 为固体电解质的总电导率。 3、离子迁移数和电子迁移数 固体电解质中离子及电子迁移数是导电离子及电子的电导率在固体电解质总电导率中所占的比例。可用下式表示: t i i i =∑σσ σσ e e t = t I = 1 - t e 对于少量缺陷的固体电解质材料(电导率比较低),根据热力学理想溶液特性,其电导率与温度的关系为:???? ??-=kT E o o T exp σσ 固体电解质的电导率均随温度的升高而增大。以lg(σT)∽(1/T)作图,从图中曲线的斜率可得活化能 E 0。 但是,对于高电导率的固体电解质材料,其导电机理不能用稀释点缺陷理论来解释,现在还没有得出理论推导的关系式;可按Arrhenius 方程式进行处理,离子晶体的电导率与温度的关系可以表示 为: σσ=-?? ???o E kT o exp

蛋白质电化学及其研究进展

蛋白质电化学及其研究进展 组成生命体的许多生物物质是荷电的微粒或分子,在生命活动过程中,无论是能量转换、神经传导、光合作用,还是大脑思维、基因传递,甚至生命的起源,都与电子传递密切相关。从某种意义上讲,研究生命过程实质就是研究生物体中的电子传递过程。例如,生物体的呼吸链就是一种典型的由氧化还原蛋白质和酶组成的电子传递体系。由此可见,生命现象的许多过程皆伴随着电子传递反应。 在生命体内,许多涉及氧化还原蛋白质的化学反应都发生在带电荷的生物膜上或其附近,因而其电子的传递必然会受到电场的作用和影响。这种作用和影响与电化学研究中的工作电极表面或其附近的情况十分相似。因此,采用电化学方法研究氧化还原蛋白质和酶等生物大分子的直接电子转移过程,是生物电化学和生物学领域一直非常关注的问题。 通过这些研究,首先,可方便地帮助获得蛋白质的内在热力学和动力学性质的重要信息;其次,获得电极物质与具有高催化活性和生物传感特性的蛋白质和酶等生物大分子间结合的动态信息,如在特定的电极表面蛋白质键合特征,电子传递对蛋白质在电极表面的取向的要求等,深入认识 蛋白质和酶等生物大分子在生命体内的生理作用和电子传递反应传递机制;再次,在实际应用中也为构筑新型第三代生物传感器和生物燃料电池等生物电子器件提供了重要基础。 由于蛋白质在电极表面易于吸附,可能造成构象变化和活性丧失,因此,目前主要采取以下一些研究途径构筑适宜的蛋白质-电极界面来实现氧化还原蛋白质与电极之间直接电子传递。 1.生物膜和生物模拟膜电极 构筑及蛋白质/酶直接电化学 在生命体内,类脂双分子层构成生物膜的基本结构单元。类脂具有典型的双亲结构,即疏水的碳氢长链和亲水的极性基团,蛋白质就吸附在生物膜表面或嵌入其内部。我们知道,生物体内很多电子传递蛋白都是膜蛋白,表明生物膜环境有利于蛋白质的电子传递。 早在1993年,美国Rusling 研究小组在基于模拟生物膜薄膜的蛋白质直接电化学方面取得了很大进展。他们把肌红蛋白包埋在双十二烷基二甲基溴化铵多双层表面活性剂薄膜中,其异相电子传递速率比在水溶液中提高了1000倍, 这是首次将蛋白质的直接电子传递与模拟生物膜相结合。显然,模拟生物膜能为某些蛋白质提供比其在水溶液中更为有利的微环境,更有利于深埋在多肤链内部的电活性基团接近电极表面,大大促进了它们与电极之间的电子交换,并可保持蛋白质或酶的生物活性。 从某种意义上讲,蛋白质在模拟生物膜微环境中的电化学行为,很可能更接近于其在生命体内的电子转移过程。因此,氧化还原蛋白质在模拟生物膜电极上的直接电化学研究,对于认识生命体内的电子转移机制和酶的催化机理以及某些重要生命物质在生命体内的代谢过程有重要意义,同时该研究也能为生物传感器的研制提供一条新思路。 为了提高生物膜修饰电极在水溶液中的稳定性,研究人员提出了多双层复合薄膜方法。多双 生物燃料电池示意图 利用碳纳米管独特的一维纳米管状结构、良好的导电性和大比表面积等特性,进一步发展合成碳纳米管-蛋白质/酶组装体系,将为构建理想的新型生物传感器、生物燃料电池等纳米生物电子器件提供重要基础。 上海师范大学贾能勤 今日启明星 世界科学2009.2 26

中南大学物化课后习题答案8章电解质溶液

第8章电解质溶液1.用氧化数法配平下列反应式: As 2S 3 (s)+HNO 3 (浓)→H 3 AsO 4 + H 2 SO 4 + NO 2 + H 2 O FeS 2(s) + O 2 →Fe 2 O 3 (s) + SO 2 Cr 2O 3 (s) + Na 2 O 2 (s)→Na 2 CrO 4 (s) + Na 2 O(s) S + H 2SO 4 (浓)→SO 2 + H 2 O 2.用铂电极电解氯化铜CuCl 2 溶液,通过的电流为st1:chmetcnv TCSC="0" NumberType="1" Negative="False" HasSpace="False" SourceValue="20" UnitName="a">20A,经过15分钟后,在阴极上能析出多少克铜在阳极上能析出多少dm3的,的氯气(答案: dm3) 解:(1)在阴极 Cu2++ 2e → Cu 析出铜 (2) 在阳极 2Cl-→Cl 2 (g) + 2e 析出氯 3.一电导池中装入·dm-3的KCl水溶液,时测得其电阻为453Ω。已知溶液的电 导率为·m-1。在同一电导池中装入同样体积的浓度为·dm-3的CaCl 2 溶液,测得

电阻为1050Ω。计算电导池常数、该CaCl 2 溶液的电导率和摩尔电导率Λ m (1/2CaCl 2 )。(答案: m-1, S·m-1, S·m2·mol-1) 解:(1)电导池常数G (2)CaCl 2 的电导率 (3) 摩尔电导率 4.在298K,H+ 和HCO- 3 的离子极限摩尔电导率λH+ =×10-2S·m2·mol-1,λ HCO-3= × 10-3S·m2·mol-1。在同温度下测得·dm-3H 2CO 3 溶液的电导率κ=×10-3S·m-1,求 H 2CO 3 离解为H + 和HCO- 3 的离解度。(答案:α= ×10-3) 解:

相关主题
文本预览
相关文档 最新文档