当前位置:文档之家› 2017年我国精密光学元器件行业综合发展情况图文深度分析

2017年我国精密光学元器件行业综合发展情况图文深度分析

2017年我国精密光学元器件行业综合发展情况图文深度分析
2017年我国精密光学元器件行业综合发展情况图文深度分析

2017年我国精密光学元器件行业综合发展情况图文深度分析

(2017.6.27)

一、精密光学元器件行业发展概况-----------------------------------------(2)

二、行业规模----------------------------------------------------------------------(2)

1、智能手机市场--------------------------------------------------------(2)

2、车载镜头市场--------------------------------------------------------(4)

3、安防监控市场--------------------------------------------------------(6)

4、LED照明市场---------------------------------------------------------(8)

三、行业发展趋势-------------------------------------------------------------(10)

1、产品结构的变化趋势---------------------------------------------(10)

2、技术升级的变化趋势---------------------------------------------(11)

(1)光学非球面镜片面世------------------------------------------(11)(2)光学塑料的广泛运用-----------------------------------------(11)(3)蓝玻璃IRCF的普及--------------------------------------------(12)四、行业上下游关系-----------------------------------------------------------(13)

一、精密光学元器件行业发展概况

光学元器件是指利用光学原理进行各种观察、测量、分析记录、信息处理、像质评价、能量传输与转换等活动的光学系统主要器件,是制造各种光学仪器、图像显示产品、光学存储设备核心部件的重要组成部分。按照精度和用途分类,可分为传统光学元器件和精密光学元器件。传统光学元器件主要应用于传统照相机、望远镜、显微镜等传统光学产品;精密光学元器件主要用于智能手机、投影机、数码类照相机、摄像机、复印机、光学仪器、医疗设备以及各种精密光学镜头等。

二、行业规模

随着科技的发展和制造工艺的提升,智能手机、数码相机等产品逐渐成为居民重要的消费产品,带动光学产品对光学元件的精密度要求愈加提高。

从全球光学元件的应用领域来看,智能手机和数码相机是最主要的精密光学元件应用。在安防监控、车载摄像、智能家居方面的需求也对摄像头清晰度提出了更高要求,这样不仅增加了高清摄像头用光学镜片膜的需求量,同时也促使传统光学镀膜产品升级为毛利率更高的光学镀膜产品。

1、智能手机市场

第13课带有衍射光学元件的激光扩束器

第13课.带有衍射光学元件的激光扩束器 在第11课中,您了解了如何使用普通球面透镜设计激光扩束器,并了解到需要多个透镜元件才能获得良好的性能。第12课采用相同的设计,使用两个非球面元件,效果极佳。本课程将证明您可以使用DOE(衍射光学元件)。 to within10%.目标是将腰半径为0.35mm的HeNe激光器转换成直径为10mm且均匀至10%以内的光束 这是我们初始的输入文件: RLE!Beginning of lens input file.。 ID KINOFORM BEAM SHAPER WA1.6328!Single wavelength UNI MM!Lens is in millimeters OBG.351!Gaussian object;waist radius-.35mm;define full aperture=1/e**2point. 1TH22!Surface2is22mm from the waist. 2RD-2TH2GTB S!Guess some reasonable lens parameters;use glass type SF6from Schott catalog SF6 3TH20!Surface3is a kinoform on side2of the first element 3USS16!Defined as Unusual Surface Shape16(simple DOE) CWAV.6328!Zones are defined as one wave phase change at this wavelengt HIN1.798855!Assume the zones are machined into the lens.You can also apply!a film of a different index. RNORM1 4TH2GTB S SF6 4USS16 CWAV.6328 HIN1.798855 RNORM1!The first side of the second element is also a DOE 5CV0TH50!Start with a flat surface 7!Surfaces6and7exist AFOCAL!because they are required for AFOCAL output. END!End of lens input file. 我们给第2个表面指定了一个合理RD值。这是现阶段还没有DOE的非球面系数的系统:

集成光学讨论题

聚合物电光波导调制器的研究 一.概述 聚合物电光调制器具有卓越的性能和潜在的巨大应用前景,因此自上世纪九十年代以来就开始受到人们的广泛关注。迄今,由于材料研究方面的进展,聚合物调制研究已经取得了巨大进步,但是仍然存在诸如器件稳定性问题和高损耗问题。 在学习了《集成光学》这门课程之后,受到老师和其他上台演示的同学的启发,我对聚合物电光调制器产生了浓厚的兴趣,思考如何能解决器件损耗的问题,在查阅了大量的资料后发现,有一种“包层调制”的方法可以降低器件损耗,即高损耗的电光聚合物材料被用于波导的包层,而其芯层则使用低损耗的非电光的有机或无机材料,由于线性电光效应,信号电场在包层中与其中的光导模消逝场发生耦合,将信号场的能量搭载到光载波上,从而实现信号调制。由于包层中弱的导模功率,因此可以预期包层调制下的材料光损耗是可以降低的,通过优化设计与分析发现适当降低波导芯层的尺寸可以弥补因包层调制引起的调制效率的下降。本文将简单介绍聚合物电光波导调制器的发展、研究、应用以及“包层调制”的基本概念。 二.光调制的基本概念和调制器的种类 1.光调制的一些基本概念 光调制就是将电信号加载到光波上并使得光波的可观测量,如位相、频率、振幅偏偏振,发生变化的过程。最简单直接的调制就是激光光源的内调制,它是利用调制信号直接控制激光器的振荡参数,使输出光特性随信号而变。在直接调制半导体激光二极管的过程中,不仅输出光强度随调制电流发生变化,而且输出光的频率也会发生波动,也就是说在幅度调制的同时还受到频率调制,特别是在信号频率进入微波时的高速调制情况下,这个现象称为“啁啾”特性。由于啁啾的存在,不仅使单个纵模的线宽展宽,而且在单模光纤中传播时,在色散的作用下将使信号的非线性失真加剧,从而限制了通讯系统的中继距离一般小于 80km。与内调制相对照,还存在另一种调制方式--外调制。所谓外调制,就是在激光器的外部设置调制器,利用调制信号作用于调制元件时所产生的物理效应(如电光、声光或磁光等),使通过调制器的激光束的某一参量随信号变化。相比于内调制,外调制方法不仅调制速率高,带宽大,而且无频率啁啾,因此成为当今大容量、长中继的WDM光纤通讯系统和高速光处理系统的标准方法。 调制时光波的任何一个特性参数(位相、频率、振幅、偏振)都可以被调制,相应地,光调制方式可以分为相位调制、振幅调制、频率调制、偏振调制。由于通常的光探测器的输出信号直接与入射光波的强度有关,探测器可以直接从强度调制波还原出调制信号。而相位调制或频率调制等必须采用外差接收来解调,在技术上比较复杂和困难,所以强度调制用的多。 2.光调制器的种类 按照调制器的工作原理,光调制器可以分为电光调制器、声光调制器、磁光调制器、电致吸收调制器。 电光调制器是利用介质的线性电光效应(Electro-optic Effect, EO )来工作的。由于电光效应,介质的折射率变化随信号电压线性改变,介质折射

常用电子元器件培训资料

常用电子元器件参考资料第一节部分电气图形符号

二.半导体管 三.其它电气图形符号

第二节常用电子元器件型号命名法及主要技术参数一.电阻器和电位器 1.电阻器和电位器的型号命名方法 示例: (1)精密金属膜电阻器 R J7 3 第四部分:序号 第三部分:类别(精密) 第二部分:材料(金属膜) 第一部分:主称(电阻器) (2) 多圈线绕电位器 W X D 3 第四部分:序号 第三部分:类别(多圈) 第二部分:材料(线绕) 第一部分:主称(电位器)

2.电阻器的主要技术指标 (1) 额定功率 电阻器在电路中长时间连续工作不损坏,或不显著改变其性能所允许消耗的最大功率称为电阻器的额定功率。电阻器的额定功率并不是电阻器在电路中工作时一定要消耗的功率,而是电阻器在电路工作中所允许消耗的最大功率。不同类型的电阻具有不同系列的额定功率,如表2所示。 (2) 标称阻值 阻值是电阻的主要参数之一,不同类型的电阻,阻值范围不同,不同精度的电阻其阻值系列亦不同。根据国家规范,常用的标称电阻值系列如表3所示。E24、E12和E6系列也适用于电位器和电容器。 (3) 允许误差等级 3.电阻器的标志内容及方法 (1)文字符号直标法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,额定功率、允许误差等级等。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值,其文字符号所表示的单位如表5所示。如1R5表示1.5Ω,2K7表示2.7kΩ, 表5

例如: RJ71-0.125-5k1-II 允许误差±10% 标称阻值(5.1kΩ) 额定功率1/8W 型号 由标号可知,它是精密金属膜电阻器,额定功率为1/8W,标称阻值为5.1kΩ,允许误差为±10%。 (2)色标法:色标法是将电阻器的类别及主要技术参数的数值用颜色(色环或色点)标注在它的外表面上。色标电阻(色环电阻)器可分为三环、四环、五环三种标法。其含义如图1和图2所示。 标称值第一位有效数字 标称值第二位有效数字 标称值有效数字后0的个数 允许误差 图1 两位有效数字阻值的色环表示法 三色环电阻器的色环表示标称电阻值(允许误差均为±20%)。例如,色环为棕黑红,表示10?102=1.0kΩ±20%的电阻器。 四色环电阻器的色环表示标称值(二位有效数字)及精度。例如,色环为棕绿橙金表示15?103=15kΩ±5%的电阻器。 五色环电阻器的色环表示标称值(三位有效数字)及精度。例如,色环为红紫绿黄棕表示275?104=2.75MΩ±1%的电阻器。

光电子与微电子器件及集成重点专项2019年度项目申报

附件4 “光电子与微电子器件及集成”重点专项 2019年度项目申报指南 为落实《国家中长期科学和技术发展规划纲要(2006—2020年)》《2006—2020年国家信息化发展战略》提出的任务,国家重点研发计划启动实施“光电子与微电子器件及集成”重点专项(以下简称“本重点专项”)。根据本重点专项实施方案的部署,现提出2019年度项目申报指南。 本重点专项的总体目标是:发展信息传输、处理与感知的光电子与微电子集成芯片、器件与模块技术,构建全链条光电子与微电子器件研发体系,推动信息领域中的核心芯片与器件研发取得重大突破,支撑通信网络、高性能计算、物联网等应用领域的快速发展,满足国家发展战略需求。 本重点专项按照硅基光子集成技术、混合光子集成技术、微波光子集成技术、集成电路与系统芯片、集成电路设计方法学和器件工艺技术6个创新链(技术方向),共部署49个重点研究任务。专项实施周期为5年(2018—2022年)。 2019年度项目申报指南在核心光电子芯片、光电子芯片共性支撑技术、集成电路与系统芯片、集成电路设计方法学和器件工 —1—

艺技术5个技术方向启动19个研究任务,拟安排国拨总经费概算6.75亿元。凡企业牵头的项目须自筹配套经费,配套经费总额与专项经费总额比例不低于1:1。 各研究任务要求以项目为单元整体组织申报,项目须覆盖所申报指南方向二级标题(例如:1.1)下的所有研究内容并实现对应的研究目标。除特殊说明外,拟支持项目数均为1~2项。指南任务方向“1.核心光电子芯片”和“2.光电子芯片共性支撑技术”所属任务的项目实施周期不超过3年;指南任务方向“3.集成电路与系统芯片”、“4.集成电路设计方法学”和“5.器件与工艺技术”所属任务的项目实施周期为4年。基础研究类项目,下设课题数不超过4个,参研单位总数不超过6个;共性关键技术类和应用示范类项目,下设课题数不超过5个,参与单位总数不超过10个。项目设1名项目负责人,项目中每个课题设1名课题负责人。 指南中“拟支持项目数为1~2项”是指:在同一研究方向下,当出现申报项目评审结果前两位评分评价相近、技术路线明显不同的情况时,可同时支持这2个项目。2个项目将采取分两个阶段支持的方式。建立动态调整机制,第一阶段完成后将对2个项目执行情况进行评估,根据评估结果确定后续支持方式。 1.核心光电子芯片 1.1多层交叉结构的光子集成芯片(基础研究类) 研究内容:聚焦基于硅基多维度交叉结构的光子集成芯片,—2—

超精密光学元器件制造装备与工艺

超精密光学元器件制造装备与工艺 1、任务概述 超精密光学元器件制造装备与工艺的研究,目的就是为了给国家重大专项所建设的大型激光装置提供合格的大口径、高品质的光学元件,保证工程的圆满按期完成;通过项目的执行,有效推进相关领域的元件检测、脆性材料制造工艺、表面处理等关键技术的进步;通过对知识产权的拥有,来提升民族产业的技术水平和竞争力。所谓的光学元件的超精密加工指的是加工精度达到亚微米或纳米精密的光学加工与制造,这相当于一根人的头发丝的1/20~1/100的精微尺度,如果在1m的天文望远镜主镜上达到这个加工精度,做一个同比例的比喻,相当于一公里长度的铁轨其长度误差只有0.5mm。以至于光学元件的超精密制造技术是一项技术难度非常大,且涉及新进加工、数控、仿真、精密计量等诸多方面的综合技术。 2、战略意义 在我国中长期科技发展规划中,与激光科学工程相关的国家重大专项涵盖了很多重要技术领域,这些领域与上海的2006-2020发展纲要是密切相关的。该专项的实施对于我国未来清洁能源、先进制造、光通讯、国防安全等领域的技术革新和长远发展具有重要的战略意义。 超精密光学元器件对这些大型激光装置来说,就如同砖、瓦、钢筋水泥对建筑高楼大厦一样重要。元器件的制造装备与工艺决定了元

器件的性能和品质,直接影响装置最终的输出性能和输出状态。对于传统光学仪器,如显微镜和望远镜无限制的扩大了人们的视野,是人的眼睛得意“更远、更精、更大”,而光学元件器正是这些光学仪器的器官。因此上海在此时适时布局和规划有关超精密光学元器件的制造与工艺研究具有非常重要的战略意义。 3、国内外现状 无论国内还是国际对于超精密光学元器件制备与工艺技术的驱动均来自于军事、航天、天文及大型民用项目,在美国最大的激光装置是本世纪初刚刚建成的NIF“国家点火工程”其共有光路192路,其中高精度大口径光学元件达7000余片。在国际上类似的装置还有法国的LMJ (Laser Mega Joule)装置。在中国最大的激光装置是建设中的神光III装置。受到大能量和高功率激光驱动装置方面的建设的驱动,各国在大尺寸光学元件的精密加工方面都开展了大量的投入和研究。其中具有代表性的是NIF装置驱动下美国光学加工的发展。据报道,NIF从1995年就开始了对激光材料加工技术技术的筹备和研究,整体工程包含的光学元件总量达到7360片,包括激光玻璃放大片、反射镜、腔镜、窗口、光栅和晶体,其中仅激光玻璃放大片为3072片。这些光学元件的技术指标要求都比常规光学元件的要求要高出许多,NIF的加工指标要求见下表 表错误!文档中没有指定样式的文字。NIF光学元件加工技术指标要求

精密光学元器件行业研究报告

精密光学元器件行业研究报告 东吴证券章雁 一、精密光学元器件行业发展概况 光学元件是指利用光学原理进行各种观察、测量、分析记录、信息处理、像质评价、能量传输与转换等活动的光学系统主要器件,是制造各种光学仪器、图像显示产品、光学存储设备核心部件的重要组成部分。按照精度和用途分类,可分为传统光学元件和精密光学元件。传统光学元件主要应用于传统照相机、望远镜、等传统光学产品;精密光学元件主要用于投影机、数码类照相机、摄像机、复印机、光学仪器、医疗设备以及各种精密光学镜头等。公司主要产品属于精密光学元件中的精密光学元组件。 光电行业的技术含量高,技术上门槛高,涉及的知识面很广,是众多多学科集成的一个行业;光电行业对资金的门槛要求较高,设备环境硬件设施的投资非常大。光电行业同时属于劳动密集的产业,目前的自动化程度还不高,对人力资源的依赖程度较高。光学产业兴起于欧美,20世纪末在中国迅速发展起来。世界光学元件产业主要集中在德国、日韩和我国台湾地区,光学元件制造的先进技术仍由日本、德国和美国掌控。20世纪90年代末,光学产业向我国台湾、大陆地区迁移,产业链的上下游日趋完整。进入21世纪,中国大陆地区成为继台湾之后全世界最大规模的光学制造业基地,主要为光学整机产品商和规模光学元组件商提供配套生产服务。 光电产业的布局主要分为沿渤海湾、长三角区域和珠三角区域。渤海湾区域规模较小,长三角由于占据资金、高端光电人才等的优势,目前拥有全国最大的光电产业集群,在研发、制造、应用等各个产业链环节都走在全国的前列。珠三角着重于电子整机的制造,产业规模全国领先。随着国家政策的导向加上西部开发的进展,中国光电产业空间演变将呈现“从沿海到内地梯度转移”的趋势。但是未来长三角光电产业群由于拥有前期的资金和技术的积累,依然会保持领先的研发创新优势,在产业链上游包括光电装备、上游原材料方面占据优势。 该行业的产品如摄像头模组、高端滤光片、精密塑胶成型等光学器件或光学

集成光学考试总结讲解学习

集成光学考试总结

第一章 1. 集成光学的分类: ?按集成的方式划分:个数集成和功能集成 ?按集成的类型划分:光子集成回路(PIC)和光电子集成回路(OEIC) ?按集成的技术途径划分:单片集成和混合集成 ?按研究内容划分:导波光学和集成光路 2. 集成光学的定义 (1)集成光学是在光电子学和微电子学基础上,采用集成方法研究和发展光学器件和混合光学-电子学器件系统的一门新的学科。 (2)集成光学是研究介质薄膜中的光学现象,以及光学元器件集成化的一门学科。 (3)集成光学是研究集成光路的特性和制造技术以及与微电子学相结合的学科。 3. 集成光学的主要应用 光纤通信,光子计算机,光纤传感 4. 集成光学系统有什么优点? 1)集成光学系统与离散光学器件系统的比较 (1)光波在光波导中传播,光波容易控制和保持其能量。 (2)集成化带来的稳固定位。 (3)器件尺寸和相互作用长度缩短;相关的电子器件的工作电压也较低。 (4)功率密度高。沿波导传输的光被限制在狭小的局部空间,导致较高的功率密度,容易达到必 要的器件工作阈值和利用非线性效应工作。 (5)体积小,重量轻。集成光学器件一般集成在厘米尺度的衬底上,其体积小,重量轻。 2)集成光路与集成电路的比较

把激光器、调制器、探测器等有源器件集成在同一衬底上,并用光波导、隔离器、耦合器和滤波器等无源器件连接起来构成的光学系统称为集成光路,以实现光学系统的薄膜化、微型化和集成化。 用集成光路代替集成电路的优点包括带宽增加,波分复用,多路开关。耦合损耗小,尺寸小,重量轻,功耗小,成批制备经济性好,可靠性高等。由于光和物质的多种相互作用,还可以在集成光路的构成中,利用诸如光电效应、电光效应、声光效应、磁光效应、热光效应等多种物理效应,实现新型的器件功能。 第二章 1. 光波导的分类 (a)平板波导(slab waveguide) (b)条形波导(strip waveguide) (c)圆柱波导(cylindrical waveguide) 2. 会利用射线光学方法分析平板波导的覆盖层辐射波、衬底层辐射波和传导波的形成条件。

集成光器件

硅基光电子集成芯片(Si OEIC) 主要应用于光通信或微电子电路的光互连。硅基光子学通过将光学器件和电子回路(IC)集成到一块普通芯片上降低了光学系统成本,或者从长远来讲,在高性能芯片中引入光学部件增强IC的性能。 我们正处在一个将电子领域和光子领域二者合为一体的黄金时期。作为电子材料,硅基微电子学已经显示出巨大的威力;现在,作为光子材料,硅基光子学将再 次发挥威力,其潜在的高性能器件和广泛应用将在硅中延伸。 用成熟的CMOS工艺,在 硅衬底上制作光学器件, 例如发射器,调制器,探 测器,波导,光纤耦合器 MUX/DEMUX等无源器件。 最终目的是在一块硅芯片 上实现CMOS IC,射频和 所有光学模块的的集成。 当然每一种集成都需耗费 大量的人力和资源进行器 件改良和工艺研究。

硅基光电子集成芯片 有源 无源:发射器:(L D ,L E D ) 调制器:(马赫泽德干涉仪) 探测器: (锗探测器) 只有I I I -V 族解决方案,硅材料目前为止显得无 能为力。芯片集成的最终可能解决方案应该是:h y b r i d S i O E I C c h i p ,即光源部分由I I I -V 族制作,并通过f l i p -c h i p 或者其他办法与硅芯片封装到一起,其他光学部分和I C 部分全部由硅工艺完成。 通过结构参数优化和工艺改进,我们已经拥有制作高速(10 G H z )硅光学调制器的一整套设计方案和工艺集成方案,在8英寸0.13微米工艺线上,芯片成品率达到90%以上。在硅表面外延高质量单晶锗,我们可以制造出高速率,高响应度,高灵敏度的红外探测器(波段为0.8u m -1.6u m ),其性能完全可以跟市场上I I I -V 族探测器媲美。在8英寸0.13微米工艺线上,芯片成品率达到90%以上。产品形式可以有:P I N 锗探测器,锗硅雪崩二极管探测器,波导型锗探测器(集成类产品) 在硅基上已经实现,并且达到可应用的程度 主要为波导类器件,包括直波导,弯曲波导,交叉波导,滤波 器,谐振器,阵列波导光栅等等

集成光学考试总结

第一章 1. 集成光学的分类: ?按集成的方式划分:个数集成和功能集成 ?按集成的类型划分:光子集成回路(PIC)和光电子集成回路(OEIC) ?按集成的技术途径划分:单片集成和混合集成 ?按研究内容划分:导波光学和集成光路 2. 集成光学的定义 (1)集成光学是在光电子学和微电子学基础上,采用集成方法研究和发展光学器件和混合光学-电子学器件系统的一门新的学科。 (2)集成光学是研究介质薄膜中的光学现象,以及光学元器件集成化的一门学科。 (3)集成光学是研究集成光路的特性和制造技术以及与微电子学相结合的学科。 3. 集成光学的主要应用 光纤通信,光子计算机,光纤传感 4. 集成光学系统有什么优点? 1)集成光学系统与离散光学器件系统的比较 (1)光波在光波导中传播,光波容易控制和保持其能量。 (2)集成化带来的稳固定位。 (3)器件尺寸和相互作用长度缩短;相关的电子器件的工作电压也较低。 (4)功率密度高。沿波导传输的光被限制在狭小的局部空间,导致较高的功率密度,容易达到必要的器件工作阈值和利用非线性效应工作。 (5)体积小,重量轻。集成光学器件一般集成在厘米尺度的衬底上,其体积小,重量轻。 2)集成光路与集成电路的比较 把激光器、调制器、探测器等有源器件集成在同一衬底上,并用光波导、隔离器、耦合器和滤波器等无源器件连接起来构成的光学系统称为集成光路,以实现光学系统的薄膜化、微型化和集成化。 用集成光路代替集成电路的优点包括带宽增加,波分复用,多路开关。耦合损耗小,尺寸小,重量轻,功耗小,成批制备经济性好,可靠性高等。由于光和物质的多种相互作用,还可以在集成光路的构成中,利用诸如光电效应、电光效应、声光效应、磁光效应、热光效应等多种物理效应,实现新型的器件功能。 第二章 1. 光波导的分类 (a)平板波导(slab waveguide) (b)条形波导(strip waveguide) (c)圆柱波导(cylindrical waveguide) 2. 会利用射线光学方法分析平板波导的覆盖层辐射波、衬底层辐射波和传导波的形成条件。

衍射光学元件上课讲义

衍射光学元件

?-高帽光束整形 HOLO/OR几十年来服务于堆栈高帽元件模拟,可以很好 地定义高斯光束,将其在工作平台上转换为均匀强度光 斑。 应用领域:激光切割,激光焊接,激光显示,激光医学和审 美激光应用 ?Beam Splitter/Multispot-分束器/多场 分束器元件为衍射光学元件,用于将一束激光光束分离为几束,每束光都有最初那束光的特性,这些特性不包括光能量大小和传播角度。多束光方向可以形成一维或二维光图像。 应用领域:激光打孔,医疗表面处理,并行处理,并行激光扫描 ?Homogenizer/Diffuser-均化器/扩散器 HOLO/OR有多样且广泛的工业衍射光元件,允 许在合理的价格范围内提供解决方案。 应用领域:允许任何光束类型,小扩散角,自定 义角度,各种波长和尺寸,自定义形状 ?Beam Sampler-光束采样器

HOLO/RO介绍一种新的ED匀化器,由纯石英玻璃或硒化锌材料组成,可选择在这两种材料表面进行高功率ARV-镀膜,有利于给出解决方案,显著减少0.2% 的后向反射。(每个面0.1%) 应用领域:直插式功率,嵌入式光束分析 ?Dual Wavelength-双波长产生器 衍射光学给出了一个独特的构想,可以只影响 一个波长。在多波长光束中,双波长光束组合 器是衍射光学元件,用于将两束入射光以不同 的波长组合到相同焦点上,为在所需观察面上 获得一个强光斑,就必须在激光光束射向光斑 的路径上放置一个透明的衍射光学元件。 应用领域:外科手术激光系统,工业二氧化碳激光系统 ?Vortex lens-涡旋透镜 Holo-Or介绍了VL系列涡旋微透镜,由纯石 英玻璃或硒化锌材料组成,可选择在这两种材 料表面进行高功率ARV-镀膜,有利于给出解 决方案,显著减少0.2% 的后向反射。(每个 面0.1%) 应用领域:天文学,光学镊子,加密术 ?Lenslet arrays-微透镜阵列 微透镜阵列基底由微衍射透镜覆盖,微透镜阵 列作为扩散器,或者作为局部焦点和采样点。 衍射微透镜阵列的优势在于其占空因子为 100%,高于折射微透镜阵列。可以很容易地 进行设计和成像,并修正微透镜成像系统像 差。 应用领域:光束扫描仪,焦平面阵列光传感器

精密光学市场与产业

全球精密光學元件產業在2010年步上復甦反彈之路後,卻又在2011年面臨了日本311地震、泰國洪災,以及歐債危機等挑戰,以致主要光學應用如數位相機、光碟機、投影機等市場皆難有驚喜的表現。 在不景氣的2011下半年,智慧手機搭載高階相機鏡頭的成長性在各應用領域之中,依然獨領風騷。台灣光學廠商持續抓穩這世界潮流,仍保有穩健成長契機,且持續引入日系大廠的擴廠投資,實屬難能可貴。 8-1 全球精密光學元件市場分析 2011年全球精密光學元件市場面臨日本311地震、泰國洪災,以及歐債危機等事件,衝擊了消費者需求及生產營運。所幸智慧手機、高階數位相機表現仍佳,加上日圓升值以及美元計價的條件下,全球精密光學元件產值達143億美元,成長約5%,如圖8-1-1所示;但原先預期收復2008年金融風暴前的產值失土的時程將延後至2013年。 若以2011年全球光學元件的應用做分析,手機相機鏡頭產值則占有33%,而數位相機鏡頭鏡片產值約占32%,兩者合計即超過總產值六成以上,如圖8-1-2所示。 8-2 台灣精密光學元件產業 台灣精密光學元件產業,由上到下的光學產業鏈相當完整,包括上游聯一供應玻璃毛胚;到中游各類鏡片、鏡頭、濾光片等研磨及組裝,如今國光、中國砂輪、一品光、寶利徠、熒茂、建利、

昇明、和光、今鼎、保勝、精碟、大昱、晶華、晶極、精獅、日月興、岳華展、澤米、清盈、利科、神鈦、久禾、神詠、佳凌、尚瀅、白金科、新燁、勝浤、梅華精密、瑞章精密、晶遠、光燿、美強、誠泰、久鈺、雷笛克、辰峯等,以及中下游光學整合應用的廠商如亞光、揚明光學、先進光、大立光、玉晶光、新鉅科、合盈、美錡、實盈、谷崧、光寶、台達電、華晶、佳能、鴻海等公司。近幾年受惠於手機相機鏡頭相關公司的躍進發展,也拉升一向成熟平穩的光學產業走向成長。 台灣光學玻璃毛胚大廠—聯一光學多年供應今國光、亞光、揚明光等客戶之精密光學元件生產原料。隨著台灣接獲日本委外數位相機組裝、高階單眼數位相機(DSLR)鏡片代工訂單,以及投影機業務發展所帶動的成長業績,預估2011年聯一光學的合併營收可成長40%。而同業之中,全球光學玻璃毛胚龍頭廠日本小原,自1987年設立台灣小原光學之後,即與台灣光學產業有相當緊密的合作,2011年決定再度擴大投資新台幣4億元進駐中科虎尾園區,其廠房預計在2013年完工,未來該公司三分之一的玻璃熔解產量將移至台灣。 而日本相機龍頭大廠日本佳能也為了持續降低生產成本,遂著手擴充台灣佳能產能,分別在台中潭子廠擴建、嘉義建立新廠區上投資110億及40億元新台幣。該公司高階單眼數位相機(DSLR)鏡片訂單也持續透過台灣佳能下單給台廠今國光。 隨著全球單眼相機市場表現頗佳,今國光學囊括Canon及Nikon全球前兩大單眼數位相機,以及專業鏡頭廠Tamron、品牌廠Panasonic、鏡頭廠SUWA和科寶等客戶。該公司高階玻璃鏡片出貨暢旺,挹注了該公司2011年8月業績突破6億新台幣大關,刷新歷史新高水準;估計今國光學全年合併營收成長可達15%以上。該公司也隨著大客戶Canon進行同步擴產,資額約5億元興建台中B 館廠房以及設備,預計在2012年8月完工、11月投產,屆時可增加150萬片新產能,其高階玻璃鏡片總產能也將從目前的350萬片提高到500至600萬片,而原來的A館將以生產5M以上塑膠鏡頭及模造玻璃為主,其中手機用的塑膠鏡頭月產能約1,000萬顆;數位相機所需的模造玻璃月產能約100萬片。 此外,與日本佳能有長期技術合作的佳凌,營運在2011年水漲船高,合併營收成長率高達70%左右。該公司也斥資3.3億元擴建潭子現有廠區,並規劃以新台幣4.7億元進駐嘉義大埔美精密機械園區設廠。

光学系统集成

Integration of Optical Systems These application notes are relevant to both off-the-shelf and custom integration for imaging, as well as non-imaging systems. Please feel free to discuss any of the content in these notes or any other integration questions with our Applications Engineers. DEFINING THE APPLICATION The first step to solving any optical problem is to assess the application. What am I trying to accomplish? For an optical system it is important to first determine whether you need an imaging system or non-imaging system because the performance requirements are different for each type. Imaging System Imaging systems transfer a representation of the object to a detector, such as a camera or your eye. Some examples of imaging systems are: electronic imaging for inspection, image projection systems and relay systems. The goal of an imaging system is to provide sufficient image quality to enable extraction of desired information about the object from the image. Note that what may be adequate image quality for one application may prove inadequate in another. Some of the components of imaging quality are resolution, image contrast, perspective errors, geometric errors (such as distortion) and depth of field. Non-Imaging System Non-imaging systems collect, disperse, resize, focus, or collimate light. Some examples of non-imaging systems are: illumination projection, fiber coupling and laser projection. The performance of a non-imaging system can be quantified by its throughput, field efficiency, spot size (focusing systems) and angular resolution. Throughput is a measure of the energy transmitted through the lens system. Field efficiency is the system's ability to accommodate a large detector area or source size. Angular resolution is generally used to specify the minimum angular separation needed between two objects in order for the lens system to resolve them. Spot size is used to evaluate a focusing lens's performance. The next step is to determine the primary parameters of your system. Then, you can begin a design form for your application. Below are the primary parameters defined. Conjugate Distances The distance from the lens to the object/source (object distance) and the distance from the lens to the detector/image (image distance). For example, in an infinite conjugate design one of these distances approaches infinity. Conjugate Sizes

微纳光学器件的研究进展

龙源期刊网 https://www.doczj.com/doc/c718076941.html, 微纳光学器件的研究进展 作者:田泽安白爱芳 来源:《贵州大学学报(自然科学版)》2018年第06期 文章编号1000-5269(2018)06-0020-07DOI:https://www.doczj.com/doc/c718076941.html,ki.gdxbzrb.2018.06.03 摘要:工作在亚波长尺度的微纳光子学器件,具有良好的光子集成性和光学性能优势,广泛用于图像显示、遥感技术和传感应用等方面。根据国内外的研究进展,本文系统地介绍了各类微纳光学器件近十年以来的研究成果,简要阐述了基于特殊微纳结构的颜色滤光片、基于金属表面等离子体效应的滤光片、基于导模共振光栅滤光片、基于光栅结构的滤波偏振分束器和微纳结构宽波段吸收器等五种光子学器件的发展现状,提出有待进一步研究的问题,对未来的研究内容和发展方向进行了展望。 关键词:微纳结构;等离子体效应;导模共振光栅;光栅结构;颜色滤光片;宽波段吸收器;偏振分束器;吸收器 中图分类号:TN27;O438; 文献标识码: A 凡是对光波具有选择性的光学器件在可见光入射下,透射或反射光将呈现不同颜色,逻辑上这种光学器件过滤了白光的部分成分,因此本文称此类光学器件为颜色滤光片;尤其是红绿蓝三基色的颜色滤光片在显微系统和通信等方面广泛应用。随着微纳米制造技术的不断发展,彩色滤光片的研究已成为微纳光学领域的热点,目前,常用的颜色滤光片分为吸收型和干涉型两种。 吸收型颜色滤光片。早在1600年前,古罗马人使用金属离子吸收法,将金和银等金属掺杂到双层玻璃制备有色玻璃。在不同的入射角下,这种玻璃呈现不同的颜色。根据不同的掺杂材料(如金属,有机染料等)选择性吸收不同波长的入射光,呈现特定颜色的原理,使用现代工艺设计的颜色滤光片成本低,适合推广使用。但吸收型颜色滤光片的制备过程消耗大量的水电资源,对环境产生很大的污染;而且有机染料的化学性质容易发生变化,出现褪色现象,甚至颜色消失。 干涉型滤光片。利用干涉、衍射和散射产生的同频率多光束的干涉效应制备的颜色滤光片,寿命长、无污染、颜色稳定(在材料的尺寸和折射率不发生变化时,颜色不会发生变化),因而被广泛采用。但光程差依赖入射角,所产生的颜色会随入射角发生变化。由此,干涉型滤光片对入射角非常敏感,角度不敏感颜色滤光片成为研究的重点。 本文将总结近十多年來特殊微纳结构颜色滤光片、金属表面等离子体效应滤光片、导模共振光栅滤光片、光栅结构的滤波偏振分束器和微纳结构宽波段吸收器等微纳光学器件的研究成

我国精密光学元件行业概况

我国精密光学元件行业概况 (1)精密光学元件概述 光学元件是指利用光学原理进行观察、测量、分析记录、信息处理等活动的光学系统主要元器件,是制造各种光学仪器、图像显示产品、光学存储设备核心部件的重要组成部分。 按照精度和用途,光学元件可分为传统光学元件和精密光学元件,精密光学元件主要应用于智能手机、数码相机、车载镜头、安防设备、投影仪、医疗设备等光学精度较高的光学产品。 (2)精密光学元件行业概况 ①我国成为全球光学元件的制造中心 全球光学元件产业最早集中在德国和日本,德国以其悠久的研究制造历史和深厚光学工业基础,造就了莱卡(Leica)和卡尔·蔡司(Carl Zeiss)等光学行业巨头。而日本则凭借具有吸引力的性价比后来居上,孕育了佳能(Canon)、尼康(Nikon)、富士(Fuji)等知名品牌,在全球精密光学元件市场逐渐占据优势。随着日本光学元件工业的成熟和光学应用产品的日益增加,为使光学产品成本降低,日本的光学技术逐渐扩散到邻近国家和地区,使韩国、中国台湾以及

中国大陆光学元件的生产规模日益扩大,目前中国已成为全球光学元件的制造中心。 ②我国光学元件加工企业技术较强 我国传统光学元件加工是新中国成立后逐步发展起来的,主要分布在中国科学院、军工、航空航天的研究院和企业。我国的光学加工行业整体上较为分散,规模偏小,加工技术水平与国际先进水平相比存在较大差距,自动化程度较低,产品主要应用于望远镜、显微镜及眼镜片等传统光学产品。随着国际光学元件企业大量在中国设厂以及与国内少数光学加工企业建立外协关系等,国内光学产业逐步缩小了与国际先进水平的差距,出现了一批技术与装备先进、自动化程度较高、有较强的品质保证与过程控制能力的精密光学元件企业。 我国已经是全球最大的光学透镜、反射镜、滤光片、棱镜等光学元件的生产及应用地,随着下游的智能投影仪、智能手机、相机、安防监控等行业的厂商及代工环节集中度越来越高,上游的光学元件企业也在逐步集中化。目前,国内的凤凰光学股份有限公司、利达光电股份有限公司、成都光明光电股份有限公司及本公司等企业面向全球提供光学镜片、光学镜头等精密光学元件。

电子元器件培训资料

一、电子及传感器基础知识、元器件基础知识前言: PCBA维修原则: 1、首先,要确认不良现象,排除误判误测,不良现象要有可重复性; 2、第二,要对外观进行复检,及时发现是否存在有错料,少料,多料等简单的外观不良; 3、第三,要找出维修记录或维修速查表,针对相应电子元件作检查。确认不良元件时可以与良 品交替互换或从电路板上拆除后单独测量; 4、第四,要找出PCBA功能的原理图,对照相应电路模块作检查,测量相关元件是否存在不良; 5、第五,如果是批量性不良,或以上方法无法维修的不良,可能是设计缺陷。 1、电子基础知识 电路的基本原理:电流,电压,电阻,电荷 电流是电荷在导线内流动的现象,电流的测量单位是安培(A)。电荷分为正电荷和负电荷二种。物质中的电子带有负电荷;而质子带有正电荷。电荷在导线内会由高电位的地方流向低电位的地方。电位的高低便形成了电位差,我们称为电压。电压愈大,流动的电流便愈大,电压的测量单位是伏特(V)。电流流动时会遇到阻力,就是电阻。每种物质都有电阻值,优良的导体如铜、白金等,它们的电阻很小,电流很容易通过。电阻很大,大到电流无法通过的物质就是绝缘体,而介于导体和绝缘体之间就是半导体。电阻的测量单位是欧姆(Ω)。 电流 是指电线中电子流动的相反方向,也就是质子流动的方向,通常以I表示,其单位为安培 A(Ampere)。直流电的电流方向固定由正极流向负极,并不会随时间而改变;而交流电的电流流向则会不断地交替变化,例如公司用电的电流便是每秒正负极交替变换50次的交流电,称为50赫兹(Hz)。而在台湾地区交流电的频率为60Hz。 电压 是指能使电在电线中流动的力量,通常以E表示,其单位为伏特V(Volt),电流一般都是从高电压流向低电压,通常电源电位较高的一端以"+"号表示,而电位较低的一端则以"_"表示。电池、水银电池等,电压包含1.5V、3V、9V等,而家庭用电电压在台湾、美国日本为交流110V;在大陆为220V;欧州为240V。 电阻 是指阻挡电流在电线流动的阻力,通常以R表示,其单位为欧姆,任何物体都具有电阻,如同水流一般,物体的电阻大小随材质、长度、大小而异。电阻值大到不能导电的物质称为「绝缘体」,如塑料、木材等。电阻会消耗能量,消耗的能量通常以热的形式呈现,所以传输材料的电阻值愈低愈好,因此一般电线便采用导电性佳的铜线,为了减低能源的消耗,「低温超导体」已成为新兴的科技了。 电路符号示例 电路是由各种不同的组件组成,其相互关系通常使用电路图描述,而电路图的每个基本组件均使用电路符号表示。下图是摘取ATA2001(1866)一部分电路图为例。 如下图:

2019年晶体材料精密光学元件激光器件企业发展战略和经营计划

2019年晶体材料精密光学元件激光器件企业发展战略和经营计划 一、行业格局和趋势 (2) 二、公司发展战略 (3) 三、公司2019年度经营计划 (3) 四、可能面临的风险因素及应对措施。 (4) 1、市场竞争加剧导致产品价格下降的风险 (4) 2、宏观经济环境和人民升汇率波动的风险 (5) 3、人力成本上升的风险 (5)

一、行业格局和趋势 激光作为新型光源,具有方向性好、亮度高、单色性好及高能量密度等特点。以激光器为基础的激光产业在全球发展迅猛,现在已广泛应用于工业生产、通讯、信息处理、医疗卫生、军事、文化教育以及科研等方面。激光精密微细加工在新能源、信息技术、生物医疗、新材料、电子及航空航天等产业获得越来越多的应用,包括精密钻孔、刻线、划槽、表面纹理化、表面改性、内部改性、修整、清洗、增材制造等工艺,带动了紫外和超快激光器的需求。此外,智能制造、新能源等概念的兴起为激光器提供了良好的发展环境。随着技术进步和工艺提升,激光器将朝着智能化、高功率、高光束质量、高可靠性、低成本等方向发展。相比欧美发达国家和地区,我国激光技术起步相对较晚,但近年来取得了快速发展,在“中国制造2025”和产业转型升级战略背景下,激光行业将迎来良好的发展契机。随着激光技术在工业生产、科研、生活中的渗透率不断提升,激光行业依然有着巨大的发展空间。 公司的产品处于激光产业的上游,行业发展总体比较稳定。经过三十余年的发展,公司在晶体材料生长、加工、市场营销、技术服务等方面积累了丰富的经验,多项技术处于行业领先地位。近年来,随着国内激光技术的不断进步,激光器国产化率不断提升,国内竞争对手逐渐增加,但是激光上游行业存在刚性成本高、品牌、客户认同、技术、规模效应、人才、研发等行业壁垒,同行业竞争对手普遍规模

2017年精密光学元器件行业分析报告

2017年精密光学元器件行业分析报告 2017年4月

目录 一、行业主管部门、行业政策及行业标准 (4) 1、行业主管部门 (4) 2、行业主要法律法规和政策 (4) 3、行业标准 (5) 二、行业现状及前景 (6) 1、精密光学元器件行业发展概况 (6) 2、行业规模 (9) (1)智能手机市场 (10) (2)车载镜头市场 (11) (3)安防监控市场 (13) (4)LED照明市场 (15) 3、行业发展趋势 (17) (1)产品结构的变化趋势 (17) (2)技术升级的变化趋势 (17) ①光学非球面镜片面世 (17) ②光学塑料的广泛运用 (18) ③蓝玻璃IRCF的普及 (19) 三、行业上下游的关系 (19) 四、进入行业的主要壁垒 (21) 1、技术壁垒 (21) 2、资金壁垒 (21) 3、认证壁垒 (22) 五、影响行业发展的因素 (22) 1、有利因素 (22) (1)产业政策支持 (22) (2)下游行业需求强劲 (23)

2、不利因素 (23) (1)人力成本上升 (23) (2)市场竞争日益激烈 (24) (3)技术更新速度快 (24) 六、行业周期性、季节性、区域性特征 (24) 1、周期性特征 (24) 2、区域性特征 (25) 3、季节性特征 (25) 七、行业竞争情况 (26) 1、舜宇光学 (26) 2、大立光 (27) 3、玉晶光 (27) 4、兴邦光电 (27) 5、京浜光电 (27)

一、行业主管部门、行业政策及行业标准 1、行业主管部门 光学行业是一个市场化程度较高的行业,行业内各企业面向市场自主经营、政府职能部门进行产业宏观调控,行业协会进行自律规范。行业主管部门和行业自律机构情况如下: 2、行业主要法律法规和政策 精密光学元器件行业是国家重点鼓励并支持发展的行业,为支持该行业的快速发展,国家出台了一系列产业转型升级的扶持政策,相关情况如下:

相关主题
文本预览
相关文档 最新文档