当前位置:文档之家› 基于泰坦尼克之灾问题的机器学习传统算法和神经网络算法对比分析

基于泰坦尼克之灾问题的机器学习传统算法和神经网络算法对比分析

基于泰坦尼克之灾问题的机器学习传统算法和神经网络算法对比分析
基于泰坦尼克之灾问题的机器学习传统算法和神经网络算法对比分析

软件开发

1 概述

泰坦尼克号的沉没是历史上具有广泛影响的沉船事件之一,1912年4月15日,在首次航行期间,泰坦尼克号撞上冰山后沉没,2224名乘客和机组人员中有1502人遇难。这场轰动的悲剧震撼了国际社会。虽然幸存下来的人存在一些运气方面的因素,但有一些人比其他人更有可能生存,比如妇女,儿童和上层阶级。我们的目标便是根据每位乘客的性别,年龄,舱位等相关特征,来预测该乘客是否会在该次乘船事故中存活下来。

■1.1 训练集以及测试集

我们总共有900名左右的乘客数据,每位乘客包括10个特征,包括Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarke。我们将拿出600名乘客数据作为我们的训练集,剩下的数据作为我们的测试集,用来检验我们构建模型的性能好坏。

■1.2 数据预处理

通过对数据集的观察发现,有些乘客的部分属性存在着一定的缺失值NaN,比如Age,Fare等相关属性。我们需要对这些数据进行填充,对于连续型属性数据缺失的情况,我们通过在未缺失数据上构建一个随机森林回归模型,来对缺失的数据属性进行拟合,然后填充该部分缺失的数据。对于离散型数据缺失的情况,我们将删除该乘客对应的记录。对于Ticket,Cabin,Embarke等类目型变量,我们将把它们转化为one-hot独热编码。采用one-hot编码后,一方面可以使样本之间能够直接进行距离的计算,另一方面能够扩充样本特征的数目。在一定的程度上,提高模型的性能。经过预处理后,我们的待训练样本,从原始的10个特征增加到15个特征。增加的特征主要是由于类目型特征经过了one-hot编码的转换。15个特征中不包括乘客姓名特征Name,因为通过对数据分析,乘客的姓名应该和该乘客是否能够存活下来无关。2 分类模型构建

■2.1 kNN模型

2.1.1 kNN模型原理

KNN(K Nearest Neighbor)算法,又称之为K领近算法,是数据挖掘与机器学习中最简单的分类方法之一。K 领近指的是待分类样本点最近的K个邻居。kNN 模型最初由Cover和Hart于1968 年提出, 是一个在理论上比较成熟的方法[1]。

KNN模型的主要思想是,将训练集绘制在特征空间中,然后将待分类样本,通过特定的距离计算公式,得到该样本在该特征空间最近的K个邻居,然后采取投票原则,将K 个邻居中得票最多的类别作为待分类样本的类别。

在我们要解决的实例问题中,我们的训练样本包括600个乘客的特征数据,将它们绘制在特征空间里。在测试集的300个数据中,我们计算每一个乘客与训练集中600个乘客的距离远近,挑选出最近的k个距离,然后采取投票原则,k个样本中所属类别最多的类别就是测试样本的类别。

2.1.2 结果分析

我们采用了sklearn机器学习库中kNN模型算法,对我们的数据进行了训练。并且尝试了不同的k取值,在该问题上的正确率。我们分别测试了当k 取5,10,15,20时模型的结果。测试的结果显示,在上述4种k的取值下,在测试集上的正确率分别为79.3%,81.7%,83.1%,82.4%。由此可见,在泰坦尼克号这个问题上经过验证,当k取值在15左右时,模型的结果较好。

关于kNN模型中k值的不同选择:当k值较小时,预测结果对近邻的实例点非常敏感,容易发生过拟合;如果k 值过大模型会倾向大类,容易欠拟合;通常k是不大于20的整数。kNN算法的优点是精度高,对异常值不敏感。但是缺点是对k的取值相对比较敏感,不同的k取值对模型产生的结果可能差异性非常的明显。

经网络算法对比分析

王可晴

(浙江省萧山中学,浙江杭州,310000)

摘要:人工智能和机器学习中有一类问题为分类问题,对于分类问题的解决,常见的机器学习模型有KNN模型,逻辑回归模型,SVM模型,神经网络模型。不同的模型在不同的问题中具有不同的效果。因此,本研究通过具体的实例“泰坦尼克号乘客遇难预测”,通过运用机器学习中的不同分类模型来分析乘客的存活是运气原因,还是存在一定的规律性。通过该对问题的研究,比较了不同机器学习分类模型的差异性以及优缺点。

关键词:遇难乘客预测;KNN;SVM;逻辑回归;神经网络

www?ele169?com | 37

最简单的神经网络算法

最简单的人工神经网络实现 人工神经网络算法是模拟人的神经网络的一种算法. 该算法像人一样,具有一定的学习能力。人工神经网络可以学会它所能表达的任何东西. 该算法在模拟人类抽象思维方面较传统的算法具有优势,如图像识别(人脸识别,车牌识别),声音识别方面已经有成熟的运用。 举个简单的例子可以说明人工神经网络和传统算法的差别所在(等会也要实现): 假设要解决这个问题: 写一个程序,判断0, 1, 2, 3 ... 9 这10个数的奇偶性 1. 如果是传统算法,则是模拟人的逻辑思维,对这个问题进行形式化和逻辑化: if (input 模 2 == 零) { input 是偶数 } else { input 是奇数 } 2. 如果是ANN算法,则要提供一组正确的数据对处理这个问题的神经网络ANN进行训练: 未进行训练的神经网络,就像刚出生的婴儿一样,什么都不懂。这个时候, 你要教他0 是偶数,1是奇数...., 教完之后问ANN懂了没有,懂了则停止训练(网络已经形成),不懂则继续训练. while (1) { 训练;

if (测试通过) { 跳出循环; } } 训练完之后,这个ANN以后便能够正确处理奇偶性判断的问题了. 处理上面这个问题,只需要模拟一个神经元即可,再复杂的问题,可能需要多个神经元,再再复杂,需要多层多神经元的配合来实现(以后再研究) 下面是实现: [cpp]view plaincopyprint? 1. /***************************************** 2. * 感知器判断数字奇偶性 3. * 4. * 关键点,阈值应该怎么定? 5. ****************************************/ 6. #include 7. #include 8. #include 9. 10. 11. int M[10]; /** 权值 **/ 12. int X[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; /** 输入向量 **/ 13. int Y[10] = {1, 0, 1, 0, 1, 0, 1, 0, 1, 0}; /** 理想输出向量, 0 表示奇数, 1表示偶 数 **/ 14. int O[10]; /** 保存输出向量 **/ 15. int ST = 52; /** 阈值 **/ 16. 17. 18.

人工神经网络论文

基于LVQ神经网络的人脸朝向识别 摘要人脸识别是当今模式识别和人工智能的一个重要的研究方向。人脸的朝向识别是一个复杂的模式识别问题。在实际应用中,大量图像和视频源中人脸的位置、朝向、旋转角度都是不固定的,这大大增加了人脸识别的难度。为了解决这些问题,本实验采用了LVQ神经网络模型对图像中的人脸朝向识别进行研究。本实验基于matlab平台设计LVQ神经网络,实现对人脸朝向的判断。实验结果表明,LVQ神经网络可以根据输入图像的二值信息,以较高的准确率判别该图像中的人脸朝向。 关键字:人脸朝向识别;LVQ神经网络;matlab;特征提取 人脸识别是一个活跃的研究领域。尽管相对于虹膜和指纹识别,人脸识别的准确还比较低,但人脸的易采集、非接触的优点,让人脸识别受到越来越多的关注。人脸识别对人脸位置和状态都有一定的限制,实际应用中,图像和视频源 中人脸的位置,朝向和旋转都不是固定的,这就为我们后续的人脸识别有了更大的难度。 在人脸识别的研究领域中,人脸朝向识别是其中的一个分支。在以往的研究中,绝大多数的研究人员希望能够消除人脸朝向在人脸识别中的不良影响,但在复杂的实际环境中,我们无法忽略人脸朝向对人脸识别的影响。因此,对人脸朝向的判定和识别是非常有必要和有意义的。 1LVQ神经网络 学习向量量化(Learning Vector Quantization,LVQ)神经网络,属于前向神经网络类型,在模式识别和优化领域有着广泛的应用。LVQ神经网络由三层组成,即输入层、隐含层和输出层,网络在输入层与隐含层间为全连接,而在隐含层与输出层间为部分连接,每个

输出层神经元与隐含层神经元的不同组相连接。隐含层和输出层神经元之间的连接权值固定为1。输入层和隐含层神经元间连接的权值建立参考矢量的分量(对每个隐含神经元指定一个参考矢量)。在网络训练过程中,这些权值被修改。隐含层神经元(或称为Kohnen神经元)和输出神经元都具有二进制输出值。当某个输入模式被送至网络时,参考矢量最接近输入模式的隐含神经元因获得激发而赢得竞争,因而允许它产生一个“1”,而其它隐含层神经元都被迫产生“0”。与包含获胜神经元的隐含层神经元组相连接的输出神经元也发出“1”,而其它输出神经元均发出“0”。产生“1”的输出神经元给出输入模式的类,由此可见,每个输出神经元被用于表示不同的类。 2人脸朝向识别的设计 2.1问题描述 现采集到一组不同人脸朝向的图像,这组图像来自于10个人,每人5张图片,人脸朝向分为:左方、左前方、正面、右前方、右方,如图2-1所示。创建一个LVQ神经网络,对给出的人脸进行朝向的判定与识别。 2-1人脸朝向识别图 2.2建立模型 2.2.1设计思路 通过观察不难发现,当人脸朝向不同的方向时,眼睛在图像中的位置差别较大。所以,将眼睛位置的特征信息作为LVQ神经网络识别的输入,将5个朝向作为其输出。在对训练

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

人工智能与神经网络课程论文

1. 引言 (2) 2. 在农业生产管理与决策中的应用 (2) 2.1. 在农业机械化中的应用 (2) 2.2. 在智能农业专家系统中的应用 (3) 3. 在预测和估产中的应用 (3) 3.1. 在农作物虫情预测中的应用 (3) 3.2. 在作物水分和营养胁迫诊断及产量估测中的应用 (4) 4. 在分类鉴别与图像处理中的应用 (5) 5. 结束语 (5)

BP 神经网络的研究与应用 摘要: 本文概述了BP 神经网络在农机总动力预测、农业专家系统信息决策、虫情测报、农作物水分和养分胁迫、土壤墒情、变量施肥、分类鉴别和图像处理等领域的应用情况,总结了人工神经网络模型的优点,指出其在精准农业和智能农业中的重要理论技术支撑作用。 关键词: BP神经网络; 农业工程; 农业专家系统; 变量施肥; 土壤墒情 Research and Application of BP Neural Network Abstract: Application of BP neural network in prediction of total power in agriculture machinery,information decision-making by agricultural experts system,pest forecast,crops to water stress and nutrient stress,soil moisture condition,variable rate fertilization,identification and image processing were overviewed.Characteristics of artificial neural network model were summed.Supporting role for important theory and technology in precision agriculture and intelligent agriculture were pointed. Key words: BP neural network,Agricultural engineering,Agricultural experts system,Variable rate fertilization,Soil moisture condition

神经网络PID控制

基于神经网络PID控制算法在多缸电液伺服系统同步控制中的仿真 研究 丁曙光,刘勇 合肥工业大学,合肥,230009 摘要:本文介绍了神经网络控制原理,提出了神经网络PID算法,通过选定三层神经网络作为调节函数,经过Simulink仿真确定了神经网络PID控制器的参数,设计了神经网络PID控制器。推导出多缸液压同步控制系统在各种工况下的传递函数,并把该控制器应用到多缸液压同步控制系统中。经过仿真研究表明该控制器控制效果良好,能满足多缸液压同步的控制要求。 关键词:多缸同步;PID算法;仿真;神经网络 Study on the simulation and appllication of hydraulic servo system of straihtening machine based on Immune Neural network PID control alorithm DING Shu-guang, GUI Gui-sheng,ZHAI Hua Hefei University of Technology, Hefei 23009 Abstract:The principle of immune feedback and immune-neural network PID algorithm was respectively.An immune-neural network PID controller was designed by which an adaline neural network was selected as antibody stay function and parameters of the immune-neural network PID controller were determined by simulation.The transfer function of the hydraulic servo system of crankshaft straightenin on were introduced in different working conditions.The immune-neural network PID controller was applied to hydraulic system of crankshaft straightenin.The simulation and equipment were done,and results show that its control effectiveness is better and can meet the needs of he hydraulic servo-system of crankshaft straightening hydraulic press. Key words:straightening machine; Immune control arithmetic; simulation;neural network 0引言 精密校直液压机(精校机)液压伺服系统是精校机的执行环节,高精度液压位置伺服控制是精校机的关键技术之一,它保证了液压伺服控制系统的控制精度、稳定性和快速性,是完成校直工艺的必要条件。因此,精校机液压伺服控制系统的研究,为精校机产品的设计和制造提供了理论依据,对校直技术和成套设备的开发具有重大的意义[1]。 精校机液压位置伺服系统是一个复杂的系统,具有如下特点:精确模型难建立,要求位置控制精度高、超调量小、响应快、参数易变且难以确定[1]。因此该系统的控制有较大的难度。传统的PID控制虽然简单易行,但参数调整困难,具有明显的滞后特性,PID 控制很难一直保证系统的控制精度,Smith预估补偿 国家重大科技专项资助(项目编号:2009ZX04004-021)安徽省自然科学基金资助(项目编号:090414155)和安徽省科技攻关项目资助(项目编号:06012019A)制方法从理论上为解决时滞系统的控制问题提供了一种有效的方法,但是Smith预估器控制的鲁棒性差,系统性能过分依赖补偿模型的准确性,限制了它在实际过程中的应用[1~5]。 近年来,人们开始将生物系统的许多有益特性应用于各种控制中[1~5],取得了一定成果。自然免疫系统使生物体的一个高度进化、复杂的功能系统,它能自适应地识别和排除侵入肌体的抗原性异物,并且具有学习、记忆和自适应调节功能,以维护肌体内环境的稳定。自然免疫系统非常复杂,但其抵御抗原(antigen)的自适应能力十分显著。生物信息的这种智能特性启发人们利用它来解决一些工程难题,这就引起多种免疫方法的出现。人工免疫系统就是借鉴自然免疫系统自适应、自组织的特性而发展起来的一种智能计算技术。该算法在大量的干扰和不确定环境中都具很强的鲁棒性和自适应性,在控制、优化、模式识别、分类

基于人工神经网络预测探究文献综述

基于人工神经网络的预测研究文献综述专业:电子信息工程班级:08级2班作者:刘铭指导老师:熊朝松 引言 随着多媒体和网络技术的飞速发展及广泛应用,人工神经网络已被广泛运用于各种领域,而它的预测功能也在不断被人挖掘着。人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。现代计算机构成单元的速度是人脑中神经元速度的几百万倍,对于那些特征明确,推理或运算规则清楚地可编程问题,可以高速有效地求解,在数值运算和逻辑运算方面的精确与高速极大地拓展了人脑的能力,从而在信息处理和控制决策等方面为人们提供了实现智能化和自动化的先进手段。但由于现有计算机是按照冯·诺依曼原理,基于程序存取进行工作的,历经半个多世纪的发展,其结构模式与运行机制仍然没有跳出传统的逻辑运算规则,因而在很多方面的功能还远不能达到认得智能水平。随着现代信息科学与技术的飞速发展,这方面的问题日趋尖锐,促使科学和技术专家们寻找解决问题的新出路。当人们的思想转向研究大自然造就的精妙的人脑结构模式和信息处理机制时,推动了脑科学的深入发展以及人工神经网络和闹模型的研究。随着对生物闹的深入了解,人工神经网络获得长足发展。在经历了漫长的初创期和低潮期后,人工神经网络终于以其不容忽视的潜力与活力进入了发展高潮。这么多年来,它的结构与功能逐步改善,运行机制渐趋成熟,应用领域日益扩大,在解决各行各业的难题中显示出巨大的潜力,取得了丰硕的成果。通过运用人工神经网络建模,可以进行预测事物的发展,节省了实际要求证结果所需的研究时间。 正是由于人工神经网络是一门新兴的学科,它在理论、模型、算法、应用和时限等方面都还有很多空白点需要努力探索、研究、开拓和开发。因此,许多国家的政府和企业都投入了大量的资金,组织大量的科学和技术专家对人工神经网络的广泛问题立项研究。从人工神经网络的模拟程序和专用芯片的不断推出、论文的大量发表以及各种应用的报道可以看到,在这个领域里一个百家争鸣的局面已经形成。 为了能深入认识人工神经网络的预测功能,大量收集和阅读相关资料是非常必要的。搜集的资料范围主要是大量介绍人工神经网路,以及认识和熟悉了其中重要的BP网络。参考的著作有:马锐的《人工神经网络原理》,胡守仁、余少波的《神经网络导论》以及一些相关论文,董军和胡上序的《混沌神经网络研究进展和展望》,朱大奇的《人工神经网络研究现状及其展望》和宋桂荣的《改进BP算法在故障诊断中的应用》,这些

基于神经网络的智能车控制(chinese)概要

基于神经网络的智能车控制 对于智能小车的控制算法, 神经网络应该是不错的选择。神经网络的研究一般是基于 OFF-LINE 的,另外,神经网络无论在分类还是拟合作用上,计算精确性并不是100%,这也是航空技术不用神网的原因。此篇论文主要讨论神经网络用在小车控制算法上的可能性以及如何利用神经网络于小车控制算法。 一般用机理分析法和系统辨识法对实验数据建模, 得到传递函数, 然后通过调试实际系统, 从开环到闭环, 不断调整参数和控制参数。举个例子:要建立小车直线、弧线行走的控制模型, 即通过实测数据建立驱动控制和小车转弯偏移量的关系, 那么输入的参数是当前速度, 曲率大小, 转弯弧度, 最大安全速度, 目前偏移角度等等参数, 而输出的就是目标速度, 目标角度。这个输入和输出之间的关系就是控制模型, 一般也叫控制器。小车跑得快,跑得稳,主要就是这个”控制器“,控制器拟合得好,适应性强,效果就不差。小车控制算法要解决的问题是 : 输入—— >控制模型—— >输出控制参数。按一般的方法, 控制模型的建立需要大量数据, 离线在线都必需调试多遍, 系统的适应性不佳。而尝试神经网络,这些问题就都可以很大程度地避免了。 首先, 有必要介绍一下神经网络, 到底神经网络是干什么用的, 如何用。神经网络的理论并不复杂, 我想是有些书或论文把简单问题复杂化了。大家不要对它恐惧。一堆数据 A ,通过一个 NET 不断调整,得到另一堆数据 B 。而 A 和目标结果数据 C 都是已知的, NET 是未知的,这个调整 NET 的过程就是训练, NET 训练好的结果是使 B 和 C 的误差最小,误差合理就收敛。收敛完了,这个 NET 就可以用了。神经网格的核心就是得到一个 NET 。控制模型就是一个 NET , NET 包含很多参数,如权值,隐含层数,训练方法,神经元模型, 传递函数等,只要建立一个 NET ,那么输入和输出的关系就建立起来了。神经网络主要有两个作用:一个是分类,另一个是回归(拟合。如果把它运用于小车控制算法,毫无疑问是用于回归拟合的功能。回归什么呢?对, 回归上面所说的控制模型, 这个 NET 就是控制器。神经网络用于小车控制算法上的优势比较明显, 模型可以随时调整, 而且模型不是通过公式表示, 只是一个 NET 来表达, 避免复杂的参数调整和试算过程。通过新的环境参数得到新的

人工神经网络论文

人工神经网络及其应用 1. 人工神经网络发展前景 人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。 神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用[2]。神经网络与其他传统方法相组合,将推动人工智能和信息处理技术不断发展。近年来,神经网络在模拟人类认知的道路上更加深入发展,并与模糊系统、遗传算法、进化机制等组合,形成计算智能,成为人工智能的一个重要方向。 1.1 人工神经网络的研究背景和意义 人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应[5]。 人工神经网络就是模拟人思维的一种方式,是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 近年来通过对人工神经网络的研究,可以看出神经网络的研究目的和意义有以下三点:(1)通过揭示物理平面与认知平面之间的映射,了解它们相互联系和相互作用的机理,从而揭示思维的本质,探索智能的本源。(2)争取构造出尽可能与人脑具有相似功能的计算机,即神经网络计算机。(3)研究仿照脑神经系统的人工神经网络,将在模式识别、组合优化和决策判断等方面取得传统计算机所难以达到的效果。 人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。 1.2 神经网络的发展与研究现状 1.2.1神经网络的发展

一种新的在线训练神经网络算法

一种新的在线训练神经网络算法 速度估计和PMSG风力发电系统的自适应控制 最大功率提取* B Fernando Jaramillo Lopez,Francoise Lamnabhi Lagarrigue *,godpromesse肯尼, 一个该DES signaux等系统,Supelec高原都moulon Gif sur伊维特,91192,法国 B该d'automatique等信息学系的精灵appliquee,电气,iut-fv Bandjoun,Universite de姜村,喀麦隆 这是一个值得注意的问题。 有一个房间 文章历史: 在本文中,自适应控制系统最大功率点跟踪单机PMSG风 涡轮系统(WTS)了。一种新的程序来估计风速导出。实现 这一神经网络识别?ER(NNI)是为了近似的机械转矩设计 WTS。有了这些信息,风速计算的基础上的最佳机械扭矩点。 NNI接近实时的机械转矩信号,它不需要离线训练 得到其最佳参数值。这样,它可以真正接近任何机械扭矩值 精度好。为了将转子转速调节到最优转速值,采用块反推 控制器导出。使用Lyapunov证明了一致渐近稳定的跟踪误差来源 争论。一个标准的被动为基础的控制器的数值模拟和比较

为了显示所提出的自适应方案的良好性能。 三月20日收到2014 以书面形式收到 2015七月4 接受25七月2015 可在线8月13日2015 关键词: 风力发电系统 风速估计 非线性系统 人工神经网络人工? 反推控制 ?2015 Elsevier公司保留所有权利。 1。介绍 使风产业的趋势是设计和建造变量— 高速涡轮机的公用事业规模安装[ 2 ]。 可再生能源发电的兴趣增加 由于污染排放,在其他原因。风 能源是各种可再生能源中最为成熟的能源之一技术,并得到了很多的青睐,在世界的许多地方[ 1 ]。 根据风速、VST可以在3区域操作,因为它

人工智能-BP神经网络算法的简单实现

人工神经网络是一种模仿人脑结构及其功能的信息处理系统,能提高人们对信息处理的智能化水平。它是一门新兴的边缘和交叉学科,它在理论、模型、算法等方面比起以前有了较大的发展,但至今无根本性的突破,还有很多空白点需要努力探索和研究。 1 人工神经网络研究背景 神经网络的研究包括神经网络基本理论、网络学习算法、网络模型以及网络应用等方面。其中比较热门的一个课题就是神经网络学习算法的研究。 近年来己研究出许多与神经网络模型相对应的神经网络学习算法,这些算法大致可以分为三类:有监督学习、无监督学习和增强学习。在理论上和实际应用中都比较成熟的算法有以下三种: (1) 误差反向传播算法(Back Propagation,简称BP 算法); (2) 模拟退火算法; (3) 竞争学习算法。 目前为止,在训练多层前向神经网络的算法中,BP 算法是最有影响的算法之一。但这种算法存在不少缺点,诸如收敛速度比较慢,或者只求得了局部极小点等等。因此,近年来,国外许多专家对网络算法进行深入研究,提出了许多改进的方法。 主要有: (1) 增加动量法:在网络权值的调整公式中增加一动量项,该动量项对某一时刻的调整起阻尼作用。它可以在误差曲面出现骤然起伏时,减小振荡的趋势,提高网络训练速度; (2) 自适应调节学习率:在训练中自适应地改变学习率,使其该大时增大,该小时减小。使用动态学习率,从而加快算法的收敛速度; (3) 引入陡度因子:为了提高BP 算法的收敛速度,在权值调整进入误差曲面的平坦区时,引入陡度因子,设法压缩神经元的净输入,使权值调整脱离平坦区。 此外,很多国内的学者也做了不少有关网络算法改进方面的研究,并把改进的算法运用到实际中,取得了一定的成果: (1) 王晓敏等提出了一种基于改进的差分进化算法,利用差分进化算法的全局寻优能力,能够快速地得到BP 神经网络的权值,提高算法的速度; (2) 董国君等提出了一种基于随机退火机制的竞争层神经网络学习算法,该算法将竞争层神经网络的串行迭代模式改为随机优化模式,通过采用退火技术避免网络收敛到能量函数的局部极小点,从而得到全局最优值; (3) 赵青提出一种分层遗传算法与BP 算法相结合的前馈神经网络学习算法。将分层遗传算法引入到前馈神经网络权值和阈值的早期训练中,再用BP 算法对前期训练所得性能较优的网络权值、阈值进行二次训练得到最终结果,该混合学习算法能够较快地收敛到全局最优解;

人工智能学年论文——对人工神经网络学习的探讨

人工智能课程论文 学院计算机与信息技术 专业计算机科学与技术 年级2010级计科一班 姓名 课题对人工神经网络学习的探讨

对人工神经网络学习的探讨 摘要: 随着智能技术研究和应用的不断深入,人工智能越来越受到社会的关注。在中国科协2008年举办的"十项引领未来的科学技术"网络评选中,"人工智能技术"名列第四。人工智能作为一项引领未来的科学技术,正在以其无限的潜力,影响着未来科学技术的发展,改变着人类的生产生活方式。 人工智能就是要用机器模拟、延伸和扩展人的智能。智能就像人类生命体的精髓一样,人工智能则是人造智能系统的精髓。今天,从智能理论到智能应用,从智能产品到智能产业,从个体智能到群体智能,从智能家居到智能社会,人工智能已无处不在,其新理论、新方法、新技术、新系统、新应用如雨后春笋般不断涌现。创新智能技术,深化智能应用是人工智能发展的根本。 人工神经网络是一种新的数学建模方式,它具有通过学习逼近任意非线性映射的能力,本文主要提出了一种基于动态BP神经网络的猜测方法。 关键字:人工智能;动态系统;反向传播;人工神经网络;BP神经网络 一、简介 作为动态系统辨识、建模和控制的一种新的、令人感兴趣的工具,人工神经网络(ANN )提供了一种普遍而且实用的方法从样例中学习值为实数、离散值或向量的函数。像反向传播(BACKPROPAGATION)这样的算法,使用梯度下降下来调节网络参数以最佳拟合由输入—输出对组成的训练集合。ANN学习对于训练数据中的错误健壮性很好,且已被成功的应用到很多领域,例如视觉场景分析、语音识别以及机器人控制等。 对人工神经网络的研究可以追溯到计算机科学的早期。然而,直到20世纪60年代晚期,人们才开始清楚单层的感知器网络的表现能力很有限,而且找不到训练多层网络的有效方法。在20世纪80年代中期ANN的研究经历了一次复兴,主要是因为训练多层网络的反向传播算法的发明。自从20世纪80年代,反向传播算法就成为应用最广泛的学习方法,而且人们也积极探索出了很多其他的ANN 方法。 二、人工神经网络学习的国内外研究状况

人工神经网络算法

https://www.doczj.com/doc/c71583636.html,/s/blog_5bbd6ec00100b5nk.html 人工神经网络算法(2008-11-20 17:24:22) 标签:杂谈 人工神经网络算法的作用机理还是比较难理解,现在以一个例子来说明其原理。这个例子是关于人的识别技术的,在门禁系统,逃犯识别,各种验证码破译,银行预留印鉴签名比对,机器人设计等领域都有比较好的应用前景,当然也可以用来做客户数据的挖掘工作,比如建立一个能筛选满足某种要求的客户群的模型。 机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。 人工神经网络就是这种机理。假设上图中X(1)代表我们为电脑输入的人的面部特征,X(2)代表人的身高特征X(3)代表人的体形特征X(4)代表人的声音特征W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人工神经网络起作用的核心变量。 现在我们随便找一个人阿猫站在电脑面前,电脑根据预设变量提取这个人的信息,阿猫面部怎么样,身高多少,体形胖瘦,声音有什么特征,链接权重初始值是随机的,假设每一个W均是0.25,这时候电脑按这个公式自动计 算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出一个结果Y,这个Y要和一个门槛值(设为Q)进行比较,如果Y>Q,那么电脑就判定这个人是阿猫,否则判定不是阿猫.由于第一次计算电脑没有经验,所以结果是随机的.一般我们设定是正确的,因为我们输入的就是阿猫的身体数据啊. 现在还是阿猫站在电脑面前,不过阿猫怕被电脑认出来,所以换了一件衣服,这个行为会影响阿猫的体形,也就是X(3)变了,那么最后计算的Y值也就变了,它和Q比较的结果随即发生变化,这时候电脑的判断失误,它的结论是这个人不是阿猫.但是我们告诉它这个人就是阿猫,电脑就会追溯自己的判断过程,到底是哪一步出错了,结果发现原来阿猫体形X(3)这个 体征的变化导致了其判断失误,很显然,体形X(3)欺骗了它,这个属性在人的识别中不是那 么重要,电脑自动修改其权重W(3),第一次我对你是0.25的相信,现在我降低信任值,我0.10的相信你.修改了这个权重就意味着电脑通过学习认为体形在判断一个人是否是自己认识的人的时候并不是那么重要.这就是机器学习的一个循环.我们可以要求阿猫再穿一双高跟皮鞋改变一下身高这个属性,让电脑再一次进行学习,通过变换所有可能变换的外部特征,轮换让电脑学习记忆,它就会记住阿猫这个人比较关键的特征,也就是没有经过修改的特征.也就是电脑通过学习会总结出识别阿猫甚至任何一个人所依赖的关键特征.经过阿猫的训练电脑,电脑已经非常聪明了,这时你在让阿猫换身衣服或者换双鞋站在电脑前面,电脑都可以迅速的判断这个人就是阿猫.因为电脑已经不主要依据这些特征识别人了,通过改变衣服,身高骗不了它.当然,有时候如果电脑赖以判断的阿猫关键特征发生变化,它也会判断失误.我们就

一种快速神经网络路径规划算法概要

文章编号 2 2 2 一种快速神经网络路径规划算法α 禹建丽? ∏ √ 孙增圻成久洋之 洛阳工学院应用数学系日本冈山理科大学工学部电子工学科 2 清华大学计算机系国家智能技术与系统重点实验室日本冈山理科大学工学部信息工学科 2 摘要本文研究已知障碍物形状和位置环境下的全局路径规划问题给出了一个路径规划算法其能量函数 利用神经网络结构定义根据路径点位于障碍物内外的不同位置选取不同的动态运动方程并针对障碍物的形状设 定各条边的模拟退火初始温度仿真研究表明本文提出的算法计算简单收敛速度快能够避免某些局部极值情 况规划的无碰路径达到了最短无碰路径 关键词全局路径规划能量函数神经网络模拟退火 中图分类号 ×°文献标识码 ΦΑΣΤΑΛΓΟΡΙΤΗΜΦΟΡΠΑΤΗΠΛΑΝΝΙΝΓ ΒΑΣΕΔΟΝΝΕΥΡΑΛΝΕΤ? ΟΡΚ ≠ 2 ? ? ≥ 2 ≥ ∏ ΔεπαρτμεντοφΜατηεματιχσ ΛυοψανγΙνστιτυτεοφΤεχηνολογψ Λυοψανγ

ΔεπαρτμεντοφΕλεχτρονιχΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν ΔεπαρτμεντοφΧομπυτερΣχιενχε Τεχηνολογψ ΣτατεΚεψΛαβοφΙντελλιγεντΤεχηνολογψ Σψστεμσ ΤσινγηυαΥνι?ερσιτψ Βει?ινγ ΔεπαρτμεντοφΙνφορματιον ΧομπυτερΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν Αβστραχτ ∏ √ √ √ × ∏ ∏ ∏ ∏ ∏ ∏ 2 ∏ √ × ∏ ∏ ∏ ∏ √ ∏ Κεψωορδσ ∏ ∏ ∏ 1引言Ιντροδυχτιον 机器人路径规划问题可以分为两种一种是基于环境先验完全信息的全局路径规划≈ 另一种是基于传感器信息的局部路径规划≈ ?后者环境是未知或者部分未知的全局路径规划已提出的典型方法有可视图法 ! 图搜索法≈ ! 人工势场法等可视图法的优点是可以求得最短路径但缺乏灵活性并且存在组合爆炸问题图搜索法比较灵活机器人的起始点和目标点的改变不会造成连通图的重新构造但不是任何时候都可以获得最短路径可视图法和图搜索法适用于多边形障碍物的避障路径规划问题但不适用解决圆形障碍物的避障路径规划问题人工势场法的基本思想是通过寻找路径点的能量函数的极小值点而使路径避开障碍物但存在局部极小值问题且不适于寻求最短路径≈ 文献≈ 给出的神经网络路径规划算法我们称为原算法引入网络结构和模拟退火等方法计算简单能避免某些局部极值情况且具有并行性及易于从二维空间推广到三维空间等优点对人工势场法给予了较大的改进但在此算法中由于路径点的总能量函数是由碰撞罚函数和距离函数两部分的和构成的而路径点 第卷第期年月机器人ΡΟΒΟΤ? α收稿日期

人工神经网络论文

人工神经网络 学号:7 学生所在学院:信息工程学院学生姓名:李建建任课教师:聂文滨教师所在学院:信息工程学院 2009年12月

目录第一部分:绪论3 1.1人工神经网络的定义3 1.2人工神经网络的基本原理3 1.3生物神经元3 1.4人工神经元模型4 1.5人工神经网络模型5 1.6.常见神经元响应函数7 1.7.神经网络基本学习算法8 1.7.1有教师学习(监督学习)8 1.7.2无教师学习(无监督学习)8 1.7.3强化学习(再励学习)8 第二部分:反向传播网络9 2.1 BP网络9 2.1.1BP网络主要应用:9 2.1.2BP网络特点9 2.1.3多层BP网络简介10 2.2三层BP网络10 2.2.1三层BP网络结构图10 2.2.2三层BP网络学习算法11 2.2.3三层BP网络设计需要考虑的问题11 第三部分:自适应竞争神经网络12 3.1自组织网络12 3.1.1网络类型12 3.1.2网络学习规则13 3.2竞争网络13 3.2.1网络结构13 3.2.2竞争网络原理14 3.2.3网络工作方式14 3.2.4 网络训练15 3.2.5竞争网络的局限性15 第四部分:地震预报的MATLAB实现15 4.1基于人工神经网络的地震预测研究背景15 4.2模型的建立16 4.3自适应竞争网络对地震等级进行预测16 4.3.1数据处理16 4.3.2自适应竞争网络设计17 4.4BP网络对地震的大小进行预测18 4.4.1数据处理18 4.4.2BP网络的设计19 第五部分:作业21

第一部分:绪论 1.1人工神经网络的定义 人工神经网络的定义不是统一的,T.Koholen对人工神经网络的定义:“人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。” 1.2人工神经网络的基本原理 人工神经网络(articles neural network,ANN)结构和工作机理基本上以人脑的组织结构(大脑神经元网络)和活动规律为背景的,它反映了人脑的某些基本特征,但并不是要对人脑部分的真实再现,可以说它是某种抽象、简化或模仿。 1.3生物神经元 神经元是大脑处理信息的基本单元,人脑大约由1011个神经元组成,神经元互相连接成神经网络。神经元以细胞体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞,其形状很像一棵枯树的枝干。主要由细胞体、树突、轴突和突触(Synapse,又称神经键)组成。

机器学习算法汇总:人工神经网络、深度学习及其它

学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习:

在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。 强化学习:

神经网络与人工智能论文

人工神经网络及其应用总论 人工神经网络及其应用总论 【摘要】本文介绍了人工神经网络的概念,主要讲述了人工神经网络的特征、基础知识、一般结构和分类,进一步说明了人工神经网络学习和训练,模型的建立过程,最后综述了其应用。 【Abstract】This paper introduces the concept of artificial neural networks ,mainly discusses the features,base knowledges,the general structure and classification of artificial neural networks.And it further illustrates the artificial neural networks' learning, training,the process of model building.finally it introduces the applications of artificial neural networks. 【关键词】神经网络人工智能 【Kay words】Artificial Neural Networks Artificial intelligence 0 引言 人工神经网络(Artificial Neural Network,ANN),是由大量处理单元(即神经元Neurons)广泛连接而成的网络,是对人脑的抽象、简化和模拟,反映人脑的基本特征。人工种经网络的研究是从人脑的生理结构出发来研究人的智能行为,模拟人脑信息处理的功能。它是根值于神经科学,数学.统计学、物理学、计算机科学及工程等学科的一种技术[1]。人工神经网络是计算智能和机器学习研究中最活跃的分交之一。 1 神经网络概念 lech-Nielsen将神经网络定义为一个并行、分布处理结构,它由神经元及其称为联接的无向讯号通道互连而成。这些神经元具有局部内存,并可以完成局部操作。每个神经元有一个单~的输出联接,这个输出可以根据需要被分支成希望个数的许多并行联接,且这些并行联接都输出相同的信号,即相应神经元的信号,信号的大小不因分支的多少而变化。神经元的输出信号可以是任何需要的数学模型,每个神经元中进行的操作必须是完全局部的。也就是说,它必须仅仪依赖于经过输入联接到达神经元。 人工神经网络(ANN)与基于传统模型的方法相比,它具有非线性、数据驱动并自适应等特点。它是建模强有力的工具,尤其是当基本数据之间的关系未知时,其显威力。ANN能够辨识和学习输入数据集和相应目标值之间的关系。训练后,ANNs

机器学习之人工神经网络算法

机器学习中有一个重要的算法,那就是人工神经网络算法,听到这个名称相信大家能够想到 人体中的神经。其实这种算法和人工神经有一点点相似。当然,这种算法能够解决很多的问题,因此在机器学习中有着很高的地位。下面我们就给大家介绍一下关于人工神经网络算法 的知识。 1.神经网络的来源 我们听到神经网络的时候也时候近一段时间,其实神经网络出现有了一段时间了。神经网络 的诞生起源于对大脑工作机理的研究。早期生物界学者们使用神经网络来模拟大脑。机器学 习的学者们使用神经网络进行机器学习的实验,发现在视觉与语音的识别上效果都相当好。 在BP算法诞生以后,神经网络的发展进入了一个热潮。 2.神经网络的原理 那么神经网络的学习机理是什么?简单来说,就是分解与整合。一个复杂的图像变成了大量 的细节进入神经元,神经元处理以后再进行整合,最后得出了看到的是正确的结论。这就是 大脑视觉识别的机理,也是神经网络工作的机理。所以可以看出神经网络有很明显的优点。 3.神经网络的逻辑架构 让我们看一个简单的神经网络的逻辑架构。在这个网络中,分成输入层,隐藏层,和输出层。输入层负责接收信号,隐藏层负责对数据的分解与处理,最后的结果被整合到输出层。每层

中的一个圆代表一个处理单元,可以认为是模拟了一个神经元,若干个处理单元组成了一个层,若干个层再组成了一个网络,也就是”神经网络”。在神经网络中,每个处理单元事实上 就是一个逻辑回归模型,逻辑回归模型接收上层的输入,把模型的预测结果作为输出传输到 下一个层次。通过这样的过程,神经网络可以完成非常复杂的非线性分类。 4.神经网络的应用。 图像识别领域是神经网络中的一个著名应用,这个程序是一个基于多个隐层构建的神经网络。通过这个程序可以识别多种手写数字,并且达到很高的识别精度与拥有较好的鲁棒性。可以 看出,随着层次的不断深入,越深的层次处理的细节越低。但是进入90年代,神经网络的发展进入了一个瓶颈期。其主要原因是尽管有BP算法的加速,神经网络的训练过程仍然很困难。因此90年代后期支持向量机算法取代了神经网络的地位。 在这篇文章中我们大家介绍了关于神经网络的相关知识,具体的内容就是神经网络的起源、 神经网络的原理、神经网络的逻辑架构和神经网络的应用,相信大家看到这里对神经网络知 识有了一定的了解,希望这篇文章能够帮助到大家。

相关主题
文本预览
相关文档 最新文档