当前位置:文档之家› 数字全息的应用与发展

数字全息的应用与发展

数字全息的应用与发展
数字全息的应用与发展

数字全息的应用与发展

曹静 20114239001 现代光学技术研究所

摘要:文章介绍了数字全息的发展,研究现状和目前存在的问题。

关键字:数字全息的发展;研究现状;存在问题

1引言

数字全息是用光电传感器件(如CCD或CMOS)代替干板记录全息图,然后将全息图存入计算机,用计算机模拟光学衍射过程来实现被记录物体的全息再现和处理。数字全息与传统光学全息相比具有制作成本低,成像速度快,记录和再现灵活等优点。近年来,随着计算机特别是高分辨率CCD的发展,数字全息技术及其应用受到越来越多的关注,其应用范围已涉及形貌测量、变形测量、粒子场测试、数字全息显微、防伪、三维图像识别、医学诊断等许多领域。本文主要介绍了数字全息的发展和研究热点及存在的问题。

2数字全息的发展简史

2.1全息技术的发展[1]

全息术的成像过程主要分为两步:波前记录和波前再现。其主要特点是它不仅记录了物体的振幅信息,且记录了物体的位相信息,而更加真实地反映了原物体。根据全息图的记录手段和再现方式的不同,一般可将全息技术分为三类。(1)光学全息:全息图的记录过程是光学过程,再现过程也是利用光学照明来实现的,这种全息过程就是传统的光学全息;(2)计算全息:利用计算机模拟光的传播,通过计算机形成全息图,打印全息图后微缩形成母板,也可用激光直写系统形成计算机全息图CGH或利用液晶光阀或空间光调制器显示全息图,利用光学照明重现,这样的全息方法称作计算全息;全息图的重要特点之一是它能记录的干涉条纹的尺度之小达到了纳米级,这就造成,对于计算全息来说,一幅全息图包含的信息太多,以至于用傅立叶频谱进行编码再现是一项计算量太大的工作,因此初期计算全息能够处理的图像都是简单的符号和条纹。(3)数字全息:数字全息是由顾德门在1967年提出的一种新的全息成像方法,以CCD等光电耦合器件取代传统的干版记录全息图,并由计算机以数字的形式对全息图进行再现,但是当时受到各种条件的制约,一直没有重大的进展,随着计算机技术的发展和高分辨CCD等电荷耦合器件的出现,数字全息技术才得到迅速的发展。

2.2数字全息的发展

数字全息的发展的一方面主要是由于光学全息中的记录介质本身的缺点很难达到高灵敏度的要求,这就迫使科学家寻找高灵敏度的全息技术。另一方面随着微电子技术和计算机技术的飞速发展,CCD代替了胶片作为傅立叶变换编码条纹的显示载体,现代计算机计算速

度也大大提高,其中数字全息技术是利用CCD 电荷耦合器件取代传统光学全息中的记录介质来记录全息图,重建的过程在计算机中完成,全息技术及记录介质的发展为数字全息的出现奠定了坚实的基础。电荷耦合器件CCD 是1970年美国贝尔实验室发明的一种半导体固体功能器件,具有体积小、重量轻、灵敏度高、寿命长、低功耗和动态范围大等优点、它在结构上采用一块简单的硅片,把光电转换功能、储存功能以及扫描功能都合并在一起,因此它不需要预热,使用方便,抗振动与抗冲击的能力以及由此引起的抗损伤的能力较强,并且不易受滞后和拖影的影响。CCD 探测器可以实时地将二维光学再现图像信号转换为时序电信号,因而具有简便、速度快、与电子信号处理系统兼容、便于与计算机接口等优点,其缺点是光电接收的空间分辨率和灰度级较低。

3 数字全息的研究现状

3.1空间光调制器的研究

数字全息系统的核心元件是空间光调制器。通过它可将二维图片直接输入到全息图的拍摄光路中,完成相关记录。在信号源信号的控制下,它能对光波的某个参量进行调制,例如通过吸收调制振幅,通过折射率调制相位,通过偏振面的旋转调制偏振态等等,从而将信源信号所荷载的信息写进光波之中。

目前常用的有两种: 电寻址薄膜晶体管液晶显示器TFT —LCD 和数字微反射镜DMD 。电信号寻址的液晶显示器件LCD 可以直接接收来自CCD 摄像机或计算机的模拟或数字电子信号, 因而具有可编程控制性和灵活性,液晶显示屏由许多二维矩阵结构的像素组成,每一个像素相当于一个小液晶盒,液晶盒内一般装有扭曲90度的向列相液晶,能够通过电信号分别独立控制它们。但由于液晶屏分辨率和对比度较低影响全息图的质量,而近年来发展起来的DMD 系统具有很大的发展潜力,它的微结构是固定在两根支撑柱上Lm 量级的反射镜像素单元,只有以特定的角度(与光轴的夹角为10或12度)入射到这些微反射镜上的入射光才能被投影物镜成像。该系统具有更高光能利用率,更多灰阶和更大的像素分辨率。

3.2数字全息图像再现零级像的问题

在进行数字全息再现时,如何消除零级像的影响是一个研究热点,因为零级直透光干扰像占有绝大部分的光能量。目前人们主要采用相移技术来消除零级光的影响。但要用4幅位相相互垂直的参考光记录的全息图。一种典型的相移技术数字全息方法如图1所示。

图1中,移相器可以控制参考光的相位,设U(x,y)表示物光场分布,U R 表示参考光场分布,则U(x,y)可以表示为:

(0)()(0.5)(1.5)(,)44

I I I I U x y i πππ--=

+ (1) 这里I(δ)为 2()(,)exp()(,)R I U x y i U x y δδ=+ (2)

I(δ)可以通过CCD 拍摄的条纹经计算而得到。

除了相移技术外 ,也可以用其他方法处理零级光问题.混杂全息处理方法、图像相减方的

数字全息技术也需要采集多幅图像,很难进行实时再现。可以采用基于拉普拉斯算符图像处理的消除零级方法,其算法有一定的复杂性。周灿林等将正交小波变换应用于数字全息中,以消除零级像的影响,且只需一幅全息图。

图1 相移技术数字全息建立示意图2 高速CCD数字全息示意

3.3运动物体的数字全息的研究

利用数字全息进行实时测量是数字全息的一个重要研究方向。虽然有很多光学方法研究振动问题,但都不能很好地解决动力效果问题,文献[2]讨论了数字全息应用于物体振动模式的实时测量,研究了一种可用于物体振动模式的实时监控设备。

该设备由两部分组成:一部分记录了时间平均全息图案;另一部分对全息图进行实时再现。记录和再现采用两种不同的光学结构,一种称为准傅里叶变换离轴记录,另一种称为扩展傅里叶变换再现。后一过程中,在再现像之前能将不需要的衍射分量过滤掉。通常采用脉冲激光器和低速CCD研究运动物体的数字全息。

文献[3] CW 激光器和高速CCD研究了运动物体的数字全息,实验示意图如图2所示。实验所采用的物体为一个球形气球,CCD每秒可以拍摄4000幅全息图,相邻两幅全息图的时间间隔为250μs,全息图的大小为512х512像素,分瓣率为8 bits。现在发现还可以利用数字全息对有机微生物进行检测,这方面的研究也是其中一个热点。

3.4光学超分辨率数字全息的研究

由于零级光和激光散斑的影响,使得从数字全息图中再现的物体的像并不十分清晰,采用光学超分辨率数字全息是提高再现图像分辨率的一个有效方法。光学系统的分辨率由光学器件的有限衍射孔径决定,超出衍射极限的技术被称为超分辨技术。

文献[4]一种多次曝光超分辨率数字全息方法,全息图记录的是物体的复振幅(振幅和相位),而不是通常全息中的物体强度,这就可以通过物体复振幅的迭加增加光学系统的带宽。虽然每次物体的带宽有限,但中心频率不同。可通过改变入射到物体上的光波的角度来改变带宽的中心频率,但同时参考光的角度也需改变,以便能使复振幅的迭加达到增加带宽的效果。

文献[5]利用二维垂直腔自发激光阵列(VCSEL)实现物体的超分辨率数字全息。二维垂直腔自发激光阵列可看成是非相干球面波光源,其基本原理是利用不同的倾斜球面波照明实现

物体数字全息图的多重迭加。由相对于照明光源不同位置的透镜而形成的不同的空间带宽并被Mach—Zehnder干涉仪所记录,最后形成总的数字全息图,数字再现时,也可通过调整聚焦过程从而对每个中心频率的带宽进行调整。由于记录时用到聚焦过程,因此再现时要应用傅里叶变换。整体实验简单且不需要改变系统的结构,就能记录几乎所有空间频率的干涉图案。

3.5数字全息目前存在的问题

数字全息发展到今天依然存在许多没有解决问题如物体的大小、衍射或散射性质对数字全息图的记录有重要的影响;由于目前CCD的尺寸小、分辨率低,作为记录介质的CCD的空间分辨率目前最高可达100line/ram左右,比传统的银盐干板的空间分辨率5000line/ram 低很多,决定了数字全息只能直接记录较小尺寸的物体及其低频信息。为了尽可能多的记录物体的空间信息,希望记录距离尽量小,但距离的减小会导致采样条件不满足并使再现像分离困难,降低其分辨率;大数据量、大运算量、数字显示器件的分辨率还有待于提高,难以记录与再现运动物体,物体的颜色还原比较困难,难以实现大面积显示等等。

目前数字全息存在的最大的困难是分辨率太低,造成这一结果主要在于我们传统的数字全息是利用CCD直接接收相干光波,这样做虽然可以不使信息丢失,并且可以动态记录下物体的信息,但是由于目前CCD的分辨率还远远不能和全息干板相比,因此这样得到的干涉图样的分辨率是很低的,会严重影响再现像质量.因此我们设想如果用CCD直接多角度拍摄物体,将这样得到的信息作为物信息,再输入电脑进行编码、处理,制作一张菲涅耳全息图,再输入空间光调制器(SLM)利用激光再现物体。其具体如图3用高分辨率高质量的CCD 构成实时全息显示的原理图;(1)输入电脑处理之后作为寻址信号去调制LCD,通过LCD的读出光可以实时的得到物体的三维再现像。

这样做虽然会丢失一部分物体的信息,但是却可以大大提高分辨率,而且丢失部分的信息可以通过计算机编程、处理来弥补,但是这样也必然会导致运算量的加大,这无疑又给快速算法提出了一个新的考验。上述构想中还可以在第二步中由计算机处理后直接得到一张像全息图再进行缩微,则可在白光下再现物体像。

图 3 数字三维全息显示系统原理图

4未来构想

随着科学技术的不断发展,我们坚信以上的困难是可以逐步克服的,数字全息的应用前

景将会是无法估计的:可以借助计算机将二维图像集成为三维全息图,与光刻模压技术相结合,可以实现光、机、电一体化合成全息图的机械化生产;其模压全息图应用到包装行业上,不仅有装饰效果,还具有最新颖的防伪功能,该系统还可以创造一种新的图像、电和算一体化合成全息图的机械化生产;其模压全息图可应用到包装行业上,显示技术,商业广告、设计工业、大型展览、装饰装潢和美化人们生活。如果我们可以将图像的获取、编码、显示合在一个装置里由电脑控制实现,那就是真正的实现了数字全息一体化。样,全息电视、全息电影等数字显示技术的新突破就会很快到来。

参考文献

[1]段谷青,黄娟,曾阳素.数字全息与全息成像的新方法[J].邵阳学院学报(自然科学版),Mar.2006(3):4.

[2] NazifDemoli . Real2time monitoring of vibration fringe patterns y optical reconstruction of digital holograms:mode beating detection[J].Optics Express,2006,14(6):2117~2122.

[3] Carl os Pérez2 López, Manuel H De la Torre2I barra, Fernando Meza Santoyo .very high speed CW digital holographic interfer ometry[ J ]. Opt . Epress, 2006, 14 (21) : 9 7092 9 715. [4] Ueda M, Sat o T, Kondo M. Research laboratory of p recision machinery superres olution by multi p le super positi on of image holograms having different carrier frequencies [ J ]. Optica Acta, 1973, 20 (5) : 4032 410.

[5] Mico V, Zascuala Z, Garcia2 Martinez, et al . Superres olved i maging in digital hol ography by superposition of tilted wavefronts[ J ]. App l . Opt .,2006, 45 (5) : 8222 828.

数字全息综合实验

数字全息综合实验 实 验 讲 义 前言

传统全息实验通过干涉记录与衍射再现描述了物体的振幅与相位信息,并使用银盐或光致聚合物干板做为记录介质,通过使用不同浓度、温度的药液,经过显影定影,再现物体信息,拍摄过程对环境要求较高,冲洗存在一定的安全隐患,实验结果不方便进行二次开发。 数字全息实验使用高精度CMOS相机和空间光调制器件(SLM)进行采集和再现,降低了对环境(暗室、防震)的要求,免去了冲洗的不安全隐患,可以对数据进行二次开发,如滤波、存储、传输、加密安全等,坧展了全息的应用领域,使经典光学再现现现代风采。 1. 实验目的 a.通过本实验掌握数字全息实验原理和方法;

b.通过本实验熟悉空间光调制器的工作原理和调制特性; c.通过本实验理解光信息安全的概念和特点; 2. 实验原理 全息技术利用光的干涉原理,将物体发射的光波波前以干涉条纹的形式记录下来,达到冻结物光波相位信息的目的;利用光的衍射原理再现所记录物光波的波前,就能够得到物体的振幅(强度)和位相(包括位置、形状和色彩)信息,在光学检测和三维成像领域具有独特的优势。由于传统全息是用卤化银、重铬酸盐明胶(DCG)和光致抗蚀剂等材料记录全息图,记录过程烦琐(化学湿处理)和费时,限制了其在实际测量中的广泛应用。 数字全息技术是由Goodman和Lawrence在1967年提出的,其基本原理是用光敏电子成像器件代替传统全息记录材料记录全息图,用计算机模拟再现取代光学衍射来实现所记录波前的数字再现,实现了全息记录、存储和再现全过程的数字化,给全息技术的发展和应用增加了新的内容和方法。目前常用的光敏电子成像器件主要有电荷耦合器件CCD、CMOS传感器和电荷注入器件CID三类。 (一)数字全息技术的波前记录和数值重现过程可分为三部分: a.数字全息图的获取。将参考光和物光的干涉图样直接投射到光电探测器上,经图像采集卡获得物体的数字全息图,将其传输并存储在计算机内。 b.数字全息图的数值重现。本部分完全在计算机上进行,需要模拟光学衍射的传播过程,一般需要数字图像处理和离散傅立叶变换的相关理论,这是数字全息技术的核心部分。 c.重现图像的显示及分析。输出重现图像并给出相关的实验结果及分析。 与传统光学全息技术相比,数字全息技术的最大优点是:(1)由于用CCD等图像传感器件记录数字全息图的时间,比用传统全息记录材料记录全息图所需的曝光时间短得多,因此它能够用来记录运动物体的各个瞬间状态,其不仅没有烦琐的化学湿处理过程,记录和再现过程都比传统光学全息方便快捷;(2)由于数字全息可以直接得到记录物体再现像的复振幅分布,而不是光强分布,被记录物体的表面亮度和轮廓分布都可通过复振幅得到,因而可方便地用于实现多种测量;(3)由于数字全息采用计算机数字再现,可以方便地对所记录的数字全息图进行图像处理,减少或消除在全息图记录过程中的像差、噪声、畸变及记录过程中CCD器件非线性等因数的影响,便于进行测量对象的定量测量和分析。 目前, 数字全息技术已开始应用于材料形貌形变测量、振动分析、三维显微观测与物体识别、粒子场测量、生物医学细胞成像分析以及MEMS器件的制造检测等各种领域。虽然国内外在数字全息技术方面已经开展了大量的研究工作,但对于这一全息学领域的最新发展成果及其相关知识的传播和教学方面目前明显落后于科研,在全息学的实验教学上仍然以传统全息成像方法为主,很少涉及现

数字电路及其应用(一)

数字电路及其应用(一) 编者的话当今时代,数字电路已广泛地应用于各个领域。本报将 在“电路与制作”栏里,刊登系列文章介绍数字电路的基本知识和应用实例。 在介绍基本知识时,我们将以集成数字电路为主,该电路又分TTL和CMOS 两种类型,这里又以CMOS集成数字电路为主,因它功耗低、工作电压范围宽、扇出能力强和售价低等,很适合电子爱好者选用。介绍应用时,以实 用为主,特别介绍一些家电产品和娱乐产品中的数字电路。这样可使刚入门的 电子爱好者尽快学会和使用数字电路。一、基本逻辑电路 1.数字电路 的特点 在电子设备中,通常把电路分为模拟电路和数字电路两类,前者涉及模 拟信号,即连续变化的物理量,例如在24小时内某室内温度的变化量;后者 涉及数字信号,即断续变化的物理量,如图1所示。当把图1的开关K快速通、断时,在电阻R上就产生一连串的脉冲(电压),这就是数字信号。人们把用来 传输、控制或变换数字信号的电子电路称为数字电路。数字电路工作 时通常只有两种状态:高电位(又称高电平)或低电位(又称低电平)。通常把高电 位用代码“1”表示,称为逻辑“1”;低电位用代码“0”表示,称为逻辑“0”(按正逻 辑定义的)。注意:有关产品手册中常用“H”代表“1”、“L”代表“0”。实际的数字 电路中,到底要求多高或多低的电位才能表示“1”或“0”,这要由具体的数字电 路来定。例如一些TTL数字电路的输出电压等于或小于0.2V,均可认为是逻 辑“0”,等于或者大于3V,均可认为是逻辑“1”(即电路技术指标)。CMOS数字 电路的逻辑“0”或“1”的电位值是与工作电压有关的。讨论数字电路问 题时,也常用代码“0”和“1”表示某些器件工作时的两种状态,例如开关断开代 表“0”状态、接通代表“1”状态。 2.三种基本逻辑电路

浅谈全息技术的发展及前景

物 理 小 论 文 程 秋 菊 计 科 B111

浅谈全息技术的发展及前景 摘要:全息技术也称全息照相、全息摄影等,是一种神奇的光信息记录技术。其原理可用八个字来概括“干涉记录,衍射再现”。扥问简单的介绍了全息技术的发展历程,特点,一些突破性的进展,和在现代生活中的应用,以及全息技术的前景。 关键词:全息技术、全息照相、全系信息储存、激光 1、引言 全息技术是一门正在蓬勃发展的光学分支,主要运营用了光学原理,是一种不用透镜,而用相干光干涉得到物体全部信息的二部成像技术。如果说全息技术在照相方面的应用与普通照相技术的最大区别,那就是全息技术能够利用激光的相干性原理,将物体对光的振幅和相位反射(或透镜)同时记录在感光板上,也就是把物体反射光的所有信息全部记录下来,并能够再现出立体的三维图像,儿是光波。全息技术近年来已渗透到社会生活的各个领域并被广泛的应用于近代科学研究和工业生产中,特别是在现代测试。生物工程、医学、艺术、商业、保安、及现代存储技术等方面已显示出特殊的优势。随着全息技术的快速发展,全息技术的产品正越来越走向市场、应用与现代生活中。 2、全息技术的发展简介 全息照相技术是1948年英国科学家丹尼斯伽伯为改善电子显微镜成像质量提出的重现波前的理论,并因此获得诺贝尔奖。但当时由于缺乏纯净的能够相互干涉的光,全息图的质量很差。知道十二年以后的1960年,激光器问世,美国密执安大学的埃梅蒂利斯与朱丽斯尤培妮克拍成了第一张全息照片,全息技术才有了蓬勃快速的发展。 全息技术的发展大约可分同轴全息术、离轴全息术、白光再现全息术、白光全息术等4个阶段。 同轴全息术是伽伯当时采用的技术,这一阶段主要是在1960年激光器出现之前,这种技术获得的物体再现像与照明光混在一起,不易观察。 1948年,伽伯为提高电子显微镜的分辨率,在布拉格的“x射线显微镜”、择尼克的相衬原理的启示下,提出了一种用光波记录物光波的振幅和相位的方法,并用实验证实了这一想法。为了进一步证实其原理,他先后采用了电子波与可见光进行了验证,并在可见光中得到了证实,同时制成了第一张全息图。从那时起至20世纪50年代末期,全息图都是用汞灯作为光源,而且是参考光与物光共轴的共轴全息即同轴全息图。它与4-1级衍射波是分不开的,这是全息术的萌芽时期。这个时期全息图存在2个严重问题,一个是再现的原始像与共轭像分不开;另一个是光源的相干性太差,因此在这10多年中,全息术进展缓慢。 离轴全息术是在激光器出现以后产生的用激光再现的全息术,其特点是获得的物体重现像与照明光分离,易于观察。 1960年激光的出现,提供了一种高相干度光源。1962年,美国科学家利斯和乌帕特尼科斯将通信理论中的载频概念推广到空域中,提出了离轴全息术,就是用立轴的参考光照射全息图,使全息图产生3个在空间相互分离的衍射分量,其中一个复制出原始物光。这样,同轴全息图两大难题宣告解决,产生了激光记录、激光再现的全息图。从而使全息术在沉睡了十几年之后得到了新生并进入了一个极为活跃的阶段。此后,又相继出现了多种全息方法,

彩虹全息实验

目录 1 实验目的 (1) 2 实验原理 (1) 3 实验仪器 (3) 4 实验内容 (3) 4.1 一步彩虹全息真像纪录 (3) 4.2 方孔一步彩虹全息像的再现 (4) 5 实验结果 (4) 6 实验总结 (5) 7 感想体会 (6) 8 参考文献 (6)

方孔一步彩虹全息实验研究 1实验目的 1、了解像全息白光再现的原理及一步彩虹全息和像面全息的原理。 2、掌握一步彩虹全息图制作方法。 3、了解像面全息实验方法。 2 实验原理 像面全息图的拍摄用成像系统使物体成像在全息底板上,在引入一束与之相干的参考光束,即成像面全息图,它可用白光再现。再现象点的位置随波长而变化,其变化量取决于物体到全息平面的距离。像面全息图的像(或物)位于全息图平面上,再现像也位于全息图上,只是看起来颜色有变化。因此在白光照射下,会因观察角度不同呈现的颜色亦不同。彩虹全息的本质是要在观察者与物体的再现象之间形成一狭缝像,使观察者通过狭缝像来看物体的像,以实现白光再现单色像。一步彩虹全息图的记录光路是在三维照相的光路中,在记录干板与物体之间插入一个成像透镜和一个水平狭缝,把物体和狭缝的像一次记录下来,由于狭缝放置的位置不同,一步彩虹全息图的记录光路有两种;一种是赝像的记录光路,一种是真像记录光路。 赝像记录原理如图1所示。狭缝紧贴成像透镜后面放置,成像透镜只对物体成实像对狭缝不成实像,狭缝位于透镜焦点之内在焦点外成虚像。用会聚光作参考光。 图1 一步彩虹全息赝像记录原理图

图2 一步彩虹全息真像记录原理图 真像记录原理如图2所示,狭缝和物体O均放在透镜L的焦点以外,狭缝位于物体和透镜之间。成像透镜对物体和狭缝均成实像,二者的像均在透镜的另一侧,物体的实像和狭缝的实像分别成在记录干板的前边和后边,物体的像离全息干板近一些。图3为彩虹全息真像纪录的参考光路。 图3 彩虹全息记录光路 S:激光器 SF:扩束镜 BS:分束镜 L1:成像透镜 M1、M2:放射镜 O:物体 H:全息干板 S1:狭缝 两种记录光路所拍摄的彩虹全息图,如用记录时的单色光再现,可以通过再现出的狭缝实像观察到所记录物体的明亮虚像(如图4)。用白光再现,则形成七色图像。

利用数字全息干涉术测定材料的泊松比

文章编号:025827025(2005)0620787204 利用数字全息干涉术测定材料的泊松比 徐 莹,赵建林,范 琦,向 强 (西北工业大学理学院光信息科学与技术研究所,陕西西安710072) 摘要 根据数字全息干涉术的基本原理,利用CCD 分别记录物场状态变化前后的无透镜傅里叶变换全息图,通过数值再现分别得到不同状态下物场的复振幅分布,从而直接得到不同状态下物场间的干涉条纹图样。如果该物场是由板状试样的离面弯曲引起的,则通过测量干涉条纹图样中相同相位条纹的渐近线之间的夹角,即可确定出材料的泊松比。实验证明该方法简单易行,尤其适合对光学粗糙表面、小泊松比或小尺寸的试样进行全场测量,测量结果具有良好的重复性,较高的灵敏度和精度。 关键词 全息;数字全息干涉术;泊松比;无透镜傅里叶变换全息图;干涉相位差中图分类号 O438;O348.12 文献标识码 A Determination of the Poisson ′s R atio of Material by Digital H olographic Interferometry XU Y ing ,ZHAO Jian 2lin ,FAN Qi ,XIAN G Qiang (I nstitute of O ptical I nf ormation Science and Technology ,S chool of S cience ,N ort hwest ren Pol ytechnical Universit y ,X i ′an ,S haanx i 710072,China ) Abstract Base on the principle of digital holographic interferometry ,two lensless Fourier transform holograms representing two different deformation states of object field are captured by CCD.Then the numerical reconstruction of digital holograms is implemented respectively to acquire the complex amplitude of object waves ,and the interference phase difference is determined by subtracting the phases of the different states.According to the pure bending theory in elastic mechanics ,the Poisson ′s ratio is derived numerically f rom the angle between the asymptotic lines of the fringes of equal phase ,which are caused f rom homogeneous deformation and reconstructed by digital holographic interferometry.This method for determination of Poisson ′s ratio of material in the f ull -access performance by experiment is simple and easy to operate ,especially suitable for material with rough surface ,low value Poisson ′s ratio and small size.K ey w ords holography ;digital holographic interferometry ;Poisson ′s ratio ;lensless Fourier transform hologram ;interference phase difference 收稿日期:2004205231;收到修改稿日期:2004209230 基金项目:航空科学基金(02I53075)资助项目。 作者简介:徐 莹(1980—),女,江西人,西北工业大学理学院博士研究生,主要从事全息术及其应用方面的研究。E 2mail :xy_1999@https://www.doczj.com/doc/c715095716.html, 1 引 言 泊松比是反映材料弹性特性的一个常数,表征试样拉伸时沿横向发生收缩的程度,通常用于工程部件的数值压力分析。常用电子与机械相结合的方法如借助引伸计测量试样横向及纵向变形量来获得泊松比。该方法在测定材料长期性能时难免发生漂移,而且引伸计自重及夹持力可引起软质试样的附加变形,所以只适用于硬质试样。也可以通过在试 样上粘贴电阻应变片的方式测量其泊松比,但该方 法测量的变形范围有限,并且试样附加了粘贴片的刚度,会引起一定误差。此外传统的光学测量方法[1]如全息法、散斑法、影像云纹法等,均是从所得到的干涉图样推算出泊松比,但这些方法需要经过对记录介质必需的曝光、显影等物理化学处理过程,再现过程复杂,周期较长,有些还需要将待测试样弯曲表面研磨成镜面,这对于非金属材料几乎是不可   第32卷 第6期2005年6月 中 国 激 光 C H IN ESE J OU RNAL O F L ASERS Vol.32,No.6 J une ,2005

浅谈全息技术的发展及前景论文

浅谈全息技术的发展及前景 摘要从全息思想的提出至今已经有半个多世纪的历史。期间,全息技术的发展取得了很大的成就。梳理一下全息技术的发展以及当今的研究和应用现状,有助于我们深入了解全息技术对生产、生活的重要影响以及其今后的发展方向。 关键词全息防伪存储全息透镜 Abstract The proposal from the hologram has been half a century since. During the development of holographic technology has made great achievements. Comb the development of holography and the current status of research and application, holographic technology will help us understand the production, the important influence of life and its future development. Key words Holography Anti-fake Storage Holographic lens

1、引言 全息技术一门正在蓬勃发展的光学分支,主要运用了光学原理,是一种不用透镜,而用相干光干涉得到物体全部信息的二部成像技术。如果说全息技术在照相方面的应用与普通照相技术的最大区别,那就是全息技术能够利用激光的相干性原理,将物体对光的振幅和相位反射(或透射)同时记录在感光板上,也就是把物体反射光的所有信息全部记录下来,并能够再现出立体的三维图像。也就是全息技术所记录不是图像,二是光波。全息技术近年来已渗透到社会生活的各个领域并被广泛地应用于近代科学研究和工业生产中,特别是在现代测试、生物工程、医学、艺术、商业、保安及现代存储技术等方面已显示出特殊的优势。随着全息技术的快速发展,全息技术的产品正越来越多地走向市场、应用于现代生活中。 2、全息技术的发展简介 全息照相技术是1948年英国科学家丹尼斯·伽伯(Dennis Gabor)为改善电子显微镜成像质量提出的重现波前的理论,并因此获得了诺贝尔奖。但当时由于缺乏纯净的能够相互干涉的光,全息图的质量很差。直到十二年以后的1960年,激光器问世,美国密执安大学的埃梅蒂·利斯与朱里斯·尤佩尼克拍成了第一张全息相片,全息技术才有了蓬勃快速的发展。 全息术的发展大约可分同轴全息术、离轴全息术、白光再现全息术、白光全息术等4个阶段。 同轴全息术是伽伯当时采用的技术,这一阶段主要是在1960年激光器出现以前。这种技术获得的物体的再现像与照明光混在一起,不易观察。 1948年,伽伯为提高电子显微镜的分辨率,在布拉格的“x射线显微镜”、泽尼克的相衬原理的启示下,提出了一种用光波记录物光波的振幅和相位的方法,并用实验证实了这一想法。为了进一步证实其原理,他先后采用电子波与可见光进行了验证,并在可见光中得到了证实,同时制成了第1张全息图。从那时起至20世纪5O年代末期,全息图都是用汞灯作为光源,而且是参考光与物光共轴的共轴全息即同轴全息图。它与4-1级衍射波是分不开的,这是全息术的萌芽时期。这个时期全息图存在2个严重问题,一个是再现的原始像与共轭像分不开;另一个是光源的相干性太差,因此在这10多年中,全息术进展缓慢。 离轴全息术是在激光器出现以后产生的用激光记录激光再现的全息术,其特点是获得的物体重现像与照明光分离,易于观察。 1960年激光的出现,提供了一种高相干度光源。1962年,美国科学家利思(Leith)和乌帕特尼·克斯(Upatnieks)将通信理论中的载频概念推广到空域中,提出了离轴全息术,就是用离轴的参考光与物光干涉形成全息图,再利用离轴的参考光照射全息图,使全息图产生3个在空间互相分离的衍射分量,其中一个复制出原始物光。这样,同轴全息图两大难题宣告解决,产生了激光记录、激光再现的全息图。从而使全息术在沉睡了十几年之后得到了新生并进入了一个极为活跃的阶段。此后,又相继出现了多种全息方法,如大景深全息照相法、激光记录与激光再现的彩色全息照相法等。 白光再现全息术是用激光记录,白光照明再现的全息图制作技术,它在一定的条件下赋予全息图以鲜艳的色彩,这是目前应用最广的全息术。 由于激光再现的全息图失去了色调信息,科学家们开始致力于研究第3代全息图。一个叫班顿的人发现了用激光记录,使用白光还原影像的方法,从而使这项技术逐渐走向实用阶段。美国《国家地理杂志》第1次使用白色光全息片贴在封面时,销售量由1000万份增加到再版后的1600万份。这一技术后来由美国传到欧洲和其它国家,激光全息摄影技术也随之风靡全世界。常见的有反射全息术、像全息术、彩虹全息术和合成全息术等。 白光全息术是利用白光制作全息图,用激光或白光照明观察再现,这是全息术的最高阶段,至今虽有不少人做了一些初步工作,但尚未有突破性进展。激光的高度相干性,要求全息拍摄过程中各个元件、光源和记录介质的相对位置严格保持不变。这也给全息技术的实际使用

数字化档案管理的应用与发展趋向分析

数字化档案管理的应用与发展趋向分析 发表时间:2018-09-11T09:24:18.943Z 来源:《建筑模拟》2018年第16期作者:陈庆晖 [导读] 现如今,我国是科技发展的大时代,数字化技术是当今时代大力推广的一种关键性技术,这种技术的产生和发展,大大的推动了我国许多产业的发展。 大庆中蓝石化有限公司管理信息部黑龙江省大庆市 163713 摘要:现如今,我国是科技发展的大时代,数字化技术是当今时代大力推广的一种关键性技术,这种技术的产生和发展,大大的推动了我国许多产业的发展。本文当中我们要主要介绍的档案管理就是利益较大的一个产业。实际上,数字化技术在档案管理行业当中具有很高的应用价值,通过对于数字化技术的应用,我们就可以显著的提高档案信息的可靠性、全面性、并可以做到及时的对档案信息进行更新。下文当中,我们将对数字化技术在档案管理当中的应用价值进行解析,并提出几个发挥出这个价值的可靠措施。 关键词:数字化技术;档案管理;应用;发展趋势 引言 我国档案管理以传统的管理模式为主,存在着数字化水平低、人员素质不高等诸多弊端,这些因素成为我国档案管理发展的绊脚石。因此,全面了解档案管理的数字化水平,不断改变管理理念,是我国档案管理发展和进步的必经之路。一些企业仍在使用传统的文件管理,工作将严重依赖手工操作,这些对单位发展和数字化的实践产生直接的影响,这也不利于企业自身的发展。随着信息技术的发展,企业数字化进程的逐步深入,给企业档案管理带来了前所未有的挑战,也给企业档案管理带来了发展机遇。传统实体档案管理模式受到新的数字网络环境、档案的接收、存储、应用和真实性、完整性等方面的巨大影响,摆在我们面前的紧迫任务是如何使企业档案数字化建设,充分利用数字技术,更快、更好地服务。电子档案管理已逐步纳入数字化建设的议程。 1数字信息技术对于档案管理工作的重要作用 1.1提高档案实用性 借助数字信息技术建立的档案具有易储存、传递方便、档案寿命延长等多个优点。彻底替换纸质档案,实现数字化档案管理。 1.2便于档案共享 实现档案管理数字化有利于档案管理工作的整合收集,便于档案资源的共享。借助互联网技术搭建信息交流平台,使档案使用者能够快速检索档案,节约时间,提升工作效率。 2如何发挥出数字化技术在档案管理的应用价值 2.1建立一个数字化的事业单位档案管理系统 从上文当中,我们已经了解到,数字化的技术在我国的档案管理事业发展过程当中具有重大的意义。现阶段我们可以从三个方面来进行工作:建立一个数字化的事业单位档案管理系统、培养和雇佣专业的档案数字化管理人才、为事业单位档案数字化管理提供资金支持。从数字化系统的角度来看,我们应当尽可能的建立一个完备的信息化管理系统,这个系统应当包括档案信息的收集、甄别、更新、录入等各个方面,全面的为我们进行档案管理服务。这是我们的数字化档案管理策略当中最重要的一条,能不能把这一点落到实处,决定了我们的档案数字化管理是不是真正的成功。做到了这一点,我们进行档案管理的效率就会大大的提高,节约大量的人力物力财力,并且会提高档案的可靠性和准确性,为事业单位的进一步发展打好了坚实的基础。 2.2培养和雇佣专业的档案数字化管理人才 档案的数字化管理是一项十分繁琐的工作,工作量是很大的。并且,这项工作的难度也比较高,要想把这项工作干好,需要对单位的运行模式和工作条件等进行深入的了解,并且可以做到娴熟的利用档案管理方面的知识,最后,他还需要对数字化的解决问题方法有深入的了解。这样一来,这方面的人才就是十分难以得到的了,然而我们对于这种人才的需求确是十分大的。因此,我们应当采取各类有效的措施,培养和雇佣专业的档案数字化管理人才。具体来讲,我们应当首先对这类工作进行宣传,呼吁更多有此类意愿的年轻人投身数字化档案管理的工作当中。然后,我们应成立一个严格的人才培养流程,争取培养出全面的专业人才。最后,我们应当提高此类人才的待遇,雇佣更多的专业人才进行此类工作,争取提高数字化档案管理的效率和精度。 2.3统筹规划,注意风险防控 企业档案数字化建设是一个复杂的系统工程,涉及管理、技术、法规、标准和政策。要统筹规划,科学合理的设计,进行严格的管理,才能保证安全。在规划和建设项目时,要把对数字化文件的风险防范和控制作为一项十分重要的内容,进行严密的科学论证,做好资金预算。建设企业档案数字化信息系统,确保系统平台兼容性、可扩展性、前瞻性、安全性和合理性,具有备份策略、稳定安全、可靠稳定的操作系统、数据存储系统、实时备份系统、强大的数据库管理软件和强大的数据容错能力等。确保满足业务技术标准,档案管理系统的发展,并不违反法律、法规的计算机信息系统管理,和设计符合相关的档案工作等等,可移植性,可操作性、安全性、开放性、可扩展性和兼容性都必须具备,有完整的日志操作和严格的权限管理功能,加密存储和可传输属于数字化档案信息的机密级别。确保文件在任何时候都有一个安全的数字信息系统环境。对于进口计算机和数字转换工具,应首先检查安全性和机密性,以确保在使用前不会出现问题。 3数字化档案的未来发展趋势 3.1朝着市场化、信息化等方向发展 通过对数字化档案的利用现状进行分析,发现日后互联网化、信息化为数字档案化的主要发展方向。只有对其进行全面解释,才能保证数字化档案管理的应用做到有的放矢,并持续提升数字化档案应用效率。 3.2朝着资源共享与互联网服务模式发展 随着互联网信息技术的发展,数字化档案势必会向资源共享与互联网服务的模式发展。这主要因为只有持续利用先进技术,才能扩展数字化档案的利用范围,并将其存在的效用充分地发挥出来。 3.3档案数字化即将实现业务外包 业务外包为工业企业主要的运营管理模式,其主要是把一部分由企业内部职工应完成的非核心任务以外包的模式分配给有实力、专门化的服务供应商的业务形式,这样能合理利用企业外包的优质资源,能够降低成本、加强质量、增强企业核心竞争力。通俗地讲,档案数

数字全息技术

数字全息技术 作者:王栎汉 专业:数字多媒体专业11界 指导老师:李德 概要:数字全息技术是随着现代计算机和CCD技术发展而产生的一种新的全息成像技术。文章主要介绍数字全息技术的基本原理。 关键词:全息技术、图像重建 一:数字全息技术背景 二:数字全息技术的应用 三:数字全息技术的制作过程

一:数字全息技术背景 全息技术是利用干涉和衍射原理记录并再现物体真实的三维图像的记录和再现的技术。 与传统的全息技术相比,数字全息是用光电传感器件(如CCD或CMOS)代替干板记录全息图,然后将全息图存入计算机的一种新技术。用计算机模拟光学衍射过程来实现被记录物体的全息再现和处理。即用计算机产生和重现全息图像。把物理成像过程扩展到数字过程。 计算机产生全息图像的基本特点是它不需要空间物体的真实存在,而是从物体的数学描述开始,计算出全息图。任何能够用数学描述的一维、二维、三维物体都能够做出计算机的全息图。

二:数字全息技术的应用 全息技术通过记录物光振幅和相位的方法能够达到记录和恢复物体三维信息的目的。全息技术的这一特性使得它被广泛应用于科学研究、工业检测、商业包装和艺术设计等领域。 数字全息技术是以传统光学全息为基础,使用CCD数字化地记录全息干涉条纹。 数字全息图能够通过计算机,实现数字再现以及物体变形的测量;同时数字全息图也可以利用空间光调制器实现物体三维信息的空间再现。 因此数字全息技术主要运用在水下侦探,固体无损检验,地球物理探测,雷达技术等方面。数字全息技术最成熟的应用之一是光学原件表面形状的检测。由透镜的设计数据在计算机上计算出标准波前,并制成全息图。

全息投影技术的发展及应用前景

《光信息存储》期末论文题目全息投影技术的发展及应用前景班级光信1102班 姓名张林君 学号 20112830 完成日期 2013/12/12 成绩

全息投影技术的发展及应用前景 摘要:全息技术最早于1948年由斯盖伯(Dennis Gabor )提出,经过研究发展,2003年首次成功应用于全息投影技术中。全息投影技术应时代而来,被广泛的应用于社会的各个方面,它对传统舞台声光电技术的颠覆,及其带给人们的虚实结合的梦幻立体感受,犹如 LED 显示屏在舞台的广泛应用一样,其也必将成为未来几年舞台的“新宠儿”,也具有划时代的意义。 关键词:全息投影发展史应用前景 一、全息技术的发展历史 全息影像是就是实现真实的三维图像的记录和再现,用户不需要佩戴带立体眼镜或其他任何的辅助设备,就可以在不同的角度裸眼观看影像。 1947年,匈牙利人丹尼斯盖博(Dennis Gabor)在研究电子显微镜的过程中,提出了全息摄影术(Holography)这样一种全新的成像概念。由于全息摄影术的发明,丹尼斯盖博在1971年获得了诺贝尔奖。 1962年,美国人雷斯和阿帕特尼克斯在基本全息术的基础上,将通信行业中“侧视雷达”理论应用在全息术上,发明了离轴全息技术,带动全息技术进入了全新的发展阶段。这一技术采用离轴光记录全息图像,然后利用离轴再现光得到三个空间相互分离的衍射分量,可以清晰的观察到所需的图像,有效克服了图成像质量差的问题。

1969年,本顿发明了彩虹全息术,能在白炽灯光下观察到明亮的立体成像。其基本特征是,在适当的位置加入一个一定宽度的狭缝,限制再现光波以降低像的色模糊,根据人眼水平排列的特性,牺牲垂直方向物体信息,保留水平方向物体信息,从而降低对光源的要求。 20世纪60年代末期,古德曼和劳伦斯等人提出了新的全息概念——数字全息技术,开创了精确全息技术的时代。到了90年代,随着高分辨率CCD的出现,人们开始用CCD等光敏电子元件代替传统的感光胶片或新型光敏等介质记录全息图,并用数字方式通过电脑模拟光学衍射来呈现影像,使得全息图的记录和再现真正实现了数字化。 2001年德国国家实验室首创研发了全息膜技术,使三维图像的再现成为可能。经过7年的发展,全息膜已经从第一代的1英寸栅格状网眼hoe全息单元升级到了如今的第四代0.2毫米97%透光度HoloPro全息膜。依靠这薄薄的透明膜,无论是T形台上的流光溢彩,还是舞台上虚幻影像,都可实现。全息膜的价格自然不菲,据介绍,透光率为70%的全息膜市场价都达到1800-2200元/平米。 360度幻影成像是全息投影目前最具魔幻效果的技术,由丹麦公司ViZoo在2006年研发出来。他们用全息膜搭建了一个倒金字塔形的三角漏斗几何模型,由四台投影机投射的视频图像,在漏斗里经过一系列的光学衍射后汇合成为全息图像,看起来就像有实物漂浮在空中。这一系统还可以配加触摸屏,现场观众可通过各种手势和动作,操纵3D产品模型进行旋转,或部件分解。这样,观众就能深入地了解展示的产品性能。因此,这个全息显示系统一经面世,就迅速成为

数字化技术在建筑工程施工中的应用及发展研究

摘要:随着计算机和各种先进技术的飞速发展,传统的建设工程施工管理受到前所未有的挑战,这使数字化施工的概念登上了历史舞台。从数字化施工的概念出发,主要对建筑空间信息技术、建筑设备数字化监管技术等3个数字化施工技术在建筑工程中的应用进行了阐述,同时对数字化施工技术在工程中的未来发展趋势及注意事项进行了分析与探讨。 0 前言 美国1998 年率先提出了“数字地球”的概念,随着“数字地球”概念的提出,“数字化”时代已经到来,数字化施工就是在“数字地球”这一大背景下提出的。 建筑行业被称为仅次于采矿作业的第二危险行业,对于安全事故多发的工程施工,如何做好施工现场管理,控制事故发生频率,一直是政府管理部门、施工企业关注的焦点。为了更好地管理施工,保证施工质量安全,人们提出“数字工地”概念。 “数字工地”是数字化工地管理信息系统的简称,该系统通过运用现代化信息采集、传输、处理技术和自动化控制技术,对施工技术、工程质量、安全生产、文明施工等管理进行动态的、实时的监控,在此基础上对各个管理对象的信

息进行数字化处理和存档,以此促进工作效率和管理水平的提高。 同时,通过计算机、网络等先进技术平台,实现远程监控管理,真正实现建设主管部门、业主、设计、监理对工程施工全方位、全过程、全天候和多视点、多角度、多层面的实时监控,使各部门管理者对工程建设中出现的各种问题做到“第一时间发现,第一时间处置,第一时间解决”,数字化施工技术就是在这一前提下发展起来的。 1 数字化施工的概念 目前中国的城市工程建设呈现出火热的态势,同时给建设工程的安全与质量监管工作带来了严峻的压力和挑战。过去工程施工技术比较单一,主要是人工操作,工作效率极低,同时人为操作引起的误差可能会给工程带来安全隐患,造成工程事故。为了杜绝工程事故的发生,更好地保证施工质量安全,许多工程引进数字化施工技术。 数字化施工技术是对建筑工程建造过程中的各个环节 进行统模,形成一个可运行的虚拟建造环境,以软件技术为支撑,借助于高性能的硬件,在计算机网络上,生成数字化产品,实现规划设计、性能分析、施工方案决策和质量检验、管理。它是数字化形式的广义建造系统,是对实际施工过程的动态模拟。数字化施工可大幅度提高施工效率和保证工程

实验十六 彩虹全息图的制作

128 实验十六 彩虹全息图的制作 实验目的 制作彩虹全息图并在白光下观察其再现像。 实验方法 第一步:对被照物体制作一个普通的全息图H 1,叫母全息图,见图1。 第二步:将已做好的全息图H 1用R 1*照明再现物体实像,利用此实像作为物(物光),加上参考光R 2及狭缝制作出第二块全息图H 2。 这第二块全息图H 2,具有彩虹的性质,也就是在用R 2*再现时,眼睛放在狭缝位置上可以看到物体的像,若在白光下再现,人眼沿着与狭缝垂直的方向改变观察方向,可看见不同颜色、五彩缤纷的像,如图2所示。 实验光路如图3所示。 实验步骤 (制母板步骤省略) 1.首先按图3调好光路。 2.放上已作好的母全息图,用R 1*再现原物体实像,可在实像处放一毛玻璃观察。(这时可挡掉R 2)。 3.挡住物光,调节参考光R 2,使参考光R 2与物光波光强比约为3:1。(可调连续分束镜或在参考光路中放置衰减镜)。 4.挡住光源,在实像面处放上全息干板,待稳定后进行曝光。曝光时间,He -Ne 激光器功率40mW ,天津Ⅰ型全息干板为20秒左右,GYT 型干板为90秒左右。 全息干板 图1 母全息图 图2 第二块全息图

129 5.经显影、定影和漂白后的干板在白光下观察其再现现象。 注意事项 1.狭缝大小和方向的选择: 狭缝大小选取由虹全息来说希望越窄越好。越窄色彩越纯,但太窄物光强太弱,不便观察,也不容易拍照。至于狭缝方向水平放置与垂直放置均可,只是观察时移动方向不同,依习惯而定。 2.制作彩虹全息图时,参 考光与物光光强比约为3:1。且参考光与物光夹角不宜过大,以免影响衍射效率。 3.观察彩虹全息图的再现像应注意再现条件:白光方向必 须是R 1*的方向,再者人眼须刚好置于狭缝原位置。 4.母全息图的制备可参考全息照相实验,为了便于再现实像和制作虹全息图,制作母全息图时物光与参考光的夹角不能太小,例如应在60?以上,物与干板的距离也应适当选择。 实验原理 下面我们稍微定量地讨论基元彩虹全息图的记录与再现。由于分析的记录光路是线性的,若只考虑一个物点I 0(x 0,y 0,z 0)即再现实像上的一点并 不失去其普遍性。在记录过程中,令记录所用的单 色光波长为λ,参考光的发散点是R (x r ,y r ,z r )。选择空间直角坐标系的x -y 平面在记录干板的药 膜面上,坐标原点与干板中心重合。如图4所示。 设在记录干板上物光和参考光的复振幅分别是U 0(x ,y )和U r (x ,y ),两者所形成的干涉图样的光 强分布是 * 00*2 202 0),(U U U U U U U U y x I r r r r +++=+= (1) 上式*号表示共轭复数。假设记录过程是线性的,彩虹全息图的振幅透射率t (x ,y )正比于 I (x ,y ): )(),(* 00*2 2 U U U U U U K y x t r r r +++= (2) 当处理好的虹全息图放回原记录位置,用波长为λ' ,发散点为R (x r ,y r ,z r )的单色光照 明,就能再现出物点的全息像I (x I ,y I ,z I ),物点与全息像点的关系由下面的式子给出: R 2狭缝H 1H 2 R 1*He -Ne 激光器 透镜反射镜反射镜 反射镜扩束镜扩束镜 准直镜(母全息干板) 图3 实验光路 I (x ,y ,z )R (x ,y , z ) H x y z 0 0 0 0 r r r 图4 全息图的记录 U 0 U r

[数字电子技术及应用(第2版)习题答案第4单元习题答案

自我检测题 一、填空题 4-1 555定时器根据内部器件类型可分为双极型和单极型,它们均有单或双定时器电路。双极型型号为 555 和 556 ,电源电压使用范围为5~16V ;单极型型号为7555和7556 ,电源电压适用范围为3~18V 。 4-2 555定时器最基本的应用有 单稳态触发器 、 施密特触发器和多谐振荡器三种电路。 4-3 555定时器构成的施密特触发器在5脚未加控制电压时,正向阈值电压+T U 为 CC V 32V ;负向阈值电压-T U 为 CC V 31 V ;回差电压T U ?为 CC V 3 1 V 。 4-4晶片的两个基板在电场的作用下,产生一定频率的 机械变形 。而受到一定方向的外力时,会在相应的两个表面上产生 相反 的电荷,产生电场,这个物理现象称为 压电效应 。 4-5石英晶体有两个谐振频率,分别为 串联谐振频率 和 并联谐振频率 。 二、选择题、判断题 4-6 用555定时器组成单稳态触发电路时,当控制电压输入端无外加电压时,则其输出脉宽t w = A 。 A 、1.1RC B 、0.7 R C C 、1.2 RC 4-7 用555定时器组成的单稳态触发器电路是利用输入信号的下降沿触发使电路输出单脉冲信号。( ) 4-8为了获得输出振荡频率稳定度高的多谐振荡器一般选用 B 组成的振荡器 A 、555定时器 B 、反相器和石英晶体 C 、集成单稳态触发器 练习题 4-1 555定时器由哪几个部分组成? 答:略。 4-2施密特触发器、单稳态触发器、多谐振荡器各有几个暂稳态,几个稳定状态? 答:略。 4-3由555定时器构成的施密特触发器在5脚加直流控制电压U CO 时,回差电压为多少? 答:CO U 2 1 4-4由555定时器构成的多谐振荡器如图4-12所示,已知,R 1=R 2=5.1kΩ,C =0.01μF ,V CC =+12V ,则电路的振荡频率是多少? 答:9.337KHZ 4-5由555定时器构成的施密特触发器输入波形如图题4-5所示,试对应画出输出波形。

全息技术的发展历史及其应用前景

全息技术的发展历史及 其应用前景 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

全息技术的发展历史及其应用前景 整理By:标准时间3 本文主要介绍全息技术的工作原理、发展历史及应用前景。 1.全息技术的工作原理 全息技术利用了光的干涉原理来记录物光波并利用光的衍射原理来再现物光波,因此其工作过程主要分为全息记录和全息图的再现。本文以激光全息照相为例说明其工作原理。 全息记录 全息记录利用了光的干涉原理,因此要求记录的光源必须是相干性能很好的激光。图1-1是拍摄全息照片的光路图。 由激光器发出的激光束,通过分束镜(Beam splitter)分成两束相干的透射光和反射光:一束光经反射镜Mirror1反射,扩束镜Lenses1扩束后照射到被拍摄物体上,再从物体投向照相底片(Film)上,这部分光称为物光(Object beam)。另一束光经反射镜Mirror2反射,扩束镜Lenses2扩束直接照射到底片上,称为参考光(Reference beam)。由于同一束激光分成的两束光具有高度的时间相干性和空间相干性,在照相底片上相遇后,形成干涉条纹。由于被摄物体发出的物光波是不规则的,这种复杂的物光光波是由无数的球面波叠加 图1-1 拍摄全息照片

而成的,因此,在全息底片上记录的干涉图样是一些无规则的干涉条纹,这就是全息图。 全息图的再现 全息图的物像再现过程就是光的衍射过程。一般采用拍摄时所用的激光作照明光,并以特定方向或与原参考光相同的方向照射全息图片,就能在全息图片的衍射光波中得到0级衍射光波和±1级衍射光波(如图1-2所示)。 图1-2中,把拍好的全息照片放回底片架上,遮挡住光路中的物光,移走光路中的被拍物体,只让参考光照在全息图片上。这样在拍摄物体方向可看到物的虚像,在全息照片另一侧有一个与虚像共轭的对称实像(不易观察到),这是最简单的再现方法。 2.全息技术的发展历史 全息照相技术是1948年英国科学家丹尼斯?伽伯(Dennis Gabor)为改善电子显微镜成像质量提出的重现波前的理论,并因此获得了诺贝尔奖。但当时由于缺乏纯净的能够相互干涉的光,全息图的质量很差。直到十二年以后的1960年,激光器问世,美国密执安大学的埃梅蒂?利斯与朱里斯?尤佩尼克拍成了第一张全息相片,全息技术才有了蓬勃快速的发展。 全息技术的发展大致可分同轴全息术、离轴全息术、白光再现全息术、白光全息术等4个阶段。 同轴全息技术 同轴全息术是伽伯当时采用的技术,这一阶段主要是在1960年激光器出现以前。这种技术获得的物体的再现像与照明光混在一起,不易观察。 1948年,伽伯为提高电子显微镜的分辨率,在布拉格的“x射线显微镜”、泽尼克的相衬原理的启示下,提出了一种用光波记录物光波的振幅和相位的方法,并用实验证实了这一想法。为了进一步证实其原理,他先后采用电子波与可见光进行了验证,并在可见光中得到了证实,同时制成了第1张全息图。从那时起至20世纪5O年代末期,全息图都是 图1-2 全息图的物象再现

数字化应用与发展

毕业设计(论文)题目:数字化测图应用与发展 系部测绘工程系 专业名称工程测量 班级 1033 姓名 学号 指导教师

目录 摘要: (1) 0 引言: (1) 1 数字化测图概念 (1) 1.1 数字化测图简介 (1) 1.2 数字化测图与传统测图(白纸测图)的比较 (2) 1.2.1传统测图的不足 (2) 1.2.2数字化测图优点 (2) 1.3数字化测图现状 (3) 2 数字化测图作业方法 (4) 2.1 数字化测图外业作业方法 (4) 2.1.1数据采集 (4) 2.2数字化测图内页数据处理 (5) 3 数字化测图未来发展展望 (6) 4 结束语 (7) 致谢: (7) 参考文献: (8)

数字化测图应用与发展 摘要:随着计算机技术、空间技术、通信技术和信息技术的迅速发展,使得传统的测绘技术发生了巨大的变革,以及电子全站仪、GPS-RTK技术等先进测量仪器和技术的广泛应用,地形测量由传统的白纸测图向全站仪、GPS-RTK等先进的测图方式上发展,测图过程也实现了自动化和数字化。为适应时代经济建设的需要,数字化测图技术应运而生。数字测图与传统测图相比,以其特有的高自动化、全数字化、高精度的优势迅速的在测绘界得到了应用,并具有良好的发展前景。本文阐述了数字化测图的含义、特点以及数字测图技术的应用,介绍野外数据的采集及内业数据处理办法以及未来发展展望。数字测图技术的应用发展,极大的促进了测绘行业的自动化和现代化进程。 关键词:数字测图;数据采集;发展展望 0 引言: 随着时代的不断前进,人类必将进入信息时代。信息时代的特征就是数字化,而数字化技术是信息时代的基础平台。数字化就是实现信息采集、处理、传输和再现的关键。数字化测图技术对测绘学科也产生了深刻的影响:它使测量的数据采集和绘图方法发生了重大的变化,使地形测量从传统的白纸法测图变革为数字化测图,使测量的成果不仅是绘制在纸上的地形图,更重要的是提交可供传输、处理、共享的数字地形信息,这将成为信息时代不可缺少的地理信息的重要组成部分。目前,数字化测图技术已越来越多的广泛用于测绘生产中,数字地形图在地理信息、水利水电工程、土地管理、城市规划、环境保护和军事工程等部门得到广泛应用,而且许多测绘部门已经形成了数字化图的规模生产。数字测图技术成为反映测绘技术现代化水平的标志之一,将成为地形测图的主流,它将为信息时代地理信息的应用发展提供最可靠的保障。因此,学习大比例尺数字测图的原理、方法,掌握数字测图的过程,对今后从事测绘事业工作打下良好基础那是很必要的,也是很有意义的。 1 数字化测图概念 1.1数字化测图简介 20世纪末,随着电子技术和计算机技术的进一步发展,测绘的仪器、方法、作业手段和成果形式都发生了极大变化。20世纪80年代产生了全站仪、GPS及电子数据终端,并逐步地构成了野外数据采集系统。20世纪90年代初,测绘科技人员将其与内页机助制图系统相结合,形成了从野外数据采集到内页成图全过程数字化和自动化的测量制图系统,人们通常将这种测图方式称为野外数字测图或地面数字测图(简称数字测图)。

相关主题
文本预览
相关文档 最新文档