当前位置:文档之家› 地震资料数字处理试卷合集

地震资料数字处理试卷合集

地震资料数字处理试卷合集
地震资料数字处理试卷合集

一、名词解释

1.道均衡:是指在不同或同一地震记录道建立振幅平衡。

2.数字信号:相对于模拟信号,记录瞬间信息的离散的信号。

模拟信号:随时间连续变化的信号.

有效信号:能为我们所利用的信号就叫有效信号。

3.最小相位:能量集中在序列前部。

4.反射波:在波速突变的分界面上,波的传播方向要发生改变,入射波的一部分被反

射,形成反射波。

折射波:滑行波在传播过程中也会反过来影响第一种介质,并在第一种介质中激发新的波。这种由滑行波引起的波,叫折射波。

5.共深度点:CDP。地下界面水平时,在共中心点下方的点,界面倾斜时无共深度点。

6.解编:地震数据是按各道同一时刻的样点值成列排放的,解编就是将数据重排成行。

12. 最大相位:能量集中在序列后部。

16.地震波:地震波是在岩石中传播的弹性波。

多次波:在地下经过多次反射接收到的波叫多次波。

17. 切除:地震信号经动校正后被拉伸畸变,目前处理动校正拉伸畸变的方法是切除,

即把拉伸严重部分的记录全部充零。

18. 混合相位:能量集中在序列中部。

自相关:一个时间信号与自身的互相关。

互相关:一个时间信号与另一个时间信号的相关。

21.环境噪音:交流电、人、风吹草动等环境因素所引起的对地震波有干扰的信号。

随机噪音:交流电、人、风吹草动等随机因素所引起的对地震波有干扰的信号。

22.反射系数:反射振幅与入射振幅的比值。

28.模拟记录:把地面振动情况,以模拟的方式录制在磁带上。

二、简答题

1、地震资料数字处理主要流程?地震资料的现场处理主要包括哪些内容? 地震勘探资料数据处理中的预处理主要包括哪些内容? 简述地震资料数据中有哪些目标处理方法? 地震资料数字处理如何分类? 地震资料数字处理质量控制有哪些?

地震资料数字处理主要流程:输入→定义观测系统→数据预处理(废炮道、预滤波、反褶积)→野外静校正→速度分析→动校正→剩余静校正→叠加→偏移→显示。

地震资料的现场处理主要有:预处理、登录道头、道编辑、切除初至、抽道集、增益恢复、

设计野外观测系统、实行野外静校正、还可以进行频谱分析、速度分析、水平叠加等(2分)。

地震勘探资料数据处理中的预处理主要包括登录道头、废炮道编辑、切除初至、抽道集(4分)、增益恢复、预滤波、反褶积等.

地震资料数据中目标处理方法有高分辨率地震资料处理、三维地震资料处理、叠前深度偏移处理、井孔地震资料处理(4分)、多波多分量地震资料处理、时间推移地震资料处理等地震资料数字处理分类有数据预处理、数据校正、叠加和偏移归位、振幅处理、滤波、分析、正反演、复地震道技术等。(3分)

地震资料数字处理质量控制包括野外原始资料检查与验收、处理流程及主要参数确定、

中间监视资料分析、资料处理质量科学管理。

1、简述预测反褶积原理,并简述预测反褶积应用中算子长度、预测步长和白噪系数的

影响。

预测反褶积原理:根据已知的过去数值和当前数值,设计一个预测算子(因子),对已

知信息进行处理来获得未来时刻的预测数值。

更长的算子使谱进一步白化,使它进一步靠拢尖脉冲响应谱,但增到一定算子长度后,更长的算子不能改善结果。为了选择算子长度,理想的情况是应用未知地震子波的自相关。随着预测步长增加,输出谱的宽度愈来愈窄。在理想的无噪音条件下,预测反褶积对输出的分辨率可通过调节预测步长来控制。单位预测步长意味着最高的分辨率,而较大的预测步长意味着较小的分辨率。脉冲反褶积应用于野外资料得到的结果常常是不理想的,因为它提高了资料中的高频噪音。非单位预测步长的最大优势是压制谱的高频端,并保持了输入资料的总体谱形(2分)。随着预白百分比的增加,谱的宽度都减小。预白使谱变窄而不怎么改变谱的平坦特征;而较大的预测步长使谱变窄并改变它的形状,使它看起来更像输入地震子波的谱。预白得到一个限带输出。但是与改变预测步长相比,它的影响较不易控制。通过改变预测步长,我们对输出带宽有了一定的了解,它与预测步长有关(2分)。

2、应用数字滤波方法,如何消除地震记录上的规则干扰波和随机干扰波?

地震记录上的规则干扰有面波、多次波、导波、折射波、侧面反射、电缆干扰等,不规则干扰包括环境噪音等。(2分)

对于规则干扰,可以将信号变换到其他域,针对该域中干扰信号与有效信号的差异,设计相应的滤波器,将规则干扰消除。如面波的特点是低频、低速、能量强,可以在频率域设计高通滤波器加以消除,也可以变换到FK域,根据其低频低速的特点,将其滤掉;(2分) 对于非规则干扰,可以在某个域中如FX域中将相干的有效信号提取,达到滤掉干扰的目的;叠加也是一种有效的去除非规则干扰的滤波方法。(2分)

3、波动方程偏移方法主要有哪些?并简述其方法原理?

4、什么是叠加速度?叠加速度在不同地层模型时的含义?

在一般情况下,都可将共中心点反射波时距曲线看作双曲线,用一个同样的式子来表示:t2=t02+x2/Vα2,其中,Vα就是叠加速度。(3分)

(1)在地下介质为水平层状介质时,叠加速度为均方根速度;(1分)

(2)在地下介质不是水平层状介质时,叠加速度不等于均方根速度,但是它与均方根速度的关系比与平均速度更加密切;(1分)

(3)对倾斜界面均匀覆盖介质的情况,叠加速度就等于有效速度。(1分)

5、简述无干扰时时最小平方反滤波的原理及步骤?

有干扰时最小平方反褶积的原理,是维纳(N·Weiner)最先提出的,是以这样的最佳准则来设计滤波器的:使滤波器的实际输出与期望输出的误差平方和为最小。只要我们根据实际需要改变输入、输出和期望输出,就可设计出各种具体目的所需的反褶积方法。(4分)有干扰时最小平方反褶积的步骤:计算步骤如下:

①由已知子波b(t)通过解方程,得到脉冲反褶积算子h(t);

γ,再与b(t)作互相关,得()t a';

②h(t)作自相关,得()t

hh

③()t a'与x(t)褶积,得()()t

≈。(4分)

t yξ

6、 分析观测系统对偏移成像的影响?

如果波的传播速度不变,自激自收剖面的输入剖面的偏移脉冲响应为半圆形构造(2分)。道理很简单,地下界面如果是圆心在地面的一个半圆形构造,采用自激自收观测系统进行观测,反射波将会聚焦在圆心处,在时间剖面上呈现为一个脉冲波。如果输入剖面是用非零炮检距观测系统测得的(有炮检距剖面),则速度v 不变时,其输入剖面的偏移脉冲响应为椭圆(2分)。当采用自激自收观测方式,且地下介质的地震波传播速度不变时,其输入剖面的偏移脉冲响应响应为一绕射双曲线。若使用非零炮检距系统(例如共炮点观测系统)其脉冲响应仍为双曲线(2分)。

7、 简述波动方程偏移成像原理?

波动方程偏移成像原理:1)爆炸反射界面成像原理是最常用、最简单的一种成像原理,适用于叠后的地震资料的偏移处理。水平叠加剖面可以看成是这样形成的:设想把一系列爆炸震源安置在反射界面上,其产生波的强度、极性与界面反射系数的大小和极性一致,测线的每个共中心点上放置一个检波器,假定在0 t 时刻,所有的震源同时启爆激发出地震波,波沿界面法向方向向上传播直到被地面的检波器接收形成叠加剖面。这种形成叠后地震剖面的模型称为爆炸界面模型(3分)。2)测线下延成像原理,将测线下延,直到达到反射点A 时,波的旅行时间为零,炮检距也为零(3分)。3)波场延拓的时间一致性成像原理,可表示为反射界面存在于地下这样的一些地方,下行波d 的到达或产生与上行波u 的产生和到达在时间上是一致的(2分)。

8、 地震资料处理中所谓的“三高”处理是指什么?

地震资料处理中所谓的“三高”处理是指高分辨率(3分)、高信噪比(3分)和高保真度(2分)。

16、简述地震资料数据中有哪些特殊处理方法?

地震资料数据中特殊处理方法有亮点及A VO 分析、高精度地震资料反演、地震属性分析(4分)、地震资料相干体数据处理、地震资料可视化数据处理等。

17、偏移成像方法分类及其主要特点是哪些?

偏移成像方法分类按算法分:射线和波动方程偏移成像;按输入资料分:叠前和叠后偏移成像;按输出资料分:时间和深度偏移成像。(6分)主要特点与成像方法分类原理类似。

三、论述题

1、通过在地震勘探资料数据处理课程的学习和体会,论述应用时间域数字滤波方法,如何消除地震记录上的规则干扰波和随机干扰波。

主要论述要点:

简述时间域数字滤波方法原理(6分)

分析地震记录上的规则干扰波和随机干扰波(4分)

分析消除地震记录上的规则干扰波和随机干扰波过程(2分)

论述应用时间域数字滤波方法结论及建议等(2分)

2、通过在地震勘探资料数据处理课程的学习和体会,论述在地震勘探资料采集中野外进行低降速带的调查方法,并详细分析低降速带资料在地震勘探资料数据处理中应用的主要目的。[提示:包括方法或技术原理、效果分析、结论及建议等]

简述地震勘探资料采集中野外低降速带的调查方法(6分)分析低降速带资料对地震勘探资料数据处理过程(4分)

分析消除低降速带资料对地震勘探资料数据处理影响(2分)该方法结论及建议等(2分)

地震数据处理方法(DOC)

安徽理工大学 一、名词解释(20分) 1、、地震资料数字处理:就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改进,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。 2、数字滤波:用电子计算机整理地震勘探资料时,通过褶积的数学处理过程,在时间域内实现对地震信号的滤波作用,称为数字滤波。(对离散化后的信号进行的滤波,输入输出都是离散信号) 3、模拟信号:随时间连续变化的信号。 4、数字信号:模拟数据经量化后得到的离散的值。 5、尼奎斯特频率:使离散时间序列x(nΔt)能够确定时间函数x(t)所对应的两倍采样间隔的倒数,即f=1/2Δt. 6、采样定理: 7、吉卜斯现象:由于频率响应不连续,而时域滤波因子取有限长,造成频率特性曲线倾斜和波动的现象。 8、假频:抽样数据产生的频率上的混淆。某一频率的输入信号每个周期的抽样数少于两个时,在系统的的输出端就会被看作是另一频率信号的抽样。抽样频率的一半叫作褶叠频率或尼奎斯特频率fN;大于尼奎斯特频率的频率fN+Y,会被看作小于它的频率fN-Y。这两个频率fN+Y和fN-Y相互成为假频。 9、伪门:对连续的滤波因子h(t)用时间采样间隔Δt离散采样后得到h (nΔt)。如果再按h (nΔt)计算出与它相应的滤波器的频率特性,这时在频率特性图形上,除了有同原来的H (ω)对应的'门'外,还会周期性地重复出现许多门,这些门称为伪门。产生伪门的原因就是由于对h(t)离散采样造成的。 10、地震子波:由于大地滤波作用,使震源发出的尖脉冲经过地层后,变成一个具有一定时间延续的波形w(t)。 11、道平衡:指在不同的地震记录道间和同一地震记录道德不同层位中建立振幅平衡,前者称为道间均衡,后者称为道内均衡。 12、几何扩散校正:球面波在传播过程中,由于波前面不断扩大,使振幅随距离呈反比衰减,即Ar=A0/r,是一种几何原因造成的某处能量的减小,与介质无关,叫几何扩散,又叫球面扩散。为了消除球面扩散的影响,只需A0=Ar*r即可,此即为几何扩散校正, 13、反滤波(又称反褶积):为了从与干扰混杂的地震讯息中把有效波提取出来,则必须设法消除由于水层、地层等所形成的滤波作用,按照这种思路所提出的消除干扰的办法称为反滤波,即把有效波在传播过程中所经受的种种我们不希望的滤波作用消除掉。 14、校正不足或欠校正:如果动校正采用的速度高于正确速度,计算得到的动校正量偏小,动校正后的同相轴下拉。反之称为校正过量或过校正。 15、动校正:消除由于接受点偏离炮点所引起的时差的过程,又叫正常时差校正。 16、剩余时差:当采用一次波的正常时差公式进行动校正之后,除了一次反射波之外,其他类型的波仍存在一定量的时差,我们将这种进过动校正后残留的时差叫做剩余时差。

地震等自然灾害应急预案及处理流程

地震应急预案及处理流程 为加强我院安全生产工作,做好安全生产和灾害事故应急处理工作,保护人民的生命和财产安全,根据《中华人民共和国安全生产法》和《灾害事故医疗救援工作管理办法》、参照《全国救灾防病预案》、《国家突发公共事件医疗卫生救援应急预案》和《医疗卫生机构灾害事故防范和应急处置指导意见》有关规定,结合我院实际,制定本预案: 一、指导思想 根据有关规定和我院安全工作的总体部署,切实做好地震等灾害事故各项准备工作,当破坏性地震发生后迅速启动本预案,统一部署,紧急处置,迅速全面地做好各项抗震救灾准备,高效、有序地开展应急自救工作,以最快速度恢复医疗工作正常开展,最大限度减轻地震灾害,减少人员伤亡和经济损失。 二、组织机构 1、指挥部 总指挥:院长(党支部书记) 副总指挥:业务副院长 成员:保卫科、后勤科、医务科、护理部、各临床科室主任 职责:

(1)统一领导,健全组织,强化工作职责,加强对破坏性地震及防震减灾工作的研究,完善各项应急预案的制定和各项措施的落实。 (2)充分利用各种渠道进行地震灾害知识的宣传教育,组织、指导医院防震抗震知识的普及教育,广泛开展地震灾害中的自救和互救训练,不断提高广大医务人员防震抗震的意识和基本技能。 (3)认真做好各项物资保障,严格按预案要求积极筹储、落实食品饮用水、防冻防雨、医疗器械、抢险设备等物资,强化管理,使之始终保持良好状态。 (4)破坏性地震发生后,采取一切必要手段,组织各方面力量全面进行抗震减灾工作,把地震灾害造成的损失降到最低点。 (5)调动一切积极因素,迅速恢复正常医疗秩序,全面保证和促进社会安全稳定。 指挥部设在院办,电话: 2、疏散组: 组长:保卫科科长 组员:各临床、医技科室主任、护士长 职责:平时负责全院地震等自然灾害培训演练的具体工作,保持疏散通道畅通。 (1)现场指挥,迅速组织医务人员指导患者及其家属按照

地震资料处理解释大作业(处理部分)

地震资料处理/解释大作业 (处理部分) 专业:勘查技术与工程 班级:12-4 姓名:封辉、孙运庆、何瑞川 学号:2012011236、2012011249、2012011239 2016年 1 月 15 日 评分标准:第三章和第四章各20分,其余各章10分

目录 第一章数据加载和观测系统定义 (2) 第二章道编辑和真振幅恢复 (4) 第三章反褶积 (6) 第四章速度分析 (7) 第五章动校正和水平叠加 (8) 第六章静校正 (10) 第七章偏移 (12) 第八章总结和体会 (13)

第一章数据加载和观测系统定义 地震资料处理流程第一步为数据输入和预处理。预处理是地震数据处理前的准备工作,将地震数据正确加载到地震资料处理系统,进行观测系统定义,并对数据进行编辑和校正。原数据是SGY格式的地震记录文件,用Promax对其进行处理需要格式转换,将其格式转换成软件定义的格式。 图1.1是原始数据炮集。格式转换后可对数据进行加载与处理,但是处理需要的各种测网信息需要进行定义,所以我们做观测系统定义,用FFID(野外文件号)和CHAN(记录道号)为索引将测网的各检波器与炮点坐标、高程、CDP 号等信息与数据的各道联系起来。观测系统定义分为炮点定义,检波点定义与炮检关系定义。图1.3是CDP覆盖次数。 图1.1 原始数据炮集

图1.2a 炮点与检波点信息 图1.2b 炮点与检波点信息

图1.3 多次覆盖次数 第二章道编辑和真振幅恢复 通常的地震采集中,由于检波器数量很多、野外干扰因素复杂等原因,不是每一道都能很好的反应地下反射界面带回来的信息,最基础的我们需要挑出其中坏检波器采集的道与极性不正常的道,称为道编辑(如图2.1)。 在记录图中使用picking进行编辑。点击picking,有编辑错道和编辑极性翻转道。拾取所有的错道和翻转道集后,分别放在两个文件里面。由震源引发的地震波,会随着波前面变大,底层吸收衰减等因素而能量减小,而我们需要的通常是深部的地层信息,所以我们需要对地震波进行振幅恢复(如图 2.2),经过真振幅恢复以后,深层反射波能量相对增强了,反射界面变得清晰,但面波等 干扰波也增强了。

地震资料数字处理试卷合集

一、名词解释 1.道均衡:是指在不同或同一地震记录道建立振幅平衡。 2.数字信号:相对于模拟信号,记录瞬间信息的离散的信号。 模拟信号:随时间连续变化的信号. 有效信号:能为我们所利用的信号就叫有效信号。 3.最小相位:能量集中在序列前部。 4.反射波:在波速突变的分界面上,波的传播方向要发生改变,入射波的一部分被反 射,形成反射波。 折射波:滑行波在传播过程中也会反过来影响第一种介质,并在第一种介质中激发新的波。这种由滑行波引起的波,叫折射波。 5.共深度点:CDP。地下界面水平时,在共中心点下方的点,界面倾斜时无共深度点。 6.解编:地震数据是按各道同一时刻的样点值成列排放的,解编就是将数据重排成行。 12. 最大相位:能量集中在序列后部。 16.地震波:地震波是在岩石中传播的弹性波。 多次波:在地下经过多次反射接收到的波叫多次波。 17. 切除:地震信号经动校正后被拉伸畸变,目前处理动校正拉伸畸变的方法是切除, 即把拉伸严重部分的记录全部充零。 18. 混合相位:能量集中在序列中部。 自相关:一个时间信号与自身的互相关。 互相关:一个时间信号与另一个时间信号的相关。 21.环境噪音:交流电、人、风吹草动等环境因素所引起的对地震波有干扰的信号。 随机噪音:交流电、人、风吹草动等随机因素所引起的对地震波有干扰的信号。 22.反射系数:反射振幅与入射振幅的比值。 28.模拟记录:把地面振动情况,以模拟的方式录制在磁带上。 二、简答题 1、地震资料数字处理主要流程?地震资料的现场处理主要包括哪些内容? 地震勘探资料数据处理中的预处理主要包括哪些内容? 简述地震资料数据中有哪些目标处理方法? 地震资料数字处理如何分类? 地震资料数字处理质量控制有哪些? 地震资料数字处理主要流程:输入→定义观测系统→数据预处理(废炮道、预滤波、反褶积)→野外静校正→速度分析→动校正→剩余静校正→叠加→偏移→显示。 地震资料的现场处理主要有:预处理、登录道头、道编辑、切除初至、抽道集、增益恢复、 设计野外观测系统、实行野外静校正、还可以进行频谱分析、速度分析、水平叠加等(2分)。 地震勘探资料数据处理中的预处理主要包括登录道头、废炮道编辑、切除初至、抽道集(4分)、增益恢复、预滤波、反褶积等. 地震资料数据中目标处理方法有高分辨率地震资料处理、三维地震资料处理、叠前深度偏移处理、井孔地震资料处理(4分)、多波多分量地震资料处理、时间推移地震资料处理等地震资料数字处理分类有数据预处理、数据校正、叠加和偏移归位、振幅处理、滤波、分析、正反演、复地震道技术等。(3分) 地震资料数字处理质量控制包括野外原始资料检查与验收、处理流程及主要参数确定、

地震数据处理 重点

1.一维傅里叶变换及其应用:傅里叶变换是地震数据处理的主要数学基础。它不仅是地震道、地震记录分析和数据滤波的基础,同时在地震数据处理的各个方面都有着广泛的应用。 2.采样定理:设x(t)是连续的时间函数,x(t)的最高截止频率为fn,则可用采样间隔为Δt=1/2fn的离散序列X(nΔt)唯一的确定。采样过程:从模拟地震信号到数字地震信号的过程。采样间隔/采样率:采样所用的时间间隔。 3.数字滤波:利用频谱特征的不同来压制干扰波,以突出有效波的方法。 4.频率域滤波的步骤: ①对已知地震道进行频谱分析;②设计合适的滤波器:为了滤去干扰波的频谱成分,应当设计一个带通滤波器,保留有效波频率,把干扰波频率成分滤掉; ③进行滤波运算;④对输出信号谱X(w)进行傅里叶反变换,便得到滤波后的输出X(t). 5.相位性质:最小相位也叫相位滞后或最小能量延迟,实际上最小相位滞后是指频率域,而最小能量延迟则是指时间域而言。最小能量延迟子波:能量聚集在首部;最大能量延迟子波:能量集中在尾部;混合延迟子波:能量聚集在中部。 6.褶积滤波的物理意义: 单位脉冲响应:在时间域的表示方法中,令一个单位脉冲通过一个滤波器,然后观测滤波器的输出,这个滤波器输出的自然过程曲线称为滤波器的脉冲响应。也称滤波器的时间特性。 褶积滤波的物理意义:它相当于把地震信息x(t)分解为起始时间、极性、幅度各不相同的脉冲序列,令这些脉冲按时间书序依次通过滤波器,这样在滤波器的输出端就得到对输入脉冲序列的脉冲响应,这些脉冲响应有不同的的起始时间、不同的极性和不同的幅度(这个幅度是与引起它的输入脉冲幅度成正比的),将它们叠加起来就得到滤波后的输出x(t). 7.数字滤波的特殊性质:离散性:数字滤波是对离散的信号进行运算,这是所谓的离散性;有限性:在数字计算机上进行计算时,滤波因子不可能无穷项,而是取有限项,这就是所谓的有限性。 8.产生“伪门”原因:由于对A离散采样造成的,可以证明“伪门”在频率域出现的周期为A,为了避免“伪门”造成的影响,可以适当的选择采样间隔A,使第一个“伪门”出现在干扰波的频谱范围之外。9.波谱:以任何一种形式展示电磁辐射强度与波长之间的关系,叫波谱。波数:波长的倒数。K0=1/λ 二维频率-波数域中的二维频率-波数谱(简称二维频-波谱)分析是对地震波场进行分析的重要手段,它是建立在二维傅里叶变换的基础上。 10.空间假频:频率不变,倾角越大或者倾角不变,频率越高越容易产生空间假频。产生条件:地震信号的频率f一定时,地震信号倾斜时差δt越大,其频-波振幅谱中的波数k0也越大,而当地震信号频率f 增大时,具有相同倾斜时差δt的地震信号的频-波振幅谱中的波数k0随之增大,当频率f增大到某一个门槛频率fmax时,便开始产生空间假频。 11.二维滤波器的设计:一般二维滤波是指对于波动函数X(t,x)所进行的频率-波数域滤波。这时设计的滤波因子是时间-空间的函数h(t,x),滤波过程类似一维滤波在时间-空间域,可用二维褶积公式表示A. 12.共中心点CMP叠加及叠后处理流程图:野外采集地震数据-解编-预处理-反褶积-抽CMP道集-速度分析-动校正-CMP水平叠加-叠后时间深度偏移。13.共中心点叠加优点:①压制多次波;②压制规则干扰波;③压制随机噪声。综上,共中心点叠加可以有效地压制各种干扰波,增强有效波,使地震剖面的信噪比明显提高,掀桌改善地震剖面的质量。 14共中心点水平叠加存在的问题:当反射界面为弯曲界面时,其反射旅行时存在如图1所示的畸变;当反射界面为,其射旅行时发生如图2所示的畸变;当覆盖介质速度横向变化时,其反射旅行时存在如图3所示的畸变;当覆盖介质速度各向异性时,其反射旅行时存在如图4所示的畸变. 15.块状介质模型地震数据处理的特点:①介质呈块状分布,它不仅有顶部和底部界面,而且其侧面也由断层面或岩层界面所封闭;②由于剧烈的构造运动作用,界面往往呈弯曲界面,界面陡、倾角较大;③介质速度往往沿水平方向变化较快。 16.共反射点CRP叠前处理基本流程图:野外采集地震数据-解编-预处理-反褶积-抽CRP道集-层速度场-速度深度模型-叠前深度偏移 ①②③④⑤⑥⑦ 1.预处理:指地震数据处理前的准备工作,是地震数据处理中的重要基础工作,一般定义为将野外采集的地震数据正确加载到地震资料处理系统,进行观测系统定义并对地震数据进行编辑和校正的过程。预处理包括:数据解编、格式转换、道编辑、观测系统定义等工作。 2.解编:就是按照野外采集的记录格式将地震数据检测出来,并将时序的野外数据转换为道序数据,然后按照道和炮的顺序将地震记录存放起来。 3.野外观测系统定义:观测系统就是以野外文件号和

《地震资料数字处理》复习

《地震资料数字处理》复习 地震资料数字处理围绕以下三方面工作: 1、提高信噪比; 2、提高分辨率; 3、提高保真度。 一、提高信噪比的处理 1、原理 利用噪声和信号在时间、空间、频率和其他变换域中的分布差异,设计滤波因子,将噪声进行压制。 2、处理顺序 提高信噪比包含消除噪声和增强信号两部分内容。 消除噪声一般在叠前的各种道集上进行,主要针对规则干扰如多次波和面波等, 增强信号一般在叠后剖面上进行,主要针对随机噪声。 3、随机噪声 是指没有固定的频率、时间、方向的振幅扰动和震动,其成因大致是来自环境因素、次生因素和仪器因素,其中次生干扰的强度与激发能量有关。 随机噪声在记录上表现为杂乱无章的波形或脉冲,在频率上分布宽而不定,在空间上没有确定的视速度。 随机噪声的随机性与道间距有关,如果道间距减小到一定程度,许多随机噪声表现出道间的相干性,当道距大于随机噪声的相干半径才表现出随机性。 4、一维滤波器(伪门、Gibbs现象) 频率滤波器是根据信号和噪声在频率分布上的差异而设计时域或频域一维滤波算子。它压制通放带以外的频率成分,保留通放带以内的频率成分。 Gibbs现象是由于频率域的不连续或截断误差引起的,通放带和压制带之间设置过渡带可克服此现象,设计滤波器就是控制过度带的形状和宽度。 5、二维滤波器 二维滤波是根据有效信号和相干噪声在视速度分布上的差异,来压制噪声或增强信号。 通常用来压制低视速度相干噪声,在f-k平面上占据低频高波数区域。 二维滤波比较容易产生蚯蚓化现象,而且混波相现象明显,在空间采样条件不满足或陡倾角的情况下受到空间假频的影响,一般常用于压制一些规则干扰,如面波和多次波等。 6、频率-波数域二维滤波实现步骤: (1)把时间和空间窗口里的数据变换到f-k域; (2)在f-k域,通过外科切除,按径向扇形划分压制区C(乘振幅置零)、过渡区S(乘振幅置0至1变化)、通放区P (乘振幅置1) ; (3)从f-k域反变换到t-x域。 8、数字滤波有两个特殊性质: (1)数字滤波由于时域离散化会带来伪门现象,

地震数据处理课程设计(报告)

《地震资料数据处理》课程设计 总结报告 专业班级: 姓名: 学号: 设计时间: 指导老师: 2011年5月30日

目录 一、设计内容……………………………………………………………… (1)褶积滤波……………………………………………… (2)快变滤波……………………………………………… (3)褶积滤波与快变滤波的比较………………………… (4)设计高通滤波因子…………………………………… (5)频谱分析……………………………………………… (6)分析补零对振幅谱的影响…………………………… (7)线性褶积与循环褶积………………………………… (8)最小平方反滤波……………………………………… (9)零相位转换…………………………………………… (10)最小相位转换………………………………………… (11)静校正………………………………………………… 二、附录………………………………………………………………………… (1)附录1:相关程序…………………………………… (2)附录2:相关图件……………………………………

【附录1:有关程序】 1.褶积滤波 CCCCCCCCCCCCCCCCC 褶积滤波CCCCCCCCCCCCCCCCC PROGRAM MAIN DIMENSION X(100),H1(-50:50),H2(-50:50),Y_LOW(200),Y_BAND(200) PARAMETER (PI=3.141592654) CCCCCCCC H1是低通滤波因子,H2为带通滤波因子CCCCCC REAL X,H1,H2,Y_LOW,Y_BAND REAL dt,F,F1,F2 INTEGER I dt=0.002 F=70.0 F1=10.0 F2=80.0 OPEN(1,FILE='INPUT1.DA T',FORM='FORMATTED',STATUS='UNKNOWN') READ(1,*)(X(I),I=1,100) CCCCCCCCCCCCCCCCCC低通滤波器CCCCCCCCCCCCCCCCC DO 10 I=-50,50 IF (I.EQ.0)THEN H1(I)=2*F*PI/PI ELSE H1(I)=SIN(2*PI*F*I*dt)/(PI*I*dt) END IF 10 CONTINUE CCCCCCCCCCCCCCCC输出低通滤波因子CCCCCCCCCCCCCCCC OPEN(2,FILE='H1_LOW.DAT',FORM='FORMATTED',STATUS='UNKNOWN') WRITE(2,*)(H1(I),I=-50,50) CLOSE(2) CALL CON(X,H1,Y_LOW,100,101,200) CCCCCCCCCCCCCCCC输出滤波后的数据CCCCCCCCCCCCCCCC OPEN(3,FILE='Y_LOW.DA T',FORM='FORMATTED',STATUS='UNKNOWN') WRITE(3,*)(Y_LOW(I),I=51,150) CLOSE(3) CCCCCCCCCCCCCCCCCC带通滤波器CCCCCCCCCCCCCCCCCCCC DO 20 I=-50,50 IF(I.EQ.0)THEN H2(I)=140 ELSE H2(I)=SIN(2*PI*F2*I*dt)/(PI*I*dt)-SIN(2*PI*F1*I*dt)/(PI*I*dt) END IF 20 CONTINUE CCCCCCCCCCCCCCC输出带通滤波因子CCCCCCCCCCCCCCCCC OPEN(4,FILE='H2_BAND.DAT',FORM='FORMA TTED',STATUS='UNKNOWN')

地震勘探资料数字处理

中国地质大学(北京) 课程名称:应用地震学 教师:段云卿 第25册 第四章:地震勘探资料数字处理 野外采集到的原始资料是以二进制的数字形式记录在磁带上,必须经过计算机的各种运算,才能输出供地震地质解释的各种资料,或直接输出某些解释成果,本章介绍如何进行数据处理。 §4.1校正和叠加处理 一、动校正 1.动校正的含义:(§3.5) (1) 对于一次覆盖共炮点资料来说,把双曲线型或近似双曲线型反射波同 相轴拉直,也就是消去炮检距不为0对反射波旅行时的影响,使同相轴能直观地反映地下界面的构造形态。 (2) 对于共反射点道集来说,把各道均校正成共中心点M 处的自激自收道, 再叠加起来作为共中心点M 处的叠加道,使一次波同相叠加而加强,多次波等干扰波非同相叠加而减弱。 2.动校正公式(§3.5) 2 022V t x t = ? (6.2-26) 3.计算动校正量(使用共反射点道集) (1)公式 为了对共反射道集的每一道的整个道进行计算,将(6.2—26)改写为: 2 002 ) (2i i j ij t V t x t = ? (j=1,2,……,n ; i=1,2,……,m ) (6.4-1) j —— 道序号。 i —— 采样点序号。 x j —— 第j 道的炮检距。 n —— 覆盖次数。 M ——道长 t 0i ——为第i 个界面共中心点处自激自收时间。 (2)问题 不知什么地方有反射界面,就不知什么地方有反射波。 不知反射波的t 0时间。

中国地质大学(北京) 课程名称:应用地震学 教师:段云卿 第25册 (3)解决方法 地震道上有一个采样值就有一个反射波。 地震道上每一个采样点的时间i △,都看成一个t 0时间,记为t oi 。 (4)例子 ①设采样间隔△=4ms ②长为0.5S -4.5S 的记录,就有1001个t 0值: )(5.00,0s t = )(004.05.01,0s t += )(004.025.02,0s t ?+= )(004.05.0,0s i t i += )(004.010005.01000,0s t ?+= ③对任意一道就有1001个动校正量。例如炮检距为1000m 的第j 道,动校正量为: )(207.0) 5.0(5.021000 2 2,0s V t j =??= ? ) (205.0) 504.0()504.0(21000 2 2,1s V t j =??= ? ) (204.0) 508.0()508.0(21000 2 2,2s V t j =??= ? ) ?() 004.05.0()004.05.0(21000 2 2,s i V i t j i =+?+?= ? )(000.0) 5.4()5.4(21000 2 2,1000s V t j =??= ?

地震勘探资料处理

本科生实验报告 实验课程基于 Vista 系统的地震资料处理学院名称地球物理学院 专业名称勘查技术与工程(石油物探)学生姓名 学生学号 指导教师唐湘蓉 实验地点5417 实验成绩 2015年3月- 2015年5月

基于 Vista 系统的地震资料处理 一、实验目的及要求 1)认知熟悉地震资料处理软件系统--vista软件的基本功能,了解其并熟练掌握vista软件运行的基本操作; 2)了解并掌握地震数据处理的基本流程,掌握地震数据处理的流程和基本方法,选择合适的处理参数以提高地震数据处理的精度; 3)对比地震资料处理与解释的理论与实际资料处理的结果,深入理解理论,并在理论指导下提高处理解释的水平、提高资料处理的质量; 4)提高综合分析问题的能力与编写实验报告或生产报告的能力。 二、实验内容 总流程 图1 总流程图 1)加载数据 打开Vista软件后选择加入2D的SEG-Y格式的原始地震数据,本实验

所用数据为给定的SHOT-20。加载后的原始地震数据如图2: 图2 原始地震数据显示 2)道均衡 各个道由于炮检距的不同,导致的反射波的振幅的变化,因为在共反射点叠加中,要求每一个叠加道的振幅都应该相等,每一道对叠加所做的贡献是等价的,无特殊情况,一般就以记录图中间的振幅为基准,使近激发点的地震道振幅减少,增加远离激发点的地震道记录的振幅。道均衡流程模块如图3,道均衡结果如图4: 图3 道均衡流程模块

3)建立观测系统 图5 观测系统显示4)初至拾取 初至拾取结果显示如图6:

图6 初至拾取结果显示 5)初至切除 地震记录上的初至波包括直达波和浅层折射波,它们能量强且有一定延续时间,对紧接而来的浅层反射波有干涉和破坏作用。另外,动校正后会引起波形畸变,浅层尤其厉害。对这些强能量初至波和动校正畸变引起的处理办法是“切除”,即将这些波的采样值全部变为零值(充零)。初至切除流程模块如图7,初至切 除结果如图8: 图7 初至切除流程模块

(完整版)地震资料数字处理复习题答案

地震资料数字处理复习题 一、名词解释(20分) 1、速度谱把地震波的能量相对于波速的变化关系的曲线称为速度谱。在地震勘探中,速度谱通常指多次覆盖技术中的叠加速度谱。 2、反滤波又称反褶积,是指为提高纵向分辨率,去掉大地滤波器的作用,把延续几十至100ms 的地震子波b(t)压缩成原来的震源脉冲形式,地震记录变成反映反射系数序列的窄脉冲组合。 3、地震资料数字处理就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改进,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。 4、数字滤波数字滤波就是指用数学运算的方式用数字电子计算机来实现滤波。对离散化后的信号进行滤波,输入、输出都是离散数据。 5、水平叠加将不同接收点受到的来自地下同一反射点的不同激发点的信号,经动校正叠加起来。 6、叠加速度在一般情况下,都可将共中心点反射波时距曲线看作双曲线,用一个同样的式子来表示:t2=t02+x2/Vα2,其中,Vα就是叠加速度。 7、静校正把由于激发和接收时地表条件变化所引起的时差找出来,再对其进行校正,使畸变了的时距曲线恢复成双曲线,以便能够正确地解释地下的构造情况,这个过程叫做静校正。 8、动校正消除由于接受点偏离炮点所引起的时差的过程,又叫正常时差校正。 9、假频一个连续信号用过大的采样得到的离散序列实际上含有连续信号中高频成分的贡献。这些高频成分折叠到离散时间序列中较低的频率。这种现象是由连续信号采样不足引起的,称作假频。 10、亮点技术所谓“亮点”狭义地说是指地震反射剖面上由于地下油气藏存在所引起的地震反射波振幅相对增强的“点”。利用地震反射波的振幅异常,同时也利用反射波的极性反转、水平反射的出现、速度的降低及吸收系数的增大等一系列亮点标识综合指示地下油、气藏的存在,进而直接寻找油、气藏的技术。 11、相关定量地表示两个函数之间相似程度的一种数学方法。 12、自相关表示波形本身在不同相对时移值时的相关程度。(一个时间信号与自身的互相关) 13、环境噪音由自然条件或环境(如风吹草动、工业交流电的干扰等)造成的对地震波有效信号的干扰。 14、有效信号野外地震工作想要得到的含有地下地质信息的地震信号。 15、振幅振动物体离开平衡位置的最大距离,在数值上等于最大位移的大小。 16、共中心点在不同激发点、不同接收点的记录中具有公共炮检的中点。(野外采用多次覆盖工作方法时,如界面水平,则每次都能接受来自界面上同一点的反射。该点在地面上的投影称为共中心点。) 17、共深度点地下界面水平时,在共中心点下方的点,界面倾斜时无共深度点。 18、反褶积同2反滤波

地震资料处理合同(基地内)

说明 一、起草单位与起草人 本合同由中国石油化工集团公司法律事务部组织起草,由胜利石油管理局负责编写,起草人:加庆段清海,联系:0,传真:0,电邮:duanqhslof.。 二、注意事项 1、本合同适用基地场景,发包方、承包方均为系统且在同一基地的单位所发生的地震资料处理业务。 2、本合同的修改。修改本合同不影响甲方实质性权利义务的,应经甲方兼职合同管理员审查同意。修改本合同影响甲方实质性权利义务的,应经甲方专职合同管理员审查同意。 3、具体条款使用说明。 (1)地震资料处理合同示文本作为一个整体,其部的各条款容之间是具有关联性的,在实际应用过程中如对个别条款做出变动,那么其相对应的条款也要做出相应的调整。如:要调整双方权利义务的条款容,在与之相对应的违约责任条款中也要改动相应的容。 (2)文本中质量标准和技术要求条款的规定,应结合实际针对不同井的具体情况,选择、引用明确的标准,并把该质量标准详细列明作为本合同的组成部分。 (3)文本中HSE条款对甲方、乙方在安全、环保、健康方面做出了原则性的要求和规定,在实际操作中可以引用HSE方面的法规或相关规定执行,或双方另行签订HSE责任书将容细化,并作为合同的附件双方共同遵守。 (4)文本中的价款支付方式和费用的调整,可根据具体项目的不同和本单位的习惯性做法,在与乙方协商一致后做出调整。 (5)违约金的约定在文本中都是以“空格”的形式列出的,在实践过程中应根据具体情况协商做出约定。 (6)违约责任条款中关于赔偿限额的规定,参考国同行业在此问题上的惯例,制定出一个客观的、合理的赔偿额度。 (7)文本中有关“时间”、“期限”的要求,在实际填写中应结合生产实际,按照地震资料处理服务的工序、要求制定出合理的时间和期限。 合同编号:

地震资料格式说明

地震资料格式说明

————————————————————————————————作者:————————————————————————————————日期:

§3 资料处理流程说明: 资料处理的基本流程如下图所示: 解编 预处理 (建立工区,切除,振幅处理等) 一次静校正 一、二维数字滤波 抽道集 高精度速度分析 剩余静校正高精度动校正 水平迭加 滤波、反滤波 (倾斜相干加强) 迭后偏移 一维数字滤波 振幅均衡、输出 在资料的处理过程中,应根据资料的信噪比和分辨率情况选择模块,组合流程,以达到事半功倍的效果。在处理过程中,应首先根据野外电子观测班报和测量电子班报建立工区基本参数文件(由建立工区模块完成),若无测量结果,可根据模块提示完成建立工区基本参数文件的工作。本系统适合于有或无测量资料的情况;同时也适合于变观资料处理。文件格式参见相关模块说明。 §4处理资料文件格式说明: 4.1 SEG-Y 记录格式(标准) (1)卷头: 3600字节

(a)ASCII 区域: 3200字节(40条记录 x 80字节/每条 记录)。 (b)二进制数区域: 400字节(3201~3600)。 3213~3214 字节—每个记录的数据道数(每炮道数或总道数)。 3217~3218 字节—采样间隔(μs)。 3221~3222 字节—样点数/每道(道长)。 3225~3226字节—数据样值格式码1-浮点; 3255~3256 字节—计量系统:1-米, 2-英尺。 3261~3262*字节—文件中的道数(总道数)。 3269~3270*字节—数据域(性质):0-时域,1-振幅,2-相位谱 “ * “ 号字为非标准定义。 (2)道记录块: (a)道头字区: 含: 60个字/4字节整或120个字/2字节整, 共240个字节,按二进制格式存放。 ·SEG—Y格式道头说明: 字号(4字节) 字号(2字节) 字节号内容说明 1 1— 2 1—4一条测线中的道顺序号,如果一条测线有 若干卷磁带,顺序号连续递增。 2 3—4 5—8 在本卷磁带中的道顺序号。每卷磁带的道 顺序号从l开始。 3 5—6 9—12 * 原始的野外记录号(炮号)。 4 7—8 13—16在原始野外记录中的道号。 59—10 17—20 测线内炮点桩号(在同一个地面点有多于 一个记录时使用)。 6 11—12 21—24 CMP号(或CDP号)。(弯线=共反射面元号) 7 13—14 25—28 在CMP道集中的道号(在每个CMP道集 中道号从1开始)。 8—1 15 29—30* 道识别码: l=地震数据; 4=爆炸信号; 7=计时信号; 2=死道; 5=井口道;8=水断信号; 3=无效道(空道);6=扫描道;9…N =选择使用

地震灾害应急处置流程

地震灾害应急处置流程集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

地震灾害应急处置流程今天跟着一起来了解一下地震灾害应急处置流程,看看地震过后,国家是如何处理的。 地震灾害应急处置流程图详解 国务院抗震救灾指挥部负责统一领导、指挥和协调全国抗震救灾工作。地震局承担国务院抗震救灾指挥部日常工作。必要时,成立国务院抗震救灾总指挥部,在地震灾区成立现场指挥机构 地震发生后,中国地震局快速完成地震发生时间、地点、震级、震源深度等速报参数的测定,报国务院,同时通报有关部门,并及时续报有关情况 灾区所在县级以上地方人民政府及时将震情、灾情等信息报上级人民政府,必要时可越级上报。 有关行政部门及时将收集了解的情况报国务院 较大地震灾害 一般地震灾害 Ⅰ级响应 Ⅱ级响应 Ⅲ级响应 Ⅳ级响应 地震灾害应急处置总原则

抗震救灾工作坚持统一领导、军地联动,分级负责、属地为主,资源共享、快速反应的工作原则 抗震救灾指挥机构 国家 地方 县级以上地方人民政府抗震救灾指挥部负责统一领导、指挥和协调本行政区域的抗震救灾工作 震情灾情报告 地震灾害分级 响应级别 响应程序 特别重大地震灾害 造成300人以上死亡(含失踪),或者直接经济损失占地震发生地省(区、市)上年GDP1%以上 当人口较密集地区发生7.0级以上地震,人口密集地区发生6.0级以上地震,初判为特别重大地震灾害 省级抗震救灾指挥部领导灾区地震应急工作;国务院抗震救灾指挥机构负责统一领导、指挥和协调全国抗震救灾工作 造成50人以上、300人以下死亡(含失踪)或者造成严重经济损失 当人口较密集地区发生6.0级以上、7.0级以下地震,人口密集地区发生5.0级以上、6.0级以下地震,初判为重大地震灾害

地震数据数字处理总结

中国石油大学(北京)《地震数据处理方法》勘查2011级复习重点总结 第一章地震数据处理基础 1、地震信号的特点: 1)实信号 2)离散 3)有限长 4)能量有限 5)非周期 2、采样定律内容:一个连续信号,如果其最高频率小于尼奎斯特折叠频率,即信号的采样频率大于信号最高频率的两倍,则利用离散采样后的信号可以恢复原始信号。 3、采样定律的应用条件:信号的采样频率大于信号最高频率的两倍,即:最高频率至少要在一个周期内采到两个样点 4、采样频率、折叠(尼奎斯特)频率、信号最高频率定义: 5、假频的定义:高于尼奎斯特频率的高频成分以尼奎斯特频率为中心向低频方向折叠,形成假的频率成分,称为假频。 6、假频的判断和计算: 7、地震信号的频谱特点: 1)有限带宽(带限) 2)有一定主频(主频越高,分辨能力越强) 8、判别相位性质的三种办法: 1)相位延迟(不常用) 2)能量延迟 3)Z变换的多项式求根(根都在单位圆外,为最小相位(延迟)信号) 9、一维数字滤波实现方法、具体步骤: 1)频率域: 实现方法:(以零相位为例,翻译略)

具体步骤: a、地震频谱分析:确定分析有效频率范围 b、设计滤波器:压制噪声保留有效信号 c、地震记录FFT变换:标准化变换长度 d、进行滤波运算:振幅谱相乘相位谱相加 e、滤波结果IFFT 2)时间域:(也叫褶积滤波) 实现方法:(以零相位为例,翻译略) 具体步骤: a、地震记录频谱分析:确定中心频率、带宽 b、设计滤波器:确定滤波算子长度(频带越宽,长度越短) c、确定滤波因子离散值:双边对乘实参数 d、进行滤波运算:地震记录与滤波因子褶积 10、伪门的定义:对连续的滤波因子用时间采样间隔离散采样后,得到离散的滤波因子,若再按离散的滤波因子计算出与它相应的滤波器的频率特性,这时在频率特性的图形上,除了有同原来连续的滤波因子的频率特性对应的“门”外,还会周期性地重复出现很多“门”,这些门称为“伪门”。产生“伪门”的原因:由于对滤波因子离散采样。 11、吉布斯现象:当对滤波因子用有限项代替无限项时,在原始信号突变点(间断点)处,通过信号出现的明显的振荡现象。 12、产生吉布斯现象的原因:在反变换计算过程中,用有限项近似无限项从而丢失原始信号中的高频成分。 13、避免吉布斯现象的方法

海洋地震资料处理技术研究

石油化工 2019·02 39 Chenmical Intermediate 当代化工研究 海洋地震资料处理技术研究 *韩 敏 (中石油辽河油田分公司勘探开发研究院 辽宁 124010) 摘要:海洋地震勘探因其地震采集方式的特殊性,噪音类型的特殊性,历来是地震资料处理的难点。文章详细介绍了子波处理、漕汐静 校正、多次波压制、数据规则化等针对性技术的原理及在海洋地震资料处理中的应用情况,最后通过应用新技术前后的偏移剖面效果对比,证明了上述针对海洋地震资料处理技术的有效性。 关键词:深海地震资料;子波处理;潮汐静校正;多次波压制;数据规则化 中图分类号:T 文献标识码:A Research on Marine Seismic Data Processing Technology Han Min (Research Institute of Petroleum Exploration and Development, Liaohe Oilfield Company, CNPC, Liaoning, 124010) Abstract :Marine seismic exploration has always been a difficult problem in seismic data processing because of the particularity of seismic acquisition methods and noise types. In this paper, the principles of wavelet processing, hydrostatic correction, multiple suppression, data regularization and their applications in marine seismic data processing are introduced in detail. Finally, the effectiveness of the above-mentioned techniques for marine seismic data processing is proved by comparing the migration profiles before and after the application of new techniques. Key words :deep sea seismic data ;wavelet processing ;tidal static correction ;multiple suppression ;data regularization 1.引言 与陆地盆地勘探相比,我国海洋石油勘探起步晚、勘探程度低,但我国海洋石油蕴藏量非常丰富。随着近年经济发展对油气资源的需要和地球物理采集工程技术的进步,海洋地震资料采集、处理逐渐发展起来。本文以A区为研究对象,针对深海地震资料处理与陆地地震资料处理的不同,从子波处理、潮汐静校正、多次波压制及数据规则化方面,重点介绍了海洋地震资料处理的特色技术,进而形成一套深海地震资料处理流程,实际应用中发现,应用这套处理流程受到了很好的效果。 2.海洋地震资料处理技术 A区平均水深超过1000米,目的层埋藏深,断裂复杂,由于海洋激发方式、接收环境和表层地震地质条件的特殊性,常规陆地资料处理技术已经不能满足需求。为此,我们研究应用了针对海洋资料处理的特色技术。 (1)子波处理技术 由于信号从激发到接收的整个过程中,要受到震源、海水、地层和仪器等外部因素的影响,这些因素都会影响地震子波的形态和稳定性,经子波处理后实现子波在空间上的稳定性,更加有利于后续的处理技术应用。子波处理的关键是求取反滤波因子,一般情况下,每一炮求取一个反滤波因子,然后将反滤波因子与相应的炮集进行反褶积处理。反滤波因子求取一般有两种方法:一是通过采集每一炮的远场子波,在其中选取有代表性的子波作为目标子波,把每一炮的远场子波与目标子波做匹配滤波,求得每一炮的反滤波因子;二是在原始炮记录上避开初至,选择信噪比高的时窗提取子波,进而提取反滤波因子。 (2)潮汐静校正技术 海上潮汐的变化具有典型的时间性和地缘性,使用GPS 实时实地测量潮汐变化,通过潮汐高程变化计算出潮汐静校正量是比较科学的方法。Skyfix XP技术是我国目前海上地 震采集中高程测量所采用的定位系统,它通过测量天线点相对于某基准面的高程值,然后求取所有测量数据的算术平均值来获得一个相对基准面,所有高程数据与该基准面的差值就是潮汐相对于施工期间平均海平面的涨落幅度值,将其除以声波对水的速度转化为震源和电缆检波器的校正量。 (3)多次波压制技术 海洋地震资料中的噪音最主要的是多次波,消除多次波一直是海洋资料处理的核心环节,已有的方法很多,但通过一次应用单一的方法彻底去除多次波是不可能的。人们已经注意到用若干种方法加以组合来达到消除多次波的目的,但较理想的组合方法还在尝试中。在分析了深海多次波的类型和特征、揭示一次波与多次波区别的基础上,针对多次波在不同域、不同处理阶段的特征,合理选取压制多次波方法,形成一套完整的深海多次波组合压制方法。通过探索和实践,采用自由表面相关多次波衰减、抛物线拉东变换及分频中值滤波相结合的方法,可以有效压制深海多次波。 (4)数据规则化技术 海洋采集过程中,由于拖缆漂移的影响,造成反射面元覆盖次数不均匀或共中心点位置不集中。为了满足多次波消除和叠前偏移共偏移距面成像的需求,通常需要对地震数据进行规则化处理。 频率-空间域叠前数据规则化方法利用加权法对叠前道集在偏移距域内进行规则化处理,通过最小中值平方差,用加权法估计插值误差,低于误差门槛值的插值道被采用。该方法可根据用户要求输出的网格面元大小,将空间不规则采样的数据输出为规则的网格数据,每个输出道都是通过临近的一群输出道,利用自适应插值计算得到。频率-空间域叠前数据规则化方法的一个主要优势是能够得到叠前道头属性,道头属性值也是通过插值计算得到的,通过偏移距、方位角和插值道中心位置可以计算出炮点与检波点位置及其它相关的道头属性。

地震数据处理

不同软件的地震数据处理方式不同,但是所有软件的处理流程基本是固定不变的,最多也是在处理过程中处理顺序的不同。整体流程如下: 1 数据输入(又称为数据IO) 数据输入是将野外磁带数据转换成处理系统格式,加载到磁盘上,主要指解编或格式转换。 解编:将多路编排方式记录的数据(时序)变为道序记录方式,并对数据进行增益恢复等处理的过程。如果野外采集数据是道序数据,则只需进行格式转换,即转成处理系统可接受的格式。 注:早期的时序数据格式为记录时先记录第一道第一个采样点、第二道第一个采样点、……、第一道第二个采样点、第二道第二个采样点、……直至结束。现在的道序记录格式为记录时直接记录第一道所有数据、第二道所有数据、……直至结束,只是在每一道数据前加上道头数据。将时序数据变为道序数据只需要对矩阵进行转置即可。

2 置道头 观测系统定义 目的为模拟野外,定义一个相对坐标系,将野外的激发点、接收点的实际位置放到这个相对的坐标系中。即将SPS文件转换为GE-Lib文件,包括1)物理点间距2)总共有多少个物理点3)炮点位置4)每炮第一道位置5)排列图形。 置道头 观测系统定义完成后,处理软件中置道头模块,可以根据定义的观测系统,计算出各个需要的道头字的值并放入地震数据的道头中。当道头置入了内容后,我们任取一道都可以从道头中了解到这一道属于哪一炮、哪一道?CMP号是多少?炮间距是多少?炮点静校正量、检波点静校正量是多少?等等。 后续处理的各个模块都是从道头中获取信息,进行相应的处理,如抽CMP道集,只要将数据道头中CMP号相同的道排在一起就可以了。因此道头如果有错误,后续工作也是错误的。GOEAST软件有128个道头,1个道头占4个字节,关键的为2(炮号)、4(CMP号)、17(道号)、18(物理点号)、19(线号)、20(炮检距)等。 观测系统检查 利用置完道头的数据,绘制炮、检波点位置图、线性动校正图。 3 静校正(野外静校正) 静校正为利用测得的表层参数或利用地震数据计算静校正量,对地震道进行时间校正,以消除地形、风化层等表层因素变化时对地震波旅行时的影响。 静校正是实现共中心点叠加的一项最主要的基础工作。直接影响叠加效果,决定叠加剖面的信噪比和垂向分辨率,同时影响叠加速度分析的质量。 静校正方法: 1)高程静校正 2)微测井静校正-利用微测井得到的表层厚度、速度信息,计算静校正量 3)初至折射波法 4)微测井(模型法)低频+初至折射波法高频 4 叠前噪音压制 干扰波严重影响叠加剖面效果。在叠前对各种干扰进行去除,为后续资料处理打好基础。 常见干扰有:面波、折射波、直达波、多次波、50Hz工业电干扰及高能随机干扰等多种情况。不同干扰波有不同特点和产生原因,根据干扰波和一次反射波性质(如频率、相位、视速度等)上的不同,把干扰和有效波分离,从而达到干扰波的去除,提高地震资料叠加效果。 常用的方法有:F-K变换、t-P变换、SVD变换等

相关主题
文本预览
相关文档 最新文档