当前位置:文档之家› (仅供参考)MIDAS 联合截面施工阶段分析方法

(仅供参考)MIDAS 联合截面施工阶段分析方法

(仅供参考)MIDAS 联合截面施工阶段分析方法
(仅供参考)MIDAS 联合截面施工阶段分析方法

联合截面施工阶段分析方法(针对用户定义截面)

联合结构是指由钢材和混凝土两种不同材料的构件,或者即使是一种材料但强度和材龄(如混凝土)不同的构件联合所构成的结构。从前的分析方法是对联合前的各构件分别建立不同的模型,联合时对各构件进行刚性连接。这种方法在进行静力分析时误差比较少,但考虑徐变和收缩等进行时间依存性分析时,就会产生很大的误差。为了提高考虑材料时间依存特性时,对于联合截面分析结果的准确性,MIDAS/Civil提供了对联合截面进行施工阶段分析的方法。

进行联合截面施工阶段分析时,定义联合截面的方法有两种,Normal type和User type。Normal type是指利用截面数据库中提供的联合截面(Composite section)或组合截面(SRC section)等已知联合前后各截面特性值的截面来定义的方法。User type是指由用户来定义任意截面的特性值并将其在不同的施工阶段进行联合的方式。关于Normal type的分析方法请参照技术资料「工字型钢混联合梁桥的施工阶段分析」,这里主要介绍一下在使用用户定义的方式进行联合截面施工阶段分析时,需要注意的事项和查看结果的方法。

下图为定义联合截面施工阶段的对话框。(荷载>施工阶段分析数据>施工阶段联合截面)

Normal type User type

图1. 定义联合截面施工阶段的对话框

Note!! 以上画面只有在定义了施工阶段和截面后才可以显示。

输入步骤

建模步骤与一般的施工阶段分析建模步骤类似,只需在此基础上再定义联合截面的施工阶段即可。

其定义步骤如下。

1. 定义材料和截面

2. 定义时间依存性材料特性 (选项)

3. 建立结构模型 (几何形状、边界条件、荷载)

4. 定义施工阶段

5. 定义施工阶段联合截面

这里结合例题重点介绍根据施工阶段定义联合截面的方法。

例题

例题模型为一由主梁和桥面板构成的两跨连续梁桥,施工阶段如图2所示由4个阶段组成。

?CS1: 建立第一跨主梁

时间 : 12天

荷载 : 第一跨主梁自重

?CS2: 建立第二跨主梁

时间 : 12天

荷载 : 第二跨主梁自重

?CS3: 建立第一跨桥面板

时间 : 12天

荷载 : 第一跨桥面板自重

?CS4: 建立第二跨桥面板并在7天后施加二期恒载

时间 : 1000天

荷载 : 第二跨桥面板自重 (第一步骤)

二期恒载 (第三步骤)

图2. 例题的施工阶段构成

定义材料和截面

?材料

主梁 : 混凝土 40

桥面板 : 混凝土 30

?材料输入对话框

如图3所示定义主梁和桥面板的材料。

图3. 定义一般材料

? 截面

截面形式为如图4所示的由主梁和桥面板所构成的联合截面。

图4. 截面形状

? 截面输入对话框

图5. 截面输入对话框

如图5对话框所示,定义4个截面。

前两个截面(Span-1, Span-2)是在建立单元时需要指定的,故必须定义。由于例题中的第一跨和第二跨是在不同的施工阶段施工的,所以尽管两个截面的特性值相同,但在这里分别进行了定义。就是说即使是拥有相同截面特性的单元,若在不同的施工阶段施工,则需要定义相应数量的截面。

本例题分为4个施工阶段,但结构的变化分为两个阶段(1st span, 2nd span),所以这里定义两个截面。此时给各单元赋与的截面特性值并不用于分析,只是在消隐处理时能够反映截面的形状。因此在使用“数值”方式定义截面时,只需输入截面尺寸即可,不必输入具体的特性值。

图6. 定义联合前各截面的特性值

3号主梁截面和4号桥面板截面可以不必输入,但为了在后面定义联合截面施工阶段时输入各组成截面特性值的方便,可在这里事先进行定义。

赋与时间依存性特性

时间依存性特性采用的是CEB-FIP code,其内容如图7、8所示。?徐变和收缩

图7. 定义徐变和收缩对话框?强度发展

图8. 定义抗压强度发展的对话框

建立结构模型

z跨度 : 2@20m

z单元数 : 20

z节点数 : 21

z边界条件 : 节点1 : DX,DY,DZ,RX,RZ

节点11、21 : DY,DZ,RX,RZ

第二跨

第一跨

图9. 结构模型

定义施工阶段

施工阶段如图2所示分为4个阶段。

CS1~CS3各施工阶段的持续时间皆为12天,最终阶段CS4的持续时间为1000天。

图10. 定义施工阶段对话框

图11. 定义第一个施工阶段CS1

图12. 定义第二个施工阶段CS2

图13 定义第四个施工阶段CS4

这里将第四个施工阶段的持续时间1000天分成了10个步骤。另外二期恒载将在该阶段的第7天开始施

加。

定义联合截面施工阶段

在荷载>施工阶段分析数据>施工阶段联合截面 对话框定义联合截面的施工阶段。

图14所示为该对话框,所输入的内容为第一跨的联合截面数据。

图14. 定义联合截面施工阶段对话框

对话框内容的说明如下。

?激活施工阶段

选择单元被激活的施工阶段,即构件最初生成的施工阶段。

?截面

在已经输入的截面中,选择要进行联合截面施工阶段定义的截面。选择截面后,与截面相对应的单元号会自动显示于单元列表中。

?联合形式

在截面选择栏中所选择的截面如果是截面数据库中的联合截面(Composite section)或者组合截面(SRC section),则会显示为Normal,否则就会显示为User。

?单元列表

与在截面中所选截面相对应的单元号会自动显示于单元列表中。

?位置号

指定联合截面的组成部分的个数。例题的联合截面是由主梁和桥面板两部分构成的,故位置数为2。

如果对于一个预应力箱型截面要分成几个部分进行浇筑的话,可指定相应数量的位置号来进行分析。

?施工顺序

在这里定义各位置号相应单元的特性值(分析用)和各截面相对位置(形心)。

?材料类型,材料

在这里定义各位置的材料,有单元和材料两种定义方法。选择单元,则所定义的材料与在截面选择栏中所选截面的材料相同。选择材料,则右侧的材料选择栏会被激活,用户可在这里选择相应的材料。

例题中对于主梁部分如图14所示使用了选择单元的方法,若使用选择材料的方法则如图15所示。

图15. 定义施工顺序对话框

?联合阶段

指定各位置的构件产生的施工阶段。

例题中位置1是在第一个施工阶段CS1产生的,故选择CS1或选择激活施工阶段。激活施工阶段是指在图14上方的激活施工阶段栏中所选择的阶段。

位置2的形成阶段为CS3,故选择CS3。

?材料

输入各位置的材龄。初期强度、徐变系数、收缩特性等与这里所输入的材龄有关,所以模型若要考虑材料的时间依存性,对该部分的输入需要特别注意。一般输入开始承受荷载的材龄,即徐变开始时的材龄即可。像钢材等不考虑时间依存特性的材料输入任何值都没有关系,我们一般输入0。如图14、15所示,主梁的初期材龄为5天,桥面板的初期材龄为0天。就是说对于在CS1所作用的恒荷载,主梁是以5天的材龄所具备的刚度来承担的,而对于在CS3中作用的桥面板的自重,则不考虑桥面板的刚度。

如果初期材龄输入为0天,程序内部会按0.001天计算时间依存性材料的强度。

在定义施工阶段时,也有输入材龄的选项(图16),其功能是相同的。但若定义了联合截面的施工阶段,则程序会以定义联合截面施工阶段中所输入的数据为准来进行分析。

图16. 定义施工阶段对话框

? Cy, Cz

在这里定义各组成部分的相对位置。

User type 和Normal type 的差异就在这里。对于Normal type(使用联合截面(Composite Section )或组合(SRC Section)时),在定义截面时各位置的相对位置已被自动输入,因此没有在这里重新输入的必要。

对于User type ,需要输入各位置的形心到联合后截面左下角的距离。(参照图17)

图17. 定义各位置的形心位置

?刚度

指定了各位置的形心位置后,现在输入各位置截面的特性值。在这里输入的截面特性将用于进行结构分析和计算,而如前所述在定义截面时所输入的特性值则没有意义。

使用Normal type时,各位置的截面特性值会被自动输入,但使用User type时,则需如图18所示由用户直接输入。由于一一输入各项特性值会十分不方便,故用户可以提前在截面对话框中定义各位置的截面,并在这里利用输入功能将其导入。本例题也使用了将提前定义好的截面3、4的数据直接导入的方法。

图18. 定义各位置的特性值

?系数

需要对刚度系数进行调整时,可使用此项功能,其默认值为1。

第二跨的联合截面的定义顺序与前面相同,请参考下图。

图19. 定义CS2联合截面的对话框

图20. 联合截面施工阶段的最终输入状态

分析结果

?变形形状

图21. CS1 First step的变形形状

图22. CS2 first step的变形形状

图23. CS3 first step的变形形状

图24. CS4 first step的变化形状

图25. CS4 third step的变形形状

?内力

图26. CS4 last step的弯矩图(荷载工况:CS 合计)

?查看各位置的内力

各位置的内力可在 结果 > 分析结果表格 > 施工阶段联合截面 > 梁单元内力,通过表格查看。

截面位置2

截面位置1

图27. 各位置的内力结果表格

Note!! 将鼠标放在表格处点击右键,选择排序对话框,可按不同的原则重新排列结果顺序。

MIDAS—GEN施工阶段分析例题

例题钢筋混凝土结构施工阶段分析 2 例题. 钢筋混凝土结构施工阶段分析 概要 本例题介绍使用MIDAS/Gen 的施工阶段分析功能。真实模拟建筑物的实际建造过 程,同时考虑钢筋混凝土结构中混凝土材料的时间依存特性(收缩徐变和抗压强度的 变化)。 此例题的步骤如下: 1.简要 2.设定操作环境及定义材料和截面 3.利用建模助手建立梁框架 4.使用节点单元及层进行建模 5.定义边界条件 6.输入各种荷载 7.定义结构类型 8.运行分析 9.查看结果 10.配筋设计

例题 钢筋混凝土结构施工阶段分析 3 1.简要 本例题介绍使用MIDAS/Gen 的施工阶段分析功能。(该例题数据仅供参考) 例题模型为六层钢筋混凝土框-剪结构。 基本数据如下: 轴网尺寸:见平面图 主梁: 250x450,250x500 次梁: 250x400 连梁: 250x1000 混凝土: C30 剪力墙: 250 层高: 一层:4.5m 二~六层 :3.0m 设防烈度:7o(0.10g ) 场地: Ⅱ类 图1 结构平面图

例题 钢筋混凝土结构 抗震分析及设计 1

例题钢筋混凝土结构抗震分析及设计 例题. 钢筋混凝土结构抗震分析及设计 概要 本例题介绍使用MIDAS/Gen 的反应谱分析功能来进行抗震设计的方法。 此例题的步骤如下: 1.简要 2.设定操作环境及定义材料和截面 3.利用建模助手建立梁框架 4.建立框架柱及剪力墙 5.楼层复制及生成层数据文件 6.定义边界条件 7.输入楼面及梁单元荷载 8.输入反应谱分析数据 9.定义结构类型 10.定义质量 11.运行分析 12.荷载组合 13.查看结果 14.配筋设计 2

midas连续梁分析报告实例

1. 连续梁分析概述 比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、 内力。 3跨连续两次超静定 3跨静定 3跨连续1次超静定 图 1.1 分析模型

?材料 钢材: Grade3 ?截面 数值 : 箱形截面 400×200×12 mm ?荷载 1. 均布荷载 : 1.0 tonf/m 2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差) 设定基本环境 打开新文件,以‘连续梁分析.mgb’为名存档。单位体系设定为‘m’和‘tonf’。 文件/ 新文件 文件/ 存档(连续梁分析 ) 工具 / 单位体系 长度> m ; 力 > tonf 图 1.2 设定单位体系

设定结构类型为 X-Z 平面。 模型 / 结构类型 结构类型> X-Z 平面? 设定材料以及截面 材料选择钢材GB(S)(中国标准规格),定义截面。 模型 / 材料和截面特性 / 材料 名称( Grade3) 设计类型 > 钢材 规范> GB(S) ; 数据库> Grade3 ? 模型 / 材料和截面特性 / 截面 截面数据 截面号( 1 ) ; 截面形状 > 箱形截面; 用户:如图输入 ; 名称> 400×200×12 ? 选择“数据库”中的任 意材料,材料的基本特 性值(弹性模量、泊松 比、线膨胀系数、容 重)将自动输出。 图 1.3 定义材料图 1.4 定义截面建立节点和单元

为了生成连续梁单元,首先输入节点。 正面, 捕捉点 (关), 捕捉轴线 (关) 捕捉节点 (开), 捕捉单元 (开), 自动对齐 模型 / 节点 / 建立节点 坐标 ( x, y, z ) ( 0, 0, 0 ) 图 1.5 建立节点 参照用户手册的“输 入单元时主要考虑事项”

MIDAS GTS-地铁施工阶段分析资料精

高级例题1
地铁施工阶段分析

GTS高级例题1.
- 地铁施工阶段分析
运行GTS
1
概要
2
生成分析数据
6
属性 / 6
几何建模
20
矩形, 隧道, 复制移动 / 20
扩展, 圆柱 / 25
嵌入, 分割实体 / 27
矩形, 转换, 分割实体 (主隧道) / 30
矩形, 转换, 分割实体 (连接通道) / 33
矩形, 转换, 分割实体 (竖井,岩土) / 36
直线, 旋转 / 39
生成网格
41
网格尺寸控制 / 41
自动划分实体网格 / 44
析取单元 / 46
自动划分线网格 / 48
重新命名网格组 / 53
修改参数 / 57
分析
58
支撑 / 58
自重 / 60
施工阶段建模助手 / 61
定义施工阶段 / 67
分析工况 / 68
分析 / 70

查看分析结果
71
位移 / 71
实体最大/最小主应力 / 74
喷混最大/最小主应力 / 77
桁架 Sx / 79

GTS 高级例题1
GTS高级例题1
建立由竖井、连接通道、主隧道组成的城市隧道模型后运行分析。 在此GTS里直接利用4节点4面体单元直接建模。
运行GTS
运行程序。
1. 运行GTS 。
2. 点击 文件 > 新建建立新项目。
3. 弹出项目设置对话框。
4. 项目名称里输入‘高级例题 1’。
5. 其它的项直接使用程序的默认值。
6. 点击

7. 主菜单里选择视图 > 显示选项...。
8. 一般表单的网格 > 节点显示指定为‘False’。
9. 点击

1

施工阶段分析控制

施工阶段分析控制 功能 输入施工阶段分析的各种控制数据。 MIDAS/Civil中施工阶段分析可以考虑的事项如下:时间依存材料特性 材龄不同的混凝土构件的徐变。 材龄不同的混凝土构件的收缩应变。 混凝土抗压强度随时间的变化。 钢束预应力的各种损失。 施工阶段的定义 结构模型的变化(结构组的激活和钝化)。 荷载条件的变化(荷载组的激活和钝化)。 边界条件的变化(边界组的激活和钝化)。

命令 从主菜单中选择分析> 施工阶段分析控制...。 输入 施工阶段分析控制对话框 最终施工阶段 决定哪个施工阶段为最终施工阶段。只有在最终施工阶段,才能与其他荷载工况(如地震、移动荷载等)进行组合。 最后施工阶段 定义的施工阶段中,排在最后的施工阶段。 其它施工阶段 在已经定义的施工阶段中选择施工阶段。 设置施工阶段接续分析 设置施工阶段分析的接续阶段。对已分析完的施工阶段分析模型,修改第N个阶段的

荷载条件后,可以从第N阶段开始接续运行施工阶段分析,节约了重复进行施工阶段分析的时间。 :在列表重选择重新开始的阶段。在这里勾选的阶段,将作为接续开始点保存结果。如果勾选所有施工阶段,将会影响总体分析时间,故建议仅选择关键的几个阶段作为接续点。 接续分析使用方法: 1)在“施工阶段分析对话框“勾选”重新开始施工阶段分析”,点击“选择重新开始的阶段...”选择所需的施工阶段(可多选。但考虑数据量,建议合理选择); 2)运行分析; 3)查看结果后,回到前处理状态,对接续分析之后的施工阶段进行荷载组、边界组以及结构组的调整; 4)调整后点击主菜单“分析/运行施工阶段接续分析”。可根据需要选择是否执行PostCS 的分析,比如移动荷载、风荷载、温度荷载的分析。 注意事项:在对接续分析之后的施工阶段进行荷载、边界以及结构的调整时,在施工阶段定义对话框中只能添加或删除最初模型已经定义好的结构组、边界组以及荷载组,而且不能定义新的边界和结构,只能定义新的荷载。固在最初模型中,预先要定义好可能要修改的边界组以及结构组、荷载组以及相应的荷载、边界、单元。 分析选项

midas施工阶段分析

本例题使用一个简单的两跨连续梁模型(图1)来重点介绍MIDAS/Civil的施工阶 段分析功能、钢束预应力荷载的输入方法以及查看分析结果的方法等。主要包括分析预应力混凝土结构时定义钢束特性、钢束形状、输入预应力荷载、定义施工阶段等的方法,以及在分析结果中查看徐变和收缩、钢束预应力等引起的结构的应力和内力变化特性的步骤和方法。 BliJU Elki EJI Laid 肛归旳F^siik Mida 口啊lads wndEw 屮「討] 图1.分析模型-IOI ?l St IMvr ■?■

桥梁概况及一般截面 分析模型为一个两跨连续梁,其钢束的布置如图 2所示,分为两个阶段来施工 桥梁形式:两跨连续的预应力混凝土梁 桥梁长度: L = 2@30 = 60.0 m 区分 钢束 艮坐标 x (m) 0 12 24 30 36 48 60 钢束1 z (m) 1.5 0.2 2.6 1.8 钢束2 z (m) 2.0 2.8 0.2 1.5 图2.立面图和剖面图 L=30 m L=30 m ? -------- 1 0壬 ■ -? 0 + ? 12 m 6 m CS1 CS2 6 m m

预应力混凝土梁的分析步骤预应力混凝土梁的分析步骤如下。 1. 定义材料和截面 2. 建立结构模型 3. 输入荷载 恒荷载 钢束特性和形状 钢束预应力荷载 4. 定义施工阶段 5. 输入移动荷载数据 6. 运行结构分析 7. 查看结果

使用的材料及其容许应力 混凝土 设计强度: 2 f ck = 400 kgf / cm 初期抗压强度:f ci =270kgf/cm 2 弹性模量: Ec=3,000Wc1.5 vfck+ 70,000 = 3.07 X 105kgf/cm 2 容许应力: 预应力钢束 (KSD 7002 SWPC 7B-① 15.2mm (0.6?strand) 屈服强度: 2 f py = 160 kgf / mm T P y = 22.6 tonf / strand 抗拉强度: 2 f pu =190kgf / mm T P U = 26.6tonf / strand 截面面积: 2 A p =1.387 cm 弹性模量: 6 2 E p = 2.0X 0 kgf /cm 张拉力: fpi=0.7fpu=133kgf/mm 2 锚固装置滑动: 空=6 mm 磨擦系数: g = 0.30 / rad k = 0.006 /m

midas例施工阶段联合截面分析 标准形式联合截面

利用联合截面的桥梁的施工阶段分析

目 录 概要 1 截面尺寸 3 材料 3 荷载 3 施工阶段的构成 4 设定建模环境及定义截面/材料 7设定建模环境 7 定义材料 8 定义截面 9 时间依存材料特性 11 建立桥梁模型 14 定义组 14 建立桥梁模型 16 输入边界条件 20 输入支撑位置 20 输入有效宽度 21 输入荷载 23 定义施工阶段 27 定义结构组 27 施工阶段的构成 28 定义各个施工阶段的联合截面 33运行分析 37 查看分析结果 38

查看内力 38查看应力 40注意事项 41

联合截面施工阶段分析概要 两种以上材料组成的联合截面,要进行考虑联合效果后的结构分析。特别是包含混凝土的联合截面考虑混凝土的收缩和徐变时必须要使用施工阶段联合截面功能。 本例题为混凝土桥面板和工字钢梁组成的联合截面桥梁,使用联合截面功能和施工阶段功能建立模型和查看结果。 桥梁基本数据如下: 桥 梁 类 型 : I-girder 联合截面三跨连续梁桥 (PSC桥面板) 桥 梁 长 度 : L = 45.0 + 55.0 + 45.0 = 145.0 m 桥 梁 宽 度 : B = 12.14 m 斜 交 角 度 : 90?(直桥) 图 1. 分析模型 1

A PPLICATION T UTORIAL 在MIDAS/Civil为了进行联合截面施工阶段的的分析,提供了施工阶段联合截面功能。 通过本例题学习包括施工阶段和联合截面同时存在的结构分析方法。 联合截面桥梁的施工阶段分析步骤如下: 1.定义材料及截面 2.定义结构组、边界组、荷载组 3.定义施工阶段 4.各个施工阶段的边界组、荷载组的激活 5.各个施工阶段的桥面板的激活 6.查看各个施工阶段的结果 2

迈达斯Midas-civil梁格法建模实例

北京迈达斯技术有限公司

目录 概要 (3) 设置操作环境........................................................................................................... 错误!未定义书签。定义材料和截面....................................................................................................... 错误!未定义书签。建立结构模型........................................................................................................... 错误!未定义书签。PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。输入荷载 .................................................................................................................. 错误!未定义书签。定义施工阶段. (60) 输入移动荷载数据................................................................................................... 错误!未定义书签。输入支座沉降........................................................................................................... 错误!未定义书签。运行结构分析 .......................................................................................................... 错误!未定义书签。查看分析结果........................................................................................................... 错误!未定义书签。PSC设计................................................................................................................... 错误!未定义书签。

midas施工阶段分析

目录 Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 (2) Q2、 POSTCS阶段的意义 (2) Q3、施工阶段定义时结构组激活材龄的意义 (2) Q4、施工阶段分析独立模型和累加模型的关系 (2) Q5、施工阶段接续分析的用途及使用注意事项 (2) Q6、边界激活选择变形前变形后的区别 (3) Q7、体内力体外力的特点及其影响 (4) Q8、如何考虑对最大悬臂状态的屈曲分析 (4) Q9、需要查看当前步骤结果时的注意事项 (5) Q10、普通钢筋对收缩徐变的影响 (5) Q11、如何考虑混凝土强度发展 (5) Q12、从施工阶段分析荷载工况的含义 (5) Q13、转换最终阶段内力为POSTCS阶段初始内力的意义 (6) Q14、赋予各构件初始切向位移的意义 (6) Q15、如何得到阶段步骤分析结果图形 (6) Q16、施工阶段联合截面分析的注意事项 (6) Q17、如何考虑在发生变形后的钢梁上浇注混凝土板 (7)

Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 A1.“施工阶段荷载”类型仅用于施工阶段荷载分析,在POSTCS阶段不能进行分析。如果将在施工阶段作用的荷载定义为其他荷载类型,则该荷载既在施工阶段作用,也在成桥状态作用。在施工阶段作用的效应累加在CS合计中,在成桥状态作用的荷载效应以“ST荷载工况名称”的形式体现。 因此为了避免相同的荷载重复作用,对于在施工阶段作用的荷载,其荷载类型最好定义为施工阶段荷载。 注:荷载类型“施工荷载”和“恒荷载”一样,都属于既可以在施工阶段作用也可以在POSTCS阶段独立作用的荷载类型。 Q2、P OSTCS阶段的意义 A2.POSTCS是以最终分析阶段模型为基础,考虑其他非施工阶段荷载作用的状态。通常是成桥状态,但如果在施工阶段分析控制数据中定义了分析截止的施工阶段,则那个施工阶段的模型就是POSTCS阶段的基本模型。沉降、移动荷载、动力荷载(反应谱、时程)都是只能在POSTCS阶段进行分析的荷载类型。 施工阶段的荷载效应累计在CS合计中,而POSTCS阶段各个荷载的效应独立存在。 POSTCS阶段荷载效应有ST荷载,移动荷载,沉降荷载和动力荷载工况。 有些分析功能也只能在POSTCS阶段进行:屈曲、特征值。 Q3、施工阶段定义时结构组激活材龄的意义 A3.程序中有两个地方需要输入材龄,一处是收缩徐变函数定义时需输入材龄,用于计算收缩应变;一处是施工阶段定义时结构组激活材龄,用于计算徐变系数和混凝土强度发展。因此当考虑徐变和混凝土强度发展时,施工阶段定义时的激活材龄一定要准确定义。 当进行施工阶段联合截面分析时,计算徐变和混凝土强度发展的材龄采用的是施工阶段联合截面定义时输入的材龄,此时在施工阶段定义时的结构组激活材龄不起作用。 为了保险起见,在定义施工阶段和施工阶段联合截面分析时都要准确的输入结构组的激活材龄。 Q4、施工阶段分析独立模型和累加模型的关系 A4.进行施工阶段分析的目的,就是通过考虑施工过程中前后各个施工阶段的相互影响,对各个施工阶段以及POSTCS阶段进行结构性能的评估,因此通常进行的都是累加模型分析。 对于线性分析,程序始终按累加模型进行分析,如欲得到某个阶段的独立模型下的受力状态,可以通过另存当前施工阶段功能,自动建立当前施工阶段模型,进行独立分析。 在个别情况下,需要考虑当前阶段的非线性特性时,可以进行非线性独立模型分析,如悬索桥考虑初始平衡状态时的倒拆分析,需用进行非线性独立模型分析。 Q5、施工阶段接续分析的用途及使用注意事项 A5.对于复杂施工阶段模型,一次建模很难保证结构布筋合理,都要经过反复调整布筋。 每次修改施工阶段信息后,都必须重新从初始阶段计算。接续分析的功能就是可以指定接续分析的阶段,被指定为接续分析开始阶段前的施工阶段不能进行修改,其后的施工阶段可以进行再次修改,修改完毕后,不必重新计算,只需执行分析〉运行接续

迈达斯Midas-civil梁格法建模实例

迈达斯技术

目录 概要 (3) 设置操作环境................................................................................................................ 错误!未定义书签。定义材料和截面............................................................................................................ 错误!未定义书签。建立结构模型................................................................................................................ 错误!未定义书签。PSC截面钢筋输入......................................................................................................... 错误!未定义书签。输入荷载 ........................................................................................................................ 错误!未定义书签。定义施工阶段. (62) 输入移动荷载数据........................................................................................................ 错误!未定义书签。输入支座沉降................................................................................................................ 错误!未定义书签。运行结构分析................................................................................................................ 错误!未定义书签。查看分析结果................................................................................................................ 错误!未定义书签。PSC设计 ......................................................................................................................... 错误!未定义书签。

栈桥——迈达斯分析验算示例(清晰版)

栈桥分析 北京迈达斯技术有限公司

目 录 栈桥分析 (1) 1、工程概况 (1) 2、定义材料和截面 (2) 定义钢材的材料特性 (2) 定义截面 (2) 3、建模 (4) 建立第一片贝雷片 (4) 建立其余的贝雷片 (8) 建立支撑架 (9) 建立分配梁 (12) 4、添加边界 (17) 添加弹性连接 (17) 添加一般连接 (19) 释放梁端约束 (22) 5、输入荷载 (22)

添加荷载工况 (22) 6、输入移动荷载分析数据 (23) 定义横向联系梁组 (23) 定义移动荷载分析数据 (23) 输入车辆荷载 (24) 移动荷载分析控制 (26) 7、运行结构分析 (27) 8、查看结果 (27) 生成荷载组合 (27) 查看位移 (28) 查看轴力 (29) 利用结果表格查看应力 (30)

栈桥分析 1、工程概况 一座用贝雷片搭建的施工栈桥,跨径15m(5片贝雷片),支承条件为简支,桥面宽6米。设计荷载汽—20,验算荷载挂—50。贝雷片的横向布置为5×90cm,共6片主梁,在贝雷片主梁上布置I20a分配梁,位置作用于贝雷片上弦杆的每个节点处,间距约75cm。如下图所示: 贝雷片参数:材料16Mn;弦杆2I10a槽钢(C 100x48x5.3/8.5,间距8cm),腹杆I8(h=80mm,b=50mm, tf=4.5mm ,tw=6.5mm)。贝雷片的连接为销接。 图1 贝雷片计算图示(单位:mm) 支撑架参数:材料A3钢,截面L63X4。 分配横梁参数:材料A3钢,截面I20a,长度6m。

建模要点:贝雷片主梁用梁单元,销接释放绕梁端y-y轴的旋转自由度;支撑架用桁架单元;分配横梁用梁单元,与贝雷主梁的连接采用节点弹性连接(仅连接平动自由度,旋转自由度不连接);车道布置一个车道,居中布置。 2、定义材料和截面 定义钢材的材料特性 模型 / 材料和截面特性 / 材料/添加 材料号:1 类型>钢材;规范:JTJ(S) 数据库>16Mn (适用) 材料号:2 类型>钢材;规范:JTJ(S) 数据库>A3 确认 定义截面 注:midas/Civil的截面库中含有丰富的型钢截面,同时还拥有强大的截面自定义功能。 模型 / 材料和截面特性 / 截面/添加 数据库/用户 截面号1; 名称:(弦杆) 截面类型:(双槽钢截面) 选择用户定义,数据库名称(GB-YB); 截面名称:C 100x48x5.3/8.5 C:(80mm)点击适用

MIDASCivil中施工阶段分析后自动生成的荷载工况说明

MIDAS/Civil 中施工阶段分析后自动生成的荷载工况说明 CS: 恒荷载: 除预应力、徐变、收缩之外的在定义施工阶段时激活的所有荷载的作用效应 CS: 施工荷载 为了查看CS: 恒荷载中部分恒荷载的结果而分离出的荷载的作用效应。分离荷载在“分析>施工阶段分析控制数据”对话框中指定。 输出结果(对应于输出项部分结果无用-CS:合计内结果才有用) No. 荷载工况名称 反力 位移 内力 应力 1 CS: 恒荷载 O O O O 2 CS: 施工荷载 O O O O 3 CS: 钢束一次 O O O O 4 CS: 钢束二次 O X O O 5 CS: 徐变一次 O O O O 6 CS: 徐变二次 O X O O 7 CS: 收缩一次 O O O O 8 CS: 收缩二次 O X O O 9 CS: 合计 O O O O CS: 合计中包含的工况 1+2+4+6+8 1+2+3+5+7 1+2+3+4+6+8 1+2+3+4+6+8 CS: 钢束一次 反力: 无意义 位移: 钢束预应力引起的位移(用计算的等效荷载考虑支座约束计算的实际位移) 内力: 用钢束预应力等效荷载的大小和位置计算的内力(与约束和刚度无关)

应力: 用钢束一次内力计算的应力 CS: 钢束二次 反力: 用钢束预应力等效荷载计算的反力 内力: 因超静定引起的钢束预应力等效荷载的内力(用预应力等效节点荷载考虑约束和刚度后计算的内力减去钢束一次内力得到的内力) 应力: 由钢束二次内力计算得到的应力 CS: 徐变一次 反力: 无意义 位移: 徐变引起的位移(使用徐变一次内力计算的位移) 内力: 引起计算得到的徐变所需的内力(无实际意义---计算徐变一次位移用) 应力: 使用徐变一次内力计算的应力(无实际意义) CS: 徐变二次 反力: 徐变二次内力引起的反力 内力: 徐变引起的实际内力(参见下面例题中收缩二次的内力计算方法) 应力: 使用徐变二次内力计算得到的应力 CS: 收缩一次 反力: 无意义 位移: 收缩引起的位移(使用收缩一次内力计算的位移) 内力:引起计算得到的收缩所需的内力(无实际意义---计算收缩一次位移用) 应力: 使用收缩一次内力计算的应力(无实际意义) CS: 收缩二次 反力: 收缩二次内力引起的反力 内力: 收缩引起的实际内力(参见下面例题) 应力: 使用收缩二次内力计算得到的应力 例题1: P R2 e sh:收缩应变(Shrinkage strain) (随时间变化) P: 引起收缩应变所需的内力 (CS: 收缩一次) 因为用变形量较难直观地表现收缩量,所以MIDAS程序中用内力的表现方式表 现收缩应变. ?: 使用P计算(考虑结构刚度和约束)的位移 (CS: 收缩一次) e E:使用?计算的结构应变 F: 收缩引起的实际内力 (CS: 收缩二次)

迈达斯Midascivil梁格法建模实例

目录 概要......................................................... 设置操作环境 ................................................. 定义材料和截面 ............................................... 建立结构模型 ................................................. PSC截面钢筋输入 .............................................. 输入荷载 ..................................................... 定义施工阶段 ................................................. 输入移动荷载数据 ............................................. 输入支座沉降 ................................................. 运行结构分析 ................................................. 查看分析结果 ................................................. PSC设计......................................................

Midas Civil中各种时间的含义

midas Civil中各种时间的含义 在使用midas Civil,需要对桥梁结构进行施工阶段分析,那必然会碰到混凝土收缩徐变的问题,利用midas建模时,经常会碰到一些时间的定义,我在这里把这些时间的含义罗列出来,以供大家参考。 首先需要注意一点:收缩的龄期与徐变的龄期是没有任何联系的,收缩龄期是计算混凝土收缩的时间,而徐变龄期是计算徐变的时间,只有结构上作用荷载,才会发生徐变的效应。 一、收缩开始的混凝土龄期: 收缩开始时的混凝土龄期:浇筑混凝土后开始收缩时间,即发生收缩效应的时间;midas 是在定义时间依存材料特性中定义,按规范要求,一般取3d。 二、混凝土徐变的材龄: 混凝土发生徐变的时间为徐变材龄,这个值是在定义混凝土施工阶段的时候定义的,如下图:即在midas中的“混凝土材龄”,这个材龄是混凝土从浇筑到激活(即参与受力)的时间,同时也是发生徐变的时间,因为有荷载作用采用徐变。针对徐变的计算材材龄。不要输入0,按实际的天数输入即可。 三、施工阶段持续时间: 施工的持续时间,是指该施工过程持续的天数,这个持续时间不包括结构的材龄。对于持续时间可能会有个疑问,从混凝土浇筑到受力需要一段时间养护,那如何考虑这弹模的变化?这个可以利用midas中“强度发展曲线”来考虑,对于中国规范,强度发展未作规定,故一般可以不需要定义强度发展曲线。 四、施工阶段荷载-时间荷载: 为了考虑相邻构件的时间经历差异,并反映到材料的时间依存特性(徐变、收缩、强度的变化等),给构件施加时间荷载。 一般时间荷载主要用在:两个桥墩在模拟施工阶段时是同时激活的,但是实际上只有一套模板,这样一个桥墩的悬臂段比另一个晚了60天,也即第一个桥墩了60天时间经历,由于这60天的时间差异,两个桥墩的悬臂梁的挠度也将有差别,为了最大限度降低合龙段完工时产生的残留应力,必须正确预测两个桥墩悬臂梁的挠度,故做施工阶段分析时,可以用时间荷载来考虑两个桥墩的时间经历差异。 midas 在定义施工阶段时会要求输入材龄 该材龄为该结构组的初始材龄,即在该施工阶段开始时,结构组已经具备的材龄。程序将按输入的材龄计算徐变。一般输入从浇筑混凝土后到拆模直到该单元开始发生作用(拆除了脚手架)的时间。当定义了强度发展函数时,一定要准确输入该材龄。重点就是这是徐变材料。也就是混凝土有强度开始算起,跟施工持续时间没有必然联系。他们相互独立。比如浇筑混凝土到拆模10天,材龄小于10天,因为刚浇筑没有强度,也就不存在徐变。 如果是预制构件,当前施工阶段结构材龄就大于施工持续时间,因为在当前施工之前,构件就具备材龄了.

1 叠合梁模拟方法探讨-双单元VS施工联合截面

组合梁模拟方法探讨 1问题描述: 组合梁是一种较复杂的结构,截面通常由两种不同材料结合或不同工序结合而成的,亦称为联合梁。目前,桥梁领域使用比较广泛的是钢—混凝土组合梁,其模拟方法基本有两种:①采用施工联合截面,②采用双单元。对于相同的结构,分别采用上述两种方法,其结果是否一致?如果不相同,是什么原因造成的? 2问题分析 2.1 模型基本情况介绍 主梁为钢—混凝土组合结构,截面由工字型钢梁和混凝土桥面板结合而成,联合截面尺寸数据详见图2-1。钢材和混凝土材料分别为Q235和C60。结构为15m+5m+12m三跨连续梁,双单元模型和联合截面模型详见图2-2和图2-3。 图2-1 联合截面

图2-2 双单元模型 图2-3 联合截面模型 2.2 模型细节模拟说明 2.2.1联合截面模型 截面采用中上对齐,并且考虑剪切变形。施工阶段为架设钢梁和铺设混凝土板,架设钢梁时考虑自重及混凝土板的湿重。单个单元消隐图详见图2-4。 图2-4 单元消隐图(中上对齐)

2.2.2 双单元模型 工字钢和矩形混凝土板均采用中上对齐,并且考虑剪切变形,单元通过弹性连接刚性连接。施工阶段同联合截面模型,边界约束在混凝土板节点上,单个单元消隐图详见图2-5。 图2-5 单元消隐图(中上对齐) 2.3 结果对比 2.3.1 架设钢梁(CS1) 联合截面模型结果: 图2-6 弯矩图(N.mm)

图2-7 位移图(mm) 图2-8 组合1应力图(MPa)双单元模型计算结果: 图2-9 弯矩图(N.mm) 图2-10 位移图(mm)

图2-11 组合1应力图(MPa) 表格结果对比(单位:N,mm) 模型CS1弯矩My(max/min)位移(max/min)组合1应力(max/min)联合截 面47654543.3/-51924832.811.4/-107.2258.9/-237.7 双单元47689200/-5194370011.4/-107.2259.0/-237.6 2.3.2 铺设混凝土板(CS2) 联合截面Part2计算结果: 图2-12 弯矩图(N.mm)

Midas桁架分析

2. 桁架分析 概述 通过下面的例题,比较内部1次超静定桁架和内、外部1次超静定桁架两种结构在制作误 差产生的荷载和集中力作用时结构的效应。 页脚内容1

图2.1 分析模型 材料 钢材类型: Grade3 截面 数据: 箱形截面300×300×12 mm 荷载 1. 节点集中荷载: 50 tonf 2. 制作误差: 5 mm 预张力荷载(141.75 tonf) P = K = EA/L x = 2.1 x 107 x 0.0135 / 10 x 0.005 = 141.75 tonf 设定基本环境 打开新文件以‘桁架分析.mgb’为名存档。设定长度单位为‘m’, 力单位为‘tonf’。 文件/ 新文件 文件/ 保存( 桁架分析) 工具/ 单位体系 页脚内容2

长度> m; 力> tonf 图2.2 设定单位体系 页脚内容3

设定结构类型为X-Z 平面。 模型/ 结构类型 结构类型> X-Z 平面 定义材料以及截面 构成桁架结构的材料选择Grade3(中国标准),截面以用户定义的方式输入。 模型/ 特性/ 材料 设计类型> 钢材 规范> GB(S); 数据库> Grade3 模型/ 特性/ 截面 数据库/用户 截面号( 1 ); 形状> 箱形截面; 名称(300x300x12 ); 用户(如图2.4输入数据) 页脚内容4

图2.3 定义材料图2.4 定义截面 页脚内容5

页脚内容6建立节点和单元 首先建立形成下弦构件的节点。 正面 捕捉点 (关) 捕捉轴线 (关) 捕捉节点 (开) 捕捉单元(开) 自动对齐 (开) 模型 / 节点/ 建立节点 坐标系 (x , y, z ) ( 0, 0, 0 ) 图 2.5 建立节点

midas联合截面问题

一:施工阶段联合截面分析的疑问: (1) 不能随施工阶段显示分层截面的逐步形成过程。 (2) 同一施工阶段内不能激活多个分层截面。 (3) 不能同时考虑非线性,PSC设计、梁单元细部分析、温度自应力也有问题。 (4) 各分层截面的理论厚度如何考虑? (5) [截面特征调整系数]与施工阶段联合截面中的[刚度系数]是什么关系? (6) 能否进行PSC设计?使用阶段截面应力验算中的P1~P10对应联合截面的什么位置? 您好! 现就您提出的几个问题逐一回复如下: 1、如果您采用的是标准的联合截面建模,是可以分阶段显示结构形状的,除此以外只能显示建模用截面形状; 2、同一阶段只能激活一种截面,如果要激活两种截面,可以另定义一个空阶段; 3、PSC设计可以执行,但对于施工过程的应力验算不能做,对于成桥的抗力验算是按建模用截面进行验算的,因此我们始终建议用联合后截面建立模型。不能给出梁单元细部分析结果,因此施工阶段联合截面的计算结果是分位置输出的,因此结果内容相对于单梁的梁单元内力和应力结果内容要详细。温度计算时,注意建模截面要采用联合后截面,否则得到的温度计算结果是错误的。(这种情况同样适用于施工阶段联合截面的动力分析中。) 4、构件理论厚度在施工阶段联合截面分析中只能指定一次,因此不同分层的不同构件理论厚度问题现在还不能模拟,建议使用联合后截面的构件理论厚度,毕竟施工过程的持续时间不是很长。这个问题我们会再做研究。 5、两者都用于对所指定截面的特性的调整,不同的是刚度系数仅用于施工阶段联合截面,针对的是当前激活截面的特性的调整;而截面特性调整针对的是该阶段所有的截面,因此如果既在刚度系数中定义了调整系数,也在截面特性值系数中定义了调整系数,这两个系数取叠加作用。 6、可以进行PSC设计,但得到的结果不完整,没有关于施工阶段过程的验算。施工阶段联合截面给出的截面应力是梁单元应力,因此只有6个点的计算应力。位置P1~P10针对的是梁单元应力(PSC)的结果。 谢谢!

钢-混凝土组合梁结构计算

钢-混凝土组合梁 结构计算书 编制单位: 计算: 复核: 审查: 2009年3月

目录 1. 设计资料 (1) 2. 计算方法 (2) 2.1 规范标准 (2) 2.2 换算原理 (2) 2.3 计算方法 (3) 3. 不设临时支撑_计算结果 (3) 3.1 组合梁法向应力及剪应力结果 (4) 3.2 施工阶段钢梁竖向挠度结果 (6) 3.3 结论 (7) 3.4 计算过程(附件) (7) 4.设置临时支撑_有限元分析计算 (7) 4.1 有限于建模 (7) 4.2 施工及使用阶段结构内力 (9) 4.2.1 施工阶段结构内力 (10) 4.2.2 使用阶段结构内力 (11) 4.3 组合梁截面应力 (13) 4.3.1 截面应力汇总 (13) 4.3.2 截面应力组合 (15) 4.4 恒载作用竖向挠度 (16) 4.4.1 施工阶段竖向挠度 (16) 4.4.2 使用阶段恒载作用竖向挠度 (16) 4.5 结论 (16)

钢-混凝土组合梁结构计算 1. 设计资料 钢-混凝土组合梁桥,桥长40.84m ,桥面宽19.0m ;钢主梁高1.6m(梁端高0.7m),桥面板厚0.35m ;钢材采用Q345D 级,桥面板采用C50混凝土;车辆荷载采用公路-I 级车道荷载计算。 图 1 横向布置 (cm) 图 2 桥梁立面 (cm) 钢主梁沿纵向分3个制作段加工,节段长度为13.6+13.64+13.6m ,边段与中段主要结构尺寸(图 3)见下表,其余尺寸详见设计图纸

图 3 钢梁标准构造(mm) 2. 计算方法 2.1 规范标准 现行《钢结构设计规范》(GB 50017-2003)第11章《钢与混凝土组合梁》针对不直接承受动力荷载的一般简支组合梁及连续组合梁而确定,对于直接承受动力荷载的组合梁,则应采用弹性分析法计算。《铁路桥梁钢结构设计规范》(TB 10002.2-2005)第4.1.1条也规定:结构构件的内力应按弹性受力阶段确定。尽管弹性分析法(容许应力法)不能充分组合梁的承载能力极限状态,但对于承受动力荷载的桥梁钢结构的强度计算是基本符合结构的实际受力状况的。 计算依据: 1.《钢结构设计规范》(GB 50017-2003) 2.《铁路桥梁钢结构设计规范》(TB 10002.2-2005) 3.《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 4.《钢-混凝土组合梁设计原理》(第二版).朱聘儒.北京:中国建筑工业出版 社,2006 5.《公路桥涵钢结构及木结构设计规范》(JTJ 025-86) 2.2 换算原理 根据总力不变及应变相同的等效条件,将混凝土翼板换算成与钢等效的换算截面;换算过程中要求混凝土翼板截面形心在换算前后保持不变,翼板面积换算转化为翼板宽度的换算。 《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)第5.1.16条,组合梁混凝土桥面

MIDAS中PSC变截面箱梁施工阶段及PSC设计例题

PSC变截面箱梁施工阶段及PSC设计例题 北京迈达斯技术有限公司 2007年3月19日 一、结构描述 (2) 二、结构建模 (4) 三、分步骤说明 (4) 1、定义材料和截面特性 (4) 2、建立上部梁单元并赋予单元截面属性 (7) 3、定义结构组并赋予结构组单元信息 (11) 4、定义边界组并定义边界条件 (12) 5、定义荷载工况和荷载组 (13) 6、定义施工阶段 (14) 7、分阶段定义荷载信息 (14) 8、分析及后处理查看 (20) 9、按照JTG D62规范的要求对结构进行PSC设计 (21)

PSC变截面箱梁施工阶段及PSC设计例题 对于常规的PSC连续梁桥我们通常可以参考建模助手建立的模型,对于特殊的桥型或有特殊要求的结构我们需要按照一般方法建立有限元模型,施加边界和荷载进行分析。这个例题主要说如何使用一般方法建立PSC连续梁桥并定义施工阶段进行施工阶段分析和按照JTG D62规范对结构进行设计验算。 一、结构描述 这是一座50+62+50的三跨预应力混凝土连续箱梁桥,这里仅模拟其上部结构。施工方法采用悬臂浇注,跨中截面和端部截面如图1所示。 图1-1 跨中截面示意

图1-2 支座截面示意 桥梁立面图如图2所示。 图2 连续梁立面图 图3 钢束布置形状

二、结构建模 对于施工阶段分析模型,通常采用的建模方法是: 1、定义材料和截面特性(包括混凝土收缩徐变函数定义); 2、建立上部梁单元并赋予单元截面属性; 3、定义结构组并赋予结构组信息; 4、建立边界组并定义边界条件; 5、定义荷载工况和荷载组; 6、定义施工阶段; 7、分阶段定义荷载信息(分施工阶段荷载和成桥荷载两部分); 8、分析,分析完成后定义荷载组合进行后处理结果查看; 9、定义设计验算参数按照JTG D62对结构进行长短期及承载能力验算。 下面就每个步骤分别详述如下—— 三、分步骤说明 1、定义材料和截面特性 本模型中涉及的材料包括混凝土主梁(C40)、预应力钢绞线(Strand1860)。如下图4所示。 图4 材料列表 通常对于预应力混凝土结构(PSC结构)按照现浇施工时,要考虑混凝土的收缩徐变效应,因此需要在建模前要定义混凝土的收缩徐变函数,按照如下图所示定义混凝土收缩徐变函数。

相关主题
文本预览
相关文档 最新文档