当前位置:文档之家› 漫谈物理学的过去、现在与未来

漫谈物理学的过去、现在与未来

漫谈物理学的过去、现在与未来
漫谈物理学的过去、现在与未来

漫谈物理学的过去、现在与未来

https://www.doczj.com/doc/cf7706872.html,/phystover/wlts/kepu/pages/mtwlxdwl.htm

冯端

(南京大学物理系固体微结构物理国家重点实验室南京 210093) 摘要文章试图对物理学的发展历史作一透视,从而理解其现状,并进而窥测其未来的前景。我们希望这一看法对于当今从事物理学教学与科研的人士有所助益。由于物理世界的层次化,诸层次之间既可能存在耦合,又可能出现脱耦。因而大量粒子所构成的复杂体系中所涌现的各种层展性质就不能简单地还原成个别粒子所服从的规律。我们根据这一观点并结合物理学的未来前景,讨论了当今物理学研究的若干前沿问题。一切迹象预示着物理学将有光明的前景。

关键词物理学,历史,现状,前景,前沿,物理世界的层次化,层展性质

本文系国家自然科学基金资助项目

“物理学的过去、现在和未来”是一个非常大而且重要的题目,也是一个非常难讲的题目,特别是涉及物理学的未来,结果往往是贻笑大方。这里以历史的透视为主线,提出一些个人不成熟的看法,抛砖引玉,希望得到大家的批评和指正。

1 历史的透视

对物理学的发展历史进行透视,将有助于我们来理解其现状并进而展望其未来。历史很长,不能样样都讲到。我想从牛顿开始,牛顿以前还有很多先驱性的工作,只好从略了。

1.1 经典物理学的盛世(17世纪至19世纪末)

我们不想详细讨论历史,主要考虑那些还在用的物理学知识。

第一次综合(统一)是l7世纪牛顿力学构成了体系。可以说,这是物理学第一次伟大的综合。牛顿力学实际上是将天上的行星运动与地上的苹果下坠概括到一个规律里面去了,建立了经典力学。至于苹果下坠启发了牛顿的故事究竟有无历史根据是另一回事,但它说明了人们对于形象思维的偏爱。牛顿实际上建立了两个定律,一个是运动定律,一个是万有引力定律。运动定律就是在力作用下物体怎样运动的规律;万有引力是一种特定的物体之间存在的基本相互作用力。牛顿将两个定律结合起来运用,因为行星的运动或者地球上的抛物体运动都离不开万有引力的影响。牛顿从物理上把这两个重要的力学规律总结出来的同时,也发展了数学。他也是微积分的发明人。他用微积分来解决力学问题。由运动定律得出来的运动方程,可以用数学方法把它具体解出来。这体现了牛顿力学的威力,它具有解决具体问题的能力。假如你要计算行星运动的轨道,基本上可以按照牛顿所给出来的物理规律,加上用数学方法解运动方程就行了。根据现在的轨道上行星位置,倒推千百年前或预计千百年后它们的位置都是轻而易举的,从而开拓了天体力学这一学科。海王星的发现史就充分显示了这一点。人们发现天王星的轨道偏离了牛顿定律的要求,问题在哪里呢?结果认为牛顿定律正确无误,而是在天王星轨道外面还有一颗星,对它造成影响,并估计出这个星球的位置。果然在预计的位置附近发现了这颗星,命名为海王星。这表示牛顿定律是很成功的。按照牛顿定律写出运动方程,若己知初始条件位置和速度,原则上就可以求出以后任何时刻的粒子位置。

到19世纪,经典力学新的发展表现为一些科学家重新表述了牛顿定律。重新表述有拉格朗日(Lagrange)方程组、哈密顿(Hamilton)方程组。这些重新表述形式不一,实质并没有改变。在不改变实质的条件下,用新的、更简洁的形式来表述牛顿定律。这是一个方面。

另一个方面,就是将牛顿定律推广到连续介质的力学问题中去,就出现了弹性力学、流体力学等。在这一方面,20世纪有更大的发展,特别是流体力学,空气动力学和航空技术的发展密切相关,而气动力学的发展又和喷气技术密切相关,进而牛顿力学还构成了航天技术的理论基础。因此我们说牛顿定律到现在为止还是非常重要的,牛顿定律还是我们大学课程中不可缺少的一个组成部分。当然,其表述方法应随时代发展而有所不同。读者如果有兴趣,不妨去翻一翻牛顿当年的表述。牛顿关于力学研究的成果,写在一本叫《自然哲学的数学原理》(简称《原理》)的巨著中。只要稍微翻一下这本书,就会发现它非常难懂。牛

顿的一个重要贡献是从万有引力定律和运动定律把行星运动的轨道推了出来。我们现在学理论力学时,行星运动的椭圆轨道问题是不太难的,解微分方程就可以求出来。但牛顿在《原理》里,没有用他的微积分,更没有用解微分方程的方法,他纯粹是用几何方法把椭圆轨道推出来的。现代科学家就不一定能看懂他这一套东西。举个例子来说,费曼(R.Feyman),有名的理论物理学家,他写过一本书,他说他自己对现代数学比牛顿强得多,但对17世纪牛顿当时熟悉的几何学他就不一定能全部掌握,他花了好些时间,想用牛顿的思路把椭圆轨道全部证出来,结果,中间还是有些环节证不出来,最后他不得已调整了一下方法,没有完全依照牛顿的证法,但基本上还是用几何方法把这个问题证明出来了。科学理论的表达是随时代变化的。现在来看,牛顿运动定律的关键问题,譬如行星运动是椭圆轨道,现在应有可能在普通物理中讲了,因为简单的微分方程已经可以用计算机求解了。由于计算机的发展,也许今后在普通物理中讲牛顿定律时,就可以在课堂上把行星运动椭圆轨道的一些基本概念说清楚了。在这里也可以说,教学问题与现代科技发展是息息相关的。

第二次综合是麦克斯韦的电磁学。大家都知道,最初是库仑定律,用以表达电荷与电荷间的相互作用力,也表达磁极与磁极之间的相互作用力。然后电与磁之间的关联被发现了:奥斯特的电流磁效应,安培发现的电流与电流之间相互作用的规律,然后是法拉弟的电磁感应定律,这样电与磁就连通成为一体了。最后,19世纪中叶,麦克斯韦提出了统一的电磁场理论。电磁定律与力学规律有一个很大的不同。力学考虑的相互作用,特别是万有引力相互作用,根据牛顿的设想,是超距的相互作用,没有力的传递问题(当然用现代观点看,引力也应该有传递问题)。现在从粒子的超距作用改成电磁场的场的相互作用,这在观点上有很大变化,重点从粒子转移到场。麦克斯韦考虑电磁场的相互作用,导致电磁波,电场与磁场不断相互作用造成电磁波的传播,后来赫芝在实验室中证实电磁波的发射。另外,电磁波不但包括无线电波,实际上包括很宽的频谱,很重要的一部分就是光波。光学在过去是与电磁学完全分开发展的,到了麦克斯韦的电磁理论出来以后,光学也变成了电磁学的一个分支了,在这里,电学、磁学、光学得到了统一。这在技术上有重要意义,发电机、电动机几乎都是建立在电磁感应的基础上的,电磁波的传播导致现代的无线电技术。电磁学直到现在,在技术上还是起主导作用的一门学科,故在基础物理学中电磁学始终保持它的重要地位。

第三次综合是从热学开始的,涉及到宏观与微观两个层次。根据热学研究总结出热力学的两大基本规律:第一定律,即能量守恒律;第二定律,即熵恒增律。但科学家不满足于单纯在宏观层次上来描述,还想追根问底,企图从分子和原子的微观层次上来阐明物理规律。气体分子动理学便应运而生,用以阐述气体物态方程、气体导热性与粘滞性等物性参量的微观基础。进一步就是玻尔兹曼与吉布斯所发展的经典统计力学。热力学与统计物理的发展,促使物理学家接触到具体的物性问题,加强了物理学与化学的联系,建立了物理化学这一门交叉学科。

1.2 转折与突破(19世纪至20世纪初)

正是由于经典物理学取得了非凡的成就,给人们印象太深刻了,遂使有些科学家产生了错觉,认为巨大发现的时代业已过去。这种悲观的论点在上世纪末相当流行。具有典型意义的据称是著名物理学家迈克耳孙(A.A.Michelson)说过的一段话,“当然无法绝然肯定物理科学不再会有像过去那么惊人的奇迹,但非常可能的是大部分宏伟的基本原理业已确立,而今后的进展仅在于将这些原理严格地应用于我们所关注的现象上。在这里测量科学的重要性就显示出来了——定量的结果比定性的结果更为可贵。一位卓越的物理学家曾经说过,物理科学未来的真理将在小数点六位数字上求索”,(1898年芝加哥大学导学手册)。值得注意,这类悲观论点,在20世纪科学的重大发展之后,又在本世纪末重新问世。具有代表性的是美国资深科学记者霍根(J.Horgan)访问许多知名学者之后,写出了《科学的终结》一书,在断章取义地引述若干科学家的谈话之后,得出了荒谬的结论,不仅是物理学走向了穷途末路,而是一切自然科学都到了散场的地步,堪称为上一世纪末悲观论点变本加厉的新版本,其命运必将重蹈前者的覆辙。

富有洞见的是英国著名物理学家凯尔文(L.Kelvin)于1900年所作的演说。他在对19世纪物理学的成就表示满意的同时,提出了“在物理学晴朗天空的远处,还有两朵令人不安的乌云”。这两朵乌云指的是:其一实验察觉不到物体和以太的相对运动;其二是气体多原子分子的低温比热不符合能量均分定理。

这两朵乌云迅速导致倾盆大雨,即相对论和量子论的两场物理学的革命。

19世纪的科学家不满足于用麦克斯韦方程组来解释电磁现象,热衷于采用机械模型来说明问题,即使是大师麦克斯韦本人也不例外。以太被引入作为真空中传播电磁波的媒质。迈克耳孙与莫莱(Morley)

设计了精巧的实验来验证物体和以太的相对运动,取得了负的结果。爱因斯坦提出了狭义相对论(1905年),其物理洞见在于摒弃了不必要的以太假设,进而肯定电磁学的规律对于一切惯性参考系都是成立的,而且具有相同的形式,真空的光速不变,不同惯性系之间的变换关系为洛伦兹变换。我们知道,牛顿力学也是对于惯性参考系才成立,而不同惯性系之间的变换关系为伽利略变换。这样经典力学和经典电磁学之间就存在矛盾。爱因斯坦肯定了经典电磁学,而对经典力学作了相应的修正,摒弃了牛顿的绝对的时空观,认为空间、时间与运动有关,并首创性地提出了质量与能量的对等关系,将牛顿力学修正后成功地应用于高速运动的情形。

牛顿力学的另一局限性表现在它不能圆满地解释强引力场中物体的运动,这从它无法定量地解释水星轨道近日点的进动问题而初露端倪。另一带根本性的问题是它对万有引力的存在没有任何理论解释。这些缺陷尚有待发展进一步的理论来弥补。l916年,爱因斯坦的广义相对论应运而生。这一理论的出发点在于肯定惯性质量与引力质量等同的等效原理(这己为实验所证实),将非惯性参考系中观测到的惯性力与局域的引力等同起来。进而提出一切参考系均有相同的物理规律这一广义相对性原理。广义相对论成功地预言了一些效应,如强引力场中光线的弯曲,引力强度与光谱线频移的关系,并用空间的弯曲很自然地解释了引力的存在。由于广义相对论是针对强引力场和大质量物体而提出来的,因而广泛应用于天体物理学,也构成了现代宇宙论的基础。

如果说相对论消除了经典物理学的内在矛盾并推广其应用范围,那么量子论就开启了微观物理学的新天地。在l9世纪,化学家道尔顿提出了原子论,物理学家也提出原子-分子微观运动的概念来构筑分子动理学和统计物理学。特别是著名物理学家玻尔兹曼在发展原子-分子运动理论,推动统计物理学的发展上作出了杰出的贡献。但是这些工作受到马赫(E.Mach)与奥斯特瓦尔德(W.F. Ostoold)等人从实证论哲学观点的质疑。按照实证论的观点,只有为人们所感知的事物是存在的。而当时由于显微术观测条件的制约,原子与分子都无法直接看到,因而有关的理论受到实证论者的否定。玻尔兹曼为捍卫原子-分子理论进行了激烈的争辩。爱因斯坦于1905年提出布朗运动的理论,为分子运动的图像提供了有力的旁证。随后,佩兰(J.B.Perrin)的实验观测提供了更加确凿的证据。

在明确了宏观世界之外存在有微观世界后,进一步的问题在于探索微观世界的物理规律。上世纪90年代中叶后,有一系列重要发现,对这方面的研究起了很大促进作用:1895年,伦琴发现了X射线,随后X射线成为揭示物质的微观结构的重要工具;1896年贝克勒尔发现了放射性,随后居里夫妇发现了强放射性元素镭,卢瑟福确认了a,β,γ射线的本质,这些工作揭开了原子核科学研究的序幕。l897年,汤姆孙发现了电子,这是最早发现的一种基本粒子,随后也被作为重要的工具应用于研究物质的微观结构,而操纵电子的器件成为现代信息技术的基础。作出这些重大发现的科学家也都获得了新世纪初诺贝尔奖的桂冠。

如果说证实原子与分子的存在就意味着揭示物质结构在微小尺度上具有不连续性,那么早期量子论则揭

示了能量在微小尺度上的不连续性。1900年,普朗克为拟合黑体能量分布的实验数据,在经典物理学的理论无效之后,挺而走险,提出了包括作用量子h的量子论。随后,1905年,爱因斯坦根据光电效应存在能量阈值的规律提出了在物理上更明确的具有能量为hv的光子这一种基本粒子。1911年,卢瑟福根据金箔对于a粒子的散射实验结果,提出了有核的原子模型:正电荷集中在原子核这一微小区域之内,而外围则为电子所环绕。1913年,玻尔提出了量子论的原子模型,认为原子中的电子处于确定的轨道上,处于定态,在定态之间的量子跃迁则导致发光。玻尔用这种半经典的量子理论相当满意地解释了氢原子的线系光谱,面对着更复杂的原子光谱问题就遇到了困难。科学家需要改弦易辙,发展更全面的量子理论。1924年,德布罗意正确地指出,正如电磁波也具有粒子性质(光子),而具有粒子性质的电子等也将具有波动性。1925-1926年,海森伯与薛定谔分别完成了量子力学的两种表述,矩阵力学与波动力学,强调了波动与粒子的二象性。电子衍射的实验结果证实了电子具有波动性,而量子力学的理论全面地解读了纷纭繁复的

原子光谱实验结果,一举解决了原子结构的问题。随后狄拉克将非相对论的薛定谔方程推广到(狭义)相对论的情形,建立了狄拉克方程,为量子力学作了重要的补充。这样,微观世界的物理规律终于确立。

2 当代情景

在量子力学确立之后,物理学进入了新的时期,这里统称为当代物理学。由于当代情景错综复杂,头绪繁多,难以用甚短的篇幅来进行概括。下面就以实验和理论这两条主线,对此作一粗略的介绍。

2.1 实验技术

20世纪是实验技术突飞猛进的时期。早期卢瑟福的a粒子散射实验为随后的核物理与粒子物理的研究树立了样版。但技术上的改进是多方面的。轰击的粒子束有质子、中子、电子和各种离子等。30年代初,中子被发现后,由于其散射截面大,容易引起核反应,受到学术界的重视。费米及其合作者系统地用中子来轰击周期表中不同元素,发现了一系列的核反应和新的放射性元素。1938年,哈恩(0.Hahn)与迈特纳

(L.Meitner)终于发现和确认铀的裂变。随后原子核裂变的链式反应得的实现,导致了裂变反应堆的问世。它为实验技术提供了新的手段,又为裂变能的军事与和平利用鸣锣开道。随后,轻元素的聚变提供了另一种核能源。聚变能的爆炸式的军事应用于50年代初即已实现,但可控的和平利用却经历了漫长的发展过程。两种方法,磁约束与惯性约束,虽则取得不少科学成果,但作为能源,尚处于得失相抵(breakeven)的前夕,要点火尚需继续努力。

到30年代,科学家开始认识到天然放射性元素发射的粒子能量太低,束流也不够强,不能适应实验物理学的要求。在这种情况下,加速器技术就应运而生。早期有高压倍加器和静电加速器,主流是劳伦斯开创的回旋加速器及其变型。以后加速器的能量愈做愈高,技术愈来愈精。能量已从早期的MeV量级升高到如今的TeV量级。一代代的加速器为核物理和粒子物理的研究立下了汗马功劳,发现了几百种粒子。与之并行发展的还有粒子检测技术,从早期的盖革计数器、云雾室,到照相乳胶、气泡室、火花室和闪烁晶体列阵等。虽然技术的进展十分引人注目,但许多物理实验的基本思路,例如通过质子对高能电子的深度非弹性散射来论证质子具有夸克结构,仍然和卢瑟福的原型实验十分相似。值得注意,加速器与反应堆也被用于非核物理学以至于其他科学的研究,同步辐射和高通量中子源就是例证。

另一高速发展的物理科学领域是天体物理学。光学望远镜愈做愈大;射电望远镜是在第二次世界大战中由雷达技术推动而发展起来的,也朝向巨型发展;而依据射电望远镜发展起来的综合孔径技术也反馈到光学望远镜的技术中去了。新波段,如红外、X射线和γ射线的望远技术得到了发展,还有新的检测技术如CCD列阵。为了超越大气层的吸收和干扰,还将望远镜放到太空中去,如哈勃、爱因斯坦、康普顿望远镜等。可以说当代也是天体物理学的黄金时代。大量天体谱线红移的数据为宇宙膨胀提供证据,3K微波背景、脉冲星、类星体及γ射线爆等重大发现,为理论天体物理和宇宙论提供了大量数据,使星体和宇宙成为检验物理理论的庞大实验室。

现代高能物理学(包括部分核物理)及天体物理学已经成为大科学主宰的领域。其特征在于设备庞大,

人员众多,经费数额巨大,计划实施时间漫长。

到30年代,光谱学研究已有盛况不再之感。但第二次世界大战中雷达技术的发展又为微波波谱及磁共振的研究提供机遇。50年代初,首先在微波频段实现了受激发射,随后转移到光学频段,导致激光器的问世。激光技术引起了光学和光谱学的一场革命,导致量子光学的诞生,影响十分深远。应该指出,早在1917年,爱因斯坦就提出了受激发射的理论,而实验室中的实现却延迟到40年之后。激光技术引入物理实验室,为小型精巧的实验研究提供了机会。

X射线和由之衍生的电子衍射与中子衍射,导致了晶体结构分析的发展。它为凝聚态物理和材料科学奠定基础,而且大大地促进了化学、生物学和矿物学的研究。出自这一领域的科学家获得了诺贝尔奖多达十几次。电子显微术超越了光学显微术的分辨极限,并实现了原子尺度的成像。80年代以后,扫描隧道显微术发展成为花样繁多的显微探针技术,不仅实现了原子尺度的成像,还实现了多种原子尺度的测量和操纵技术,充分显示了小规模精巧创新的实验技术仍然富有生命力。

为了消除热运动对固体中许多现象的干扰,将试样冷却到低温下进行研究成为重要的手段。现代低温技术始于氮的液化(4.2K),进一步采取稀释致冷机可以达到mK的温度,再进行核退磁致冷,可以达到μK

的量级。近年来发展起来的激光冷却,再加上蒸发致冷,可以使原子气体达到μK以下的温度。低温物性的研究取得许多重要的成果:金属与合金的超导电性,4He液体的超流动性,3He液体的超流动性,多种非常规的超导性(如有机化合物、重费米子、铜氧化物超导电性,其中最后一种已经超出低温的范围)。1995年起,又在μK温度以下观测到碱金属气体的玻色-爱因斯坦凝聚,随后,相位相干的原子束得到了实验演示,即所谓原子波激射(atomic laser)。

晶体纯度和完整性对物性有重要的影响,促使固体制备技术有了较大的发展:单晶拉制、区熔提纯、控制掺杂等技术成功地应用于半导体的制备。1947年,晶体管的发明也许是20世纪中物理学家所作出的取得最大经济与社会效益的一项成就。70年代后,超高真空技术成为实验室中的常规手段,在超高真空下的结构与能谱测试手段相继问世,开拓了表面物理的新领域。以分子束外延为代表的当代薄膜与异质结制备技术的开发,引起量子纳米结构(量子阱、量子线与量子点等)的热潮,并向磁性材料(巨磁阻效应)和超导电体方面延伸。许多新的物理效应的发现,诸如整数与分数量子霍尔效应、介观量子输运等,显示了凝聚态物理尚大有可为。

2.2 理论与计算

在量子力学建立之后,理论发展就分道扬镳,其中一条道路是深入到更加微小尺度的微观世界中去。首先发展的是原子核结构与动力学理论。虽然核子之间存在强相互作用,但基于平均势场中作有效单粒子运动的壳模型也取得成功。还有强调核的集体行为的液滴模型和复合核模型,也有将单粒子运动和集体运动结合起来的综合模型,核子配对的相互作用玻色子模型等,颇成功地说明原子核的某些性质。

进入更深层次的物质结构就到达了粒子物理学的研究领域。50和60年代,除核子以外,又发现大量的强子(具有强相互作用的粒子),其中多数是不稳定的。1964年,盖尔曼(M.GellMann)等提出了强子的夸克模型,认为强子并非基本粒子,而是由具有分数电荷(1/3或2/3电子电荷)、还具有色荷(红、蓝、绿三种颜色之一)的夸克所构成的。质子的夸克结构已为实验所证实。理论所预言三色六味的各种夸克,一一被实验所揭示,最后一种顶夸克是到1995年才发现的。夸克虽然存在于强子结构中,但独立存在的自由夸克却一直没有观测到。科学家又提出夸克禁闭模型来说明这一事实。

到本世纪中叶,已经明确了自然界只有四种基本相互作用,即引力、电磁力、弱力与强力。其中引力和电磁力是长程的,而弱力与强力是短程的,限于原子核的范围之内。爱因斯坦晚年致力于统一场论,试图将引力和电磁力统一起来,未取得成功。量子力学建立之后,处理量子体系与互作用场的理论(量子场论)得到了发展。首先发展的是,处理电磁相互作用的量子场论,即量子电动力学。在40年代末,利用重正化消除了发散的困难,使量子电动力学的理论预言得到了高精确度的实验证实(有效数字高达十几位)。随后,处理强相互作的量子场论、量子色动力学得到了发展。弱相互作用的理论始于费米的自衰变理论,60年代末,温伯格(S.Weinberg)与萨拉姆(A.Saiam)成功地将电磁相互作用与弱相互作用统一起来。在量子场论中,一些粒子被理解为场的激发态,而另一些粒子则成为传递相互作用的玻色子。

进一步探索各种相互作用的统一理论尚在进行之中。大统一理论企图将统一的范围包括强相互作用,尚有待实验的证实。进而将引力包括在内的超大统一理论的设想也被提出。

三代夸克与轻子的粒子模型,量子色动力学与电-弱统一理论,被统称为粒子物理学的标准模型,在概括和预言实验事实取得了非凡的成功。它预言了62种基本粒子,其中60种已被发现,只剩下希格斯玻色子与引力子尚待发现。

但标准模型仍带有唯象性质,它包含十几个参量,而且对粒子的质量不提供理论解释。如何超越标准模型,并从更根本的微观模型来解释粒子物理,就成为对理论物理学家的重大挑战。在这方面的努力以超弦理论最引人注目。这一理论极其精巧,也推动了相关数学问题的研究。但最终如何评价这一理论尚有待于实践来检验。

当代天文学研究总结出来的大爆炸理论被称为宇宙论的标准模型。按此理论设想,宇宙起源于一百数十亿年前的一次大爆炸:原先是时空奇点(密度和曲率却无限大),各种相互作用统一在一起。到10-44s,发生了引力与其他相互作用分离的对称破缺,到10-36s,发生强力与其他相互作用分离,到10-10s又发生弱力与电磁力的分离,成为如今四种相互作用并存的世界。到10-6s时,开始合成强子,到3min后形成原子核,

再逐步形成各种原子及各种星体与星系。大爆炸宇宙论是建立在若干天文学观测的结果上的:哈勃定律所描述的宇宙膨胀,3K宇宙背景辐射的发现,星体一些元素的丰度数据,是一种持之有效的物理学理论,当然还有许多问题尚有待于澄清。值得注意的是,早期的宇宙(3min之前)是粒子物理学的天下。著名物理学家温伯格的有名科普著作《最初三分钟》即以此而命名的。

量子力学建立之后,另一条发展道路在于进入较大尺寸的物质体系。将量子力学应用于分子,建立了量子化学;将量子力学与统计物理学应用于固体,建立了固体物理学,随后发展为凝聚态物理学。涉及了这些问题,就需要明确区分量子力学和经典物理学的各自适用的范围。通常的提法是量子力学适用于微观体系,而经典物理学适用于宏观体系,这显然不够精确,因为也存在宏观量子体系。对于特定粒子构成的系统,可以采用量子简并温度(即粒子的德布罗意波长等于粒子的平均间距对应的温度)

来区分。这里h是普朗克常数,m为质量,k B为玻尔兹曼常数,α为平均间距。如果温度远大于T0,则可以放心采取用于经典物理学的理论方法来处理这一体系,否则,就得用量子力学的方法。至于T0的高低则取决于粒子的质量m和体系的平均间距α(或密度)。对于固体和液体,α约为0.3nm,对电子系统而言,T0~105K,从而表明处理电子系统的问题,离不开量子力学。对于原子核或离子而言,T0~(50/A)K,A为原子质量数,对于轻元素(如氮与氢),在低温下要考虑量子力学的效应。因而在通常情况下处理大量原子核(或离子)与电子的混合体系,对于电子这一子系统,必须采用量子力学的理论方法,而对于原子核这一子系统,则不妨采用经典物理学的理论方法。凝聚态物理学和量子化学由于大量采用这种混合的处理方案而取得了成效。但应该指出,这类的电子理论涉及了相互作用粒子的多体问题。基于有效场单电子近似的固体能带理论显然很有成效;引入适度的相互作用而发展起来的费米液体理论、巡游电子铁磁性理论和

B C S超导理论也成绩斐然;但是强关联电子体系(包括高温超导体)仍然是一根硬骨头,对理论物理学家提出了强有力的挑战。

如果仅关注原子(或离子)与分子常温下的位形与动力学问题,那么采用经典物理学的方法是无可非议的,正如当代液体物理学和软凝聚态物理学所作的那样。当然,如果涉及键合的细节和电子的跃迁,还是需要量子力学。低温下的量子流体(4He与3He)突出地体现了量子力学效应。在气体中要体现这种效应,由于原子间距,简并温度要压得很低。在进入90年代后,方始观测到这类理论预期的效应,原子束光学和玻色-爱因斯坦凝聚都是例证。特高密度下的物质,如中子星,使简并温度高达1010K,可能使这些星体内部呈现超流性等量子力学效应。

应该指出,当代也是经典物理学复兴的时代。在相变与临界现象领域,研究了具有长程涨落的经典统计体系,呈现了普造性和标度律,发展了重正化群理论。经典动力学系统理论和非线性物理学都取得了长足的进展,像混沌、分形、孤子等概念,在交叉科学中获得了广泛的应用,成为理解复杂性的钥匙,也为解决端流这个长期悬而未决的难题提供了有意义的线索。

电子计算机的突飞猛进,对于当代物理学产生了异乎寻常的影响。量子化学与凝聚态电子理论的从头(ab initio)计算方案变得切实可行,从而促进了计算材料科学这门新的交叉学科的发展。分子动力学、蒙特卡罗方法,乃至于元胞自动机为物理学的各个分支提供了鲜明生动的物理图像和信息。以至于有些科学家认为计算和计算机模拟已成为可与实验和理论并立的科学研究的第三个支柱。

尽管由于物质结构层次化的结果,使得当今的物理学家很难精通、也不必要精通物理学的各个分支。但是物质结构在概念上是有其统一性的。相同的概念会在不同的层次上出现。著名物理学家巴丁

(J.Bardeen)的一段话很有启发性:“处在这日益专业化的时代之中,得以认识到基本物理概念可能应用于一大批看起来五花八门的问题,是令人欣慰的。在理解某一领域所获得的进展常常可以应用于其他领域。这不仅对材料科学的众多领域是确实的,对广义而言的物质结构亦复如此。作为阐述的例证,为理解磁性、超流性和超导性所发展的概念也被推广应用于众多的领域,如核物质,弱与电磁相互作用,高能物理学的夸克结构与众多的液晶相”。这值得我们深思。

3 学科的前沿与展望

下面我们来讨论有关学科前沿与展望这方面的问题。

3.1 物质结构层次化的结果

当代物理学的研究表明,物质结构在尺度上和能量上都呈现不同的层次(见图1)。明确了物质结构的不同层次之后,当代物理学的分支学科如何划分的问题,也就迎刃而解了(见图2)。最微小(也是能量最高)的层次是粒子物理学(也称为高能物理学),然后是原子核物理学,再上去就是原子物理学和分子物

理学。原子或分子聚集起来构成了不同的聚集相:气相、液相和固相,乃至于固液之间的中介相,如液晶、复杂流体与聚合物等软物质。另一类气相(由宏观中和的正负带电粒子所构成的)就是等离子体,相应的是等离子体物理学。大尺度的固体与流体运动的研究归结为固体力学与流体力学。聚集相的复杂组合构成了岩石、土壤、河流、山脉、湖泊、海洋及大气等,成为地球物理学的研究对象;而细胞、器官、植物、动物及人体构成了生物物理学的研究对象。继续扩大物质研究的空间尺度,就引导到空间物理学和行星物理的领域。进而包括太阳、恒星、星系、星系团,乃至于整个宇宙,都构成了天体物理学和宇宙论的内容。在这里似乎遗漏了一些传统物理学的分支学科,如光学与声学。目前的情况是,它们的部分内容正在朝向偏重技术的工程学科转化,而另一部分则和某些结构层次的物理学相结合。例如光物理学就和原子与分子物理学密不可分,也和凝聚态物理学关系密切;而物理声学则与凝聚态物理学及固体与流体力学密切相关。

从物质结构层次化的图表来看,物理学的主要空白区域突出地显示为图表的底部和顶部。其一是尺度上最最微小但能量最高的世界,对应的学科为粒子物理学(亦称高能物理学);其二是最最宏大的世界,即天体与宇宙,对应的学科为天体物理学与宇宙论。这两者,表面上看来,南辗北辙,结果却殊途同归,有合二为一的趋向,奇妙地体现了大与小辩证的统一。粒子物理学所面临的挑战在于探索更加细微尺度下,也就是更高能区物质结构的规律,希望能够超越现有的标准模型,追求相互作用的进一步统一。而宇宙大爆炸的标准模型则表明早期的宇宙是处于超高能的状态。因而高能物理学的研究,从某种意义上来说,是对宇宙进行考古学的研究。提高研究的能量范围,就等于追溯到更早期的宇宙。高能物理和天体物理的实验研究都属于大科学的范畴。大科学威风凛凛,但大也有大的难处,正如《红楼梦》中王熙凤所说的,大科学所面临的问题在于如何持续地获得社会的支持。在冷战时期,巨型加速器成为国力的象征,理所当然地得到了国家的支持。冷战以后,情况显然有所不同,需要考虑这类基础科学研究的社会效益问题。美国超级超导对撞机的下马似乎暗示了:即使像美国那样的富裕发达国家,对大科学项目的支持还是有条件的。看来今后的出路在于走国际合作的道路。对这两个前沿而言,目前是机遇和挑战并存。

除了这两个很明显的前沿外,应该还存在一个前沿问题,即存在于结构层次之间,总的说来,就是朝复杂物质展开:固体物理早期所研究的多半是简单的物质。在进一步研究中,方始接触到比较复杂的物质,当中蕴含有许多尚待发物理展、挖掘的物性。下面以半导体为例作些说明。最简单的硅,研究得最清楚,应用得最广泛;然后是复杂一点的碑化镓这类化合物半导体(Ⅲ-Ⅴ族与Ⅱ-Ⅳ族);更进一步就涉及结构更加复杂的聚合物半导体。近年来,聚合物半导体研究十分引人注目,己能做出聚合物晶体管来。当然,聚合物的集成电路在当前还不能与硅片竞争,但它有廉价、容易制备的优点,因而可以在其他方面发展。由聚合物,我们想到人的大脑问题,大脑里头并没有硅片,但大脑思维复杂程度远远超过现代大型计算机。故从简单物质的研究到复杂物质的研究的发展过程中,物理学应该是大有用武之地的。所以我们可以认定,除了前面两个(实际上已经合二而一了的)前沿外,应该还存在另一个物理学前沿,即探讨复杂物质的结构与物性。

3.2 复杂与简单的辩证关系

下面讨论一下复杂与简单的辩证关系问题,这里牵涉一点哲学观点的问题。因为物理学所研究的是一些最基本的问题,所以在探索和深入到一定程度后,某些哲学观点就会呈现出来了。

物理学家惯用的一个观点往往是还原论。所谓还原论,就是将世界分成许多小的部分,每一部分研究清楚了,最后拼起来问题就解决了。这个观点是很自然的,物理学家过去受到的是这个训练,基本上就接受这一观点。有很多著名的科学家支持这个观点,鼎鼎大名的爱因斯坦就讲过:“物理学家的无上考验在于达到那些普适性的基本规律,再从它演绎出宇宙”。这可以说是爱因斯坦的雄心壮志,也是几代物理学家抱有的看法,就是说,如果我们把世界基本规律搞清楚了,那么就一切事情都解决了。下面是著名理论物理学家狄拉克讲的话,他讲这一段话的时候正好是在量子力学初步建立之后,他说:“现在量子力学的普遍理论业已完成,作为大部分物理学与全部化学的物理定律业已完全知晓,而困难仅在于把这些定律确切应用将导致方程式太繁杂而难以求解”。他的意思是基本的物理规律已经知道了,下面似乎就是一个求解的问题,至于求解,由于方程过于复杂,似乎有些问题还解不出来。

尽管有许多物理学家是抱有这类观点,但现在来看问题似乎不这么简单,基本规律知道了,具体规律

是不是就一定能够推出来,这个问题一直是有争议的。19世纪有一种极端的意见,就是所谓实证论的观点,以奥地利科学家马赫为代表,马赫也是个哲学家。他认为物理学家只要追求宏观物体之间的规律,去搞清微观的东西似乎没有用处,且微观是否存在,分子、原子是否存在,他一概采取否定的态度。显然这类观点过于极端。实际上应该看到,物质结构存在不同的层次,层次与层次之间是有关联的,有耦合的,因此,我们需要理解更深层次的一些规律。譬如遗传问题(这当然不是纯粹物理学问题),可以从生物现象上求规律。早在19世纪,门德尔就总结了豌豆的遗传规律,这是个非常重要的基本规律,但为什么造成这个规律呢?显然跟遗传物质的结构有关。最关键的一步在于,1952年左右,生物学家华森(J.Watson)和晶体学家克里克(F.Crick)在英国卡文迪什实验室把D NA分子结构辨认了出来(在某种意义上是猜出来的)。这使我们晓得,遗传规律与D NA分子结构中某些单元的排列顺序有关,也就是说,在分子结构中有个密码存在,这密码规定了遣传情况,如果密码改变,遗传情况也就改变了。由此可以看到,分子结构与遗传物质这两个不同层次之间存在耦合的问题,理解了分子层次的结构,就把遗传规律基本上搞清楚了。再如,固体的导电问题,牵涉到电子在固体中的行为问题,如果我们把电子在固体中的行为搞清楚了,那么对固体为什么导电,为什么有的是半导体,有的是超导体这一类问题就都可以给出一个解释来。这就有利于推动我们去研究导电现象,以及利用这些现象做出晶体管来,做出集成电路来,做出超导的约瑟夫森结,来为人类服务。这就说明层次与层次之间存在耦合现象。另一方面,层次与层次之间也存在脱耦现象。所谓脱耦现象,就是下一个层次的现象对上个层次未必有重要关系。例如,近年来粒子物理有一个重要的发现,就是1995年发现了顶夸克,这在粒子物理是件大事,因为设想的几种夸克,包括最后一种顶夸克也都发现了。但是顶夸克的发现对固体物理或凝聚态物理有没有可以观察到的影响呢?没有,到现在为止,似乎一点影响也没有。这表明,层次跟层次之间,在某些情况下,存在脱耦。我们说粒子物理的进一步发展,对本身,对理解粒子的性质和宇宙早期的问题,具有极大的重要性,但是,它的发展,对理解相隔了好几个层次的物质,就丧失了重要性。再如,原子核的壳结构对遗传有没有影响呢?一般说来看不出太大的影响。这就是层次之间既存在耦合,又存在脱耦,而且大量粒子构成的体系往往有新的规律。

我们来看看另外一个观点,所谓层创论的观点。这里是著名凝聚态理论学家安德森(P.W.Anderson)讲的一段话:“将一切事物还原成简单的基本规律的能力,并不意味着我们有能力从这些规律来重建宇宙,当面对尺度与复杂性的双重困难时,构筑论的假设就被破坏了。大量的复杂的基本粒子的集体,并不等于几个粒子性质的简单外推”。也就是说我们知道两三个或四五个粒子的规律,并不能说明1020或1024个粒子的集体的规律,在每一种复杂的层次上,会有完全新的性质出现,而且对这些新的性质的研究,其基本性并不亚于其他研究。也就是说物质结构存在不同的层次,而层次跟层次之间,往往到上一个层次就有新的规律出现,对这些新的规律的研究,本身也具有基本性。

另外,要引一段卡达诺夫(L.P.Kadanoff)的讲话。他说:“我在这里要反对还原论的偏见,我认为已经有相当的经验表明物质结构有不同的层次,而这些不同层次构成不同群落的科学家研究的领域,有一些人研究夸克,另外一些人研究原子核,还有的研究原子、分子生物学,遗传学,在这个清单中,后面的部分是由前面部分构成的,每一个层次可以看成比它前面的好像低一些,但每一个层次都有新的、激动人心的、有效的、普遍的规律,这些规律往往不能从所谓更基本的规律推导出来。从最不基本的问题向后倒推,我们可以看到一些重要的科学成果。像门德尔的遗传律与DNA的双螺旋结构,量子力学与核裂变,谁是最基本的?谁推导谁?要将科学上的层次分高低的话,往往是愚蠢的,在每一层次上都有的普遍原则中,都会出现宏伟的概念”。重要的是要认识到各个层次之间既有耦合,也存在脱耦。并非是探究清楚最微观层次的规律,就可以把世界上的问题全部解决。近年来有一种提法,说粒子物理面临新的挑战,要建立一种所谓“万事万物的理论”。有些科学家说粒子理论现在已经建立了标准模型,然后下一步就希望建立万事万物的理论。进行这类尝试是完全应该的,要向未知领域再推进!但一定要采取辩证的观点来对待这一问题。即使这个理论取得进展,也并不意味着万事万物的问题就可以迎刃而解了。应该说物理学现在还是很有生命力的科学,但并不意味着要把它的全部命运都跟万事万物理论联系在一起,而是有很多新的发展余地。

3.3 物理学的开放性

物理学一直是一门生气勃勃的学科,这和它具有高度的开放性是密切相关的。它和技术并没有截然的

分界线,它和其他的自然科学也没有截然的分界线。它的门户总是开放的,鼓励跨学科的交流与沟通。

物理学和技术关系密切。当今的许多工程学科都是植根于经典物理学的某一分支,而20世纪的物理学进而诱发许多新兴的技术科学,如原子能技术、微电子技术、光电子技术等。即使像高能物理学那样的以基础研究为主的学科,由于它采用了大量和高技术有关的研究手段,因而并不出人意料之外,它会对当代信息、网络技术作出重要的贡献。

另外,在促进进交叉学科方面,物理学也大有可为。物理学是严格的定量科学。卢瑟福有句戏言,“一切科学,要么是物理学,要么就是集邮术”,显然已经不适合当代的情况。其他的自然科学早已摆脱了类似于集邮术的情况,在定量化方面,向物理学靠扰。20世纪的化学是巩固地建立在量子力学基础上的,和物理学已密不物理可分,有许多共同的研究对象。当然在观点上的差别还是有的,正如著名化学家赫许巴赫(D.Herschbach)所指出的,“典型化学家高于一切的愿望是理解为什么一种物质和其他物质行为不同;而物理学家则通常期望寻找出超出特定物质的规律”,正好使双方的研究互相补充。现代生物学早已面目一新,将它的基础建立在分子生物学上。而分子生物学本身就是诞生在卢瑟福的后继者主持的剑桥大学卡文迪什实验室。生物学的面貌显然己大为改观。正如著名生物学家吉尔勃特(S.W.Gilbert)所说的,“传统生物学解决问题的方式是完全实验的。而正在建立的新模式是基于全部基因都将知晓,并以电子技术可操作的方式驻留在数据库中,生物学研究模式的出发点应是理论的。一个科学家将从理论推测出假定,然后回到实验中去,追踪或验证这些假定”。看来物理学家在交叉科学方面尚大有可为。

参考文献

[1]美国物理学评述委员会著,长征等译,90年代物理学(共9册,原文于1986年出版,中译本).

北京:科学出版社.1992-1994

[2]Bardeen.J.Ann.Rev.Mat.Sci.,1980,l0;1

[3]Anderson P W.Science. 1972,177;393

[4]Kadanoff L P. From Order to Chaos. World Scientific. Singapore, 1993.399

[5]Gilbert S W. Nature, 1991,347;99

中国的过去现在与未来 -历史小论文。

一戏曲以窥中国文化 举世闻名的四大发明,悠扬悦耳的戏剧,韵味十足的书画,独特的建筑,优美的诗词,这些都是祖先留给我们的丰厚遗产。中国各个时期的科技文化,既保持与发扬了中华文化的优秀传统,继承与发展了前代成就,又借鉴、吸纳了异域文化的成果,包容了本国各族的文化,同时又为世界文化和后世文化发展作出了贡献。今天的中国依然身处于传统文化的影响之中。今天的文化继承和发展了传统文化,但是传统文化也面临着在新时代的转换。只有不断适应时代的发展,跟随历史的潮流,传统文化才能延续下去并发扬光大。 我透过戏曲一窥中国传统文化的过去现在与未来。 “百花齐放,百家争鸣” 戏曲指的是中国传统的戏剧。戏曲的内涵包括唱念做打,综合了对白、音乐、歌唱、舞蹈、武术和杂技等多种表演方式,不同于西方将歌剧、舞剧、话剧。古典戏曲是中华民族文化的一个重要组成部分,她以富于艺术魅力的表演形式,为历代人民群众所喜闻乐见。而且,在世界剧坛上也占有独特的位置,与古希腊悲喜剧、印度梵剧并称为世界三大古剧。 中国戏剧的历史十分悠久。戏曲的形成,最早可以追溯秦汉时代。但形成过程相当漫长,到了宋元之际才得成型。成熟的戏曲要从元杂剧算起,经历、明、清的不断发展成熟而进入现代,历八百多年繁盛不败,如今有360多个剧种。中国古典戏曲在其漫长的发展过程中,曾先后出现了宋元南戏、元代杂剧、明清传奇、清代地方戏及近、现代戏曲等四种戏曲模式。 说到戏曲就不得不说中国的国粹京剧了。自清代前期起,戏曲舞台发生了极大的变化,主要表现为戏曲的民间化和通俗化。先是昆曲、高腔折子戏的盛行,后是地方戏的兴起。从此,戏曲舞台不再是传奇戏的天下,昆曲与高腔有了来自民间的竞争者。戏曲的表演场所也由厅堂亭榭变为了茶肆歌台。乾隆五十五年,即公元1790年,为庆祝乾隆的八十寿辰,三庆班进京献艺,。徽调以其通俗质朴之气赢得了京城观众的欢迎,从此在京城扎下了根。继徽班进京之后,湖北汉调艺人也于道光年间(1828年前后)进京与徽班艺人同台献艺,他们同徽调艺人一样唱皮黄腔,只是更具湖北风格。京剧形成后不久,即迎来了它的第一个繁盛期,时间在清同治、光绪年间。当时出现了一批优秀的京剧演员并在此时引起了宫廷官方的喜爱。宫内优厚的物质条件促进了它艺术上的成熟。世纪初的新思潮极大地促进了京剧艺术的发展,京剧又迎来了它的第二个繁盛期。这一时期京剧的繁荣主要表现在优秀京剧演员的层出不穷上。而且,这个时期也是京剧流派产生最多的时期,旦行的梅(兰芳)、尚(小云)、程(砚秋)、荀(慧生);生行的余(叔岩)派、马(连良)派、麒(麟童)派;净行的金(少山)派、郝(寿辰)派、侯(喜瑞)派、丑行的萧(长华)派等。每个流派的创始者拥有一批数量可观的剧目,所以这个时期也是京剧文学的繁荣期。这个时期一直持续到了20世纪40年代末。 “有心托市,无人问津” 京剧是中华文化之集大成者,是中华文化的标志,是“国粹”。但京剧艺术古老的形式和缓慢的节奏已经不太适合当代人的审美情趣,创作题材单一和缺乏新意,使得近20年来上演的京剧剧目中,传统题材仍占据主导,“老戏老演、老

过去现在未来哲理句子

过去现在未来哲理句子 1、对过去视而不见的人,对未来将是盲目的。 2、耶稣曾经用极度强硬的方式坚持过许多次:“如果你不痛恨你的父亲或母亲,你就无法来追随我。”这句话听起来非常的严苛,他是慈悲的化身,他就是爱,你几乎难以想象这会是耶稣说出来的话语。他为什么要说这样严苛的话语呢?事实上,他的意思是你要放掉所有与性有关的连结。耶稣以一种象征性的方式在说:“你要超越性的中心。”一旦你超越了性,你马上就脱离了与过去的连结,也不再与未来有连结。作者:奥修出处:能量脉轮书 3、记忆的夜 时间从指尖下划过 暗淡的时光 凌乱的心情 未来在时空外等待 过去过去

现在现在 心入眠 4、情侣间最矛盾的地方就是幻想彼此的未来,却惦记着对方的过去。 5、他掉在两个世界里他意识到自己正望着面前柜台玻璃的脸左眼追忆过去右眼害怕的凝望未来--黑暗的错误的破灭的未来吊在光明和黑暗之间在尖酸的嘲讽和信仰之间作者:卡森·麦卡勒斯出处:心是孤独的猎手 6、每个圣人都有过去每个罪人都有未来。作者:奥斯卡·王尔德 7、我们这一生,要走很多条路,有笔直坦途,有羊肠阡陌;有繁华,也有荒凉。无论如何,路要自己走,苦要自己吃,任何人无法给予全部依赖。没有所谓的无路可走,即使孤独跋涉,寂寞坚守,只要你愿意走,踩过的都是路。你以为走不过去的,跨过去后回头看看,也不过如此。不回避,不退缩,未来终将到来。 8、愿你们每天都愉快地过着生活,不要等到日子过去了才找出它们的可爱之点,也不要把所有特别合意的希望都放在未来。作者:居里夫人 9、回忆已是过去式,旋转的秒钟才是现在时,昨天的太阳晒不干今天的衣服,加油吧,那才是未来。

曹培英:“图形与变换”教学漫谈

“图形与变换”教学漫谈 曹培英 一、引进的背景 为什么要在基础教育阶段引进图形变换的内容,怎样认识这一引进的必要性和可能性?不妨从数学本身和数学教育的历史视角切入讨论。 我们知道,约公元前300年,古希腊著名数学家欧几里得在前人基础上所写成的不朽名著《几何原本》,几乎包括了中小学所学习的平面几何、立体几何的全部内容。如此古老的几何内容,自然成了历次数学课程改革关注的焦点。其中最为激进的,如法国布尔巴基学派主要人物狄奥东尼(J.A.Dieadonne),甚至喊出了“欧几里得滚出去”的口号。但改来改去,欧几里得几何的一些内容,仍然构成了多数国家中小学数学几何部分的主要内容。有人称之为“不倒翁现象”。这是因为,欧氏几何从数学的视角,提供了现实世界的一个基本模型,非常直观地反映了我们人类的生存空间,刻画了我们视觉所观察到的物体形状及其相互位置关系。所以,这个模型的基本内容是学生能够理解和掌握的,而且应用广泛的基础知识。它比较适合中小学生学习,也有利于引导中小学生从形的角度去认识我们周围的物体和生活空间。 尽管欧氏几何仍然具有难以替代的学习价值,但在以往的教学中,它又确实逐步暴露出一些问题,例如内容体系比较封闭,脱离实际,教学代价太大等等。 ①这些问题需要数学课程的设计者与数学教学的实践者共同去面对、去解决。 那么,怎样改造这些传统的、古老的几何内容,怎样克服教学上的相关弊端呢? 一条途径是教学法方面的改进。首先是内容的精简与演绎体系的通俗化。如精选一些具有实用价值和对继续学习发挥基础作用的内容,打破封闭的公理体系,扩大公理系统,降低证明难度等等。其次是突出几何事实与几何应用,重视几何直观,以及合情推理对于演绎推理的互补作用等非形式化策略。 另一条途径是用近现代数学的观点,高屋建瓴地处理传统的内容。其中几何图形的运动变换观点就是这样的重要观点之一。 从数学发展的角度来看,1872年,德国大数学家克莱茵(Klein,1849—1925)在爱尔兰根大学宣读了现在大家叫做“爱尔兰根纲领”的演说,提出用变换群将几何分类,认为一种几何无非是研究某种变换群下的不变量。这是一个里程碑式的论断,它改变了近两千年来人们用静止的观点研究几何的传统方法,从变换的视角整体考虑几何学的问题,使当时的各种几何学有了统一的形式,对几何学的发展起到了重大的推动作用。“爱尔兰根纲领”公开发表后,很快被人们接受,一些新的几何分支相继建立,几何学的理论及应用呈现出前所未有的局面。必然地,这一观点也会对基础教育数学课程中几何教学的改革产生影响。 按照克莱茵的观点,我们所研究的几何图形的种种性质,只不过是研究几何图形在各种几何变换下的不变性和不变量。例如,线段的长度不变、角的大小不变和直线的性质不变,等等,都是在全等变换下的不变量和不变性。但线段的长度不变,在相似变换下就不再存在(相似比为1除外)。于是两线段的比不变,又 ①陈昌平主编.数学教育比较与研究[M].上海:华东师范大学出版社,2000: 400~401.

计算机的过去、现在与未来

计算机的过去、现在与未来 内容提要: 从上世纪四十年代开始,计算机的发展可谓是翻天覆地,突飞猛进,回首它的庞大沉重的过去,见证它迅速蜕变的成长历程,感叹它日新月异的现在,再让我们憧憬它辉煌绚丽的未来。 第一代计算机体积大,耗电大,可靠性差,维修复杂,价格昂贵,故障多;第二代计算机主要用于商业,政府机关,大学教学,而并没有普及;第三代计算机微型化和专业化,智能化,操作简易,价格便宜,每秒运算速度超过100万次;现在呢?已然是第四代了,普遍采用大规模集成电路,在性能上产生质的飞跃,进一步开拓了计算机的应用领域。在未来呢,第五代,第六代,第n代的计算机将以怎么样的新面貌创造更多的奇迹呢?我们都在想像都在期待。 关键字:计算机,过去,未来,现在,智能化,专业化,人性化 1、计算机的过去 印象中,过去的计算机就是笨重和庞大的代名词,用专业一点的说法:体积庞大、占地面积170多平方米、重量约30吨,功耗大、消耗近100千瓦的电力、故障率较高,运算速度为每秒1~2万次左右。显然,这样的计算机成本很高,使用不便。技术在它起步的时候总是有点寒碜,有这样那样的缺点,这样才迫使科学家们及更多的人去为之奋斗研究,改进它,完善它。随着时间向前推进的步伐,社会在不断进步,计算机也不

断迎来它更新换代的一个又一个高潮,超大规模集成电路的发明,使电子计算机不断向着小型化、微型化、低功耗、智能化、系统化的方向更新换代。20世纪90年代,电脑向“智能”方向发展,制造出与人脑相似的电脑,可以进行思维、学习、记忆、网络通信等工作。 也许我们还不知道过去的计算机研究者们,他们付出了多么艰辛的努力,有帕斯卡、莱布尼茨、巴贝奇、阿达、冯·诺依曼等等。 2、计算机的现在 现在的计算机我们每天都有在感受,触摸,使用,学习,享受,虽然说我们手里的这一台崭新的的计算机在昨天还是最新款,今天就变成了过时的机器了。这也正说明了计算机在当今时代发展的是多么的迅速。如今,计算机笔记本化,微型化,专业化,每秒运算速度超过100万次,不但操作简易、价格便宜,而且可以代替人们的部分脑力劳动,甚至在某些方面扩展了人的智能。于是,今天的微型电子计算机就被形象地称做电脑了。所以,电脑一定是计算机,但计算机不一定是电脑。以前的庞大机器就不能称之为电脑了。 如今,我们都已经成为“电脑一族”了。计算机的触角深入生活的每一个部分,每一个角落。娱乐:看电影,电影院转移到了一个更小的屏幕上;听歌,不需要收音机和磁带;看书,电子书在一步步威胁着印刷的生存。交流:QQ,MSN,人人,论坛,微博,数不清的交流软件,还有视频功能,不仅让鸿雁传书的浪漫褪色,更让电话都望尘莫及。学习:资料,数不清的信息,搜索的方便程度,远程学校,让学习实现电子化。连上课的课件都要用计算机来呈现,传统的黑板粉笔式教学又将何去何从呢?

漫谈物理小实验的开展

小实验大世界 ──漫谈物理小实验的开展 湖北省阳新县白杨中学费新仁 物理是一门以实验为基础的自然学科,任何概念的建立和规律的发现,都有赖于大量的实验探索和验证。然而,在目前新教材使用的初期阶段里,却出现了同步的实验器材还比较匮乏的现象。笔者在教学过程中,利用身边物品,进行物理实验。这些小实验,器材易得,操作简单、方便,人人可动手参与制作和实验,从实验探究过程中体验科学过程,领悟研究方法,学会科学思维,提高创新能力,使学生对所要学习的知识充满强烈的好奇心和旺盛的求知欲,实验效果较好,对教学具有重要的辅助作用。 一、做物理小实验的必要性 1.增强学生动手能力,深化理解课本知识 由于课时等因素的影响,教师在课堂教学中不可能将所有实验都让学生亲自动手操作,所以对于一些实验,学生就只是纸上谈兵;而且有很多物理规律有需要在物理现象的基础上理解,所以一些教师通过语言讲解及演算推理得出的结论的信服度不如让学生亲自动手操作实验并观察实验想象。正如物理教育家朱正光先生曾有过的精辟论述:“千言万语说不清,一看实验就分明”。而一些课后小实验就可巧妙解决这个矛盾。 2.深深吸引学生,激发学生探求知识的兴趣 伟大的物理学家爱因斯坦有句名言:“兴趣,是最好的老师”。在中学阶段,物理是学生们普遍反映较难学的一门课程,因此,如何激发学生对物理学科的兴趣对学好物理就显得至关重要。教师在引入新课时可使用课前设计的一些小实验、也可直接运用课后小实验来向学生置疑,利用学生的好奇心与求知欲,激发他们强烈的学习欲望。 3.理论联系实际,扩大学生的知识面 任何一门学科都与实际有着密切的联系,而且在与实际相联系的过程中,才能得到发展与完善。物理中有的概念、原理比较抽象、枯燥,而课后小实验起到了联系物理内容与日常生活的作用,使学生明白了所学习的内容与日常生活有着千丝万缕的联系,从而增加了学习物理的积极性和主动性 二、开展小实验的几种形式 1.结合教材,随堂训练 随堂实验应灵活机动。在抓好教材中“探究”的前提下,适当穿插或补充一些小实验,既有利于学生掌握知识,又能引导学生解答有关问题。 2.配合习题,同步训练

漫谈物理化学的发展及学科特点

漫谈物理化学的发展及学科特点 2007化教一班222007316011045 王祖龙 摘要:经历漫长而艰难的发展,物理化学终以一门新的学科出现。它具有自身独特的特点,并在化学中占有极重要位置。随着人们不断的深入认识,越来越多地为人们服 务。 关键词:物理化学形成发展学科特点前景 世界的变化日新月异,尤其在当今,新兴学科层出不穷,但统而观之,它们有一个重要特点,即很多都是边缘学科(亦称交叉学科,1926年美国首次出现)——横跨两种或两种以上基础学科。边缘学科的产生,是随着人们对物质运动形式及固有次序的逐步揭示,是当基础学科发展到一定阶段时的必然结果,是人们知识的深化。 化学,在其漫长的发展历程中,形成了自己独有的特色,并且一直以来对于人类文明的发展起到了很大的推动作用。与此同时,一系列化学的分支学科也不断形成,大大的丰富了化学知识,拓展了人们的眼界。在所有化学分支学科中,当属物理化学最为重要。 而物理化学,作为最早形成的第一门边缘学科,被称为交叉学科的典范,是现代化学的核心内容和理论基础,在基础化学课程体系中起着龙头作用。它的形成与发展经历了较漫长而艰难的时期。 一、物理化学的形成与发展 “物理化学”这个术语曾在十八世纪首先被罗蒙诺索夫创用,但是它的主要研究方向和基本内容却是在十九世纪下半叶才被确定下来。至今其研究内容也都是在当时的基础上不断深入发展的。对于物理化学的形成,不得不提到一个人——杰出的俄国一德国物理化学家奥斯特瓦尔德(Ostwald,W.F.,1853一1932),他为物理化学作出了最伟大的贡献,在1887年创办了第一份名副其实的专业性期刊:德文的《物理化学杂志》(Zeitschrift physikalische Chemie)121,标志着物理化学的形成.。奥斯特瓦尔德因此被称为“物理化学之父”,也曾被列宁誉为“伟大的化学家和渺小的哲学家”。 在十九世纪下半叶以前的近代化学初期,化学家往往又是物理学家,他们研究的问题常常相互有关,相互渗透和相互补充。例如,1807年法国化学家盖吕萨克观测到气体向真空膨胀后温度没有变化,于是物理学家便据此作出“气体膨胀至真空没有作功”这种结论。又如道尔顿,他起初是一位物理学家,后来才研究化学。他从长期观测气象着手,研究空气组成并得出气体的“微粒说”;再经过对碳的两种氧化物以及多种氢化物的组成的化学分析实验,在1804年正式提出倍比定律,后来将物理原子论(即哲学“微粒说”)发展成为“化学原子论”,成为了近代化学诞生的标志。 到了十九世纪下半世纪,随着工业生产力的发展,以及此前大量拥现的化学和物理学成就的逐步积累,近代化学迅速向专业化分工,化学家在研究方向及方法上和物理学家终于分道扬镰。物理化学正是在这个时期开始独立形成的。在这一时期,主要是以李比希和杜马等为代表的有机化学家。有机化学取得了重大的成就,使得从类型理论向结构理论的发展逐步系统化。同时在这一时期,有少数化学家(有的本来也就是物理学家和数学家)关心物理学的理论和发现,这就使得化学和物理学相结合起来,例如拉乌尔(Raoutt,F.M,1830一1901,法国)、瓦格(Waage,P.1933一1990,娜威)、范霍夫(Van't Hoff,J.H.,1852一1911) 以及能斯特(Nernst,H.W.,1864一1941,德国)等。他们都为物理化学最终成为现代化学的一个独立分支做出了开创性的工作,是初期物理化学的共同奠基人。 从道尔顿提出原子论以来,近代化学前期到奥斯特瓦尔德创办《物理化学杂志》之间,有着许多与物理化学形成有关的十分重要的史实: 1、关于原子一分子学说

中国的过去现在与未来__-历史小论文。

中国文化的过去现在与未来 ——戏曲以窥中国文化 249班王祥 举世闻名的四大发明,悠扬悦耳的戏剧,韵味十足的书画,独特的建筑,优美的诗词,这些都是祖先留给我们的丰厚遗产。中国各个时期的科技文化,既保持与发扬了中华文化的优秀传统,继承与发展了前代成就,又借鉴、吸纳了异域文化的成果,包容了本国各族的文化,同时又为世界文化和后世文化发展作出了贡献。今天的中国依然身处于传统文化的影响之中。今天的文化继承和发展了传统文化,但是传统文化也面临着在新时代的转换。只有不断适应时代的发展,跟随历史的潮流,传统文化才能延续下去并发扬光大。我透过戏曲一窥中国传统文化的过去现在与未来。 一、“百花齐放,百家争鸣” 戏曲指的是中国传统的戏剧。戏曲的内涵包括唱念做打,综合了对白、音乐、歌唱、舞蹈、武术和杂技等多种表演方式,不同于西方将歌剧、舞剧、话剧。古典戏曲是中华民族文化的一个重要组成部分,她以富于艺术魅力的表演形式,为历代人民群众所喜闻乐见。而且,在世界剧坛上也占有独特的位置,与古希腊悲喜剧、印度梵剧并称为世界三大古剧。 中国戏剧的历史十分悠久。戏曲的形成,最早可以追溯秦汉时代。但形成过程相当漫长,到了宋元之际才得成型。成熟的戏曲要从元杂剧算起,经历、明、清的不断发展成熟而进入现代,历八百多年繁盛不败,如今有360多个剧种。中国古典戏曲在其漫长的发展过程中,曾先后出现了宋元南戏、元代杂剧、明清传奇、清代地方戏及近、现代戏曲等四种戏曲模式。 说到戏曲就不得不说中国的国粹京剧了。自清代前期起,戏曲舞台发生了极大的变化,主要表现为戏曲的民间化和通俗化。先是昆曲、高腔折子戏的盛行,后是地方戏的兴起。从此,戏曲舞台不再是传奇戏的天下,昆曲与高腔有了来自民间的竞争者。戏曲的表演场所也由厅堂亭榭变为了茶肆歌台。乾隆五十五年,即公元1790年,为庆祝乾隆的八十寿辰,三庆班进京献艺,。徽调以其通俗质朴之气赢得了京城观众的欢迎,从此在京城扎下了根。继徽班进京之后,湖北汉调艺人也于道光年间(1828年前后)进京与徽班艺人同台献艺,他们同徽调艺人一样唱皮黄腔,只是更具湖北风格。京剧形成后不久,即迎来了它的第一个繁盛期,时间在清同治、光绪年间。当时出现了一批优秀的京剧演员并在此时引起了宫廷官方的喜爱。宫内优厚的物质条件促进了它艺术上的成熟。 二十世纪初的新思潮极大地促进了京剧艺术的发展,京剧又迎来了它的第二个繁盛期。这一时期京剧的繁荣主要表现在优秀京剧演员的层出不穷上。而且,这个时期也是京剧流派产生最多的时期,旦行的梅(兰芳)、尚(小云)、程(砚秋)、荀(慧生);生行的余(叔岩)派、马(连良)派、麒(麟童)派;净行的金(少山)派、郝(寿辰)派、侯(喜瑞)派、丑行的萧(长华)派等。每个流派的创始者拥有一批数量可观的剧目,所以这个时期也是京剧文学的繁荣期。这个时期一直持续到了20世纪40年代末。 二、“有心托市,无人问津” 京剧是中华文化之集大成者,是中华文化的标志,是“国粹”。但京剧艺术古老的形式和缓慢的节奏已经不太适合当代人的审美情趣,创作题材单一和缺乏新

漫谈物理教学中的情感教育

漫谈物理教学中的情感教育 发表时间:2011-04-29T11:46:11.280Z 来源:《中国校园导刊》2011年第4期作者:顾相燕[导读] 当学生对学习有了兴趣,就可以自觉克服困难,努力学习。顾相燕 【摘要】:当学生对学习有了兴趣,就可以自觉克服困难,努力学习。在学习的过程中培养积极良好的情感可以改变学生的学习态度,并促进其价值观的形成。在中学物理教学中,无论是使学生掌握科学知识、实验技能,还是进行思想教育和心理教育,都离不开情感的培养。同时贯穿于教学过程中情感教育同样有利于教师的教育教学水平的提高。所以在中学阶段有意识地培养学生积极的情感是很必要的。 【关键词】:感情实验兴趣智力物理是学生认为最难学习的课程之一。学生之所以怕学物理,除智力因素外,缺乏对科学的积极的情感也是十分重要的原因。当学生对学习有了兴趣,就可以自觉克服困难,努力学习。在学习的过程中培养积极良好的情感可以改变学生的学习态度,并促进其价值观的形成。在中学物理教学中,无论是使学生掌握科学知识、实验技能,还是进行思想教育和心理教育,都离不开情感的培养。所以在中学阶段有意识地培养学生积极的情感是很必要的。 一、情感教育的内含 所谓情感教育,从最根本的涵义上说,就是指教师在教学过程中,在充分考虑认知因素的同时,充分发挥情感因素的积极作用,以完善教学目标,增强教学效果的教育。情感教育是教育过程的一部分,它关注教育过程中学生的态度、情绪、情感以及信念,以促进学生的个体发展和整个社会的健康发展为目标。西方学者把情感教育看成是教育过程的密不可分的一部分,而不是将它看成是一种特殊的独立的教育形式。通过在教育过程中尊重和培养学生的社会性情感品质,发展他们的自我情感调控能力,促使他们对学习、生活和周围的一切产生积极的情感体验,形成独立健全的个性与人格特征,真正成为品德、智力、体质、美感及劳动态度和习惯都得到全面发展的有社会主义觉悟的有文化的劳动者。 对未知事物的好奇与冲动,是科学探究的开端,正是好奇心引导着人类打开了科学的大门,而每一个学生天生具有这种情感。研究过程中的喜悦与快乐是建立在自己的思维过程和辛勤劳动的基础上的。这种情感体验也是研究、学习过程中重要的情感之一。学习过程中的情感因素虽然不直接参与认知活动,但却直接影响着认知活动的效率;它在教学活动中主要表现为:激发学生的学习兴趣成为学习的内在动力,激发学生自觉地去克服学习中的困难,保持积极的学习状态。调查结果表明,情感(非智力)因素对学生的学习兴趣,学习效果起着不可忽视的作用。 二、物理教学中的情感教育对学生的促进作用 物理学科对学生的动手能力、观察能力和生活经验的积累都有较高的要求,就高中生的心理和生理特点而言,他们一方面有着强烈的求知欲望,对各种新鲜事物好学、好问,富于幻想;但他们这种学习积极性往往与短暂的“直接兴趣”挂钩,遇到较为抽象、理性的物理知识时,这些困难便很快地使他们失去了学习的积极性,最后丧失了学习物理的兴趣。在这种情况下如果不加以正确的引导,而是让学生长期处在一种胆怯、恐惧和过度焦虑的氛围中,甚至会波及到学生学习其他学科的信心。培养学生的情感,可以从根本上改变学生的学习态度,培养意志品质,形成正确的价值观。也就是说,我们进行情感教育的目的不是单纯地为了提高学生的物理成绩。而是希望利用物理学科的这些特点,以高中物理课为载体,提高学生的整体素质,使学生形成健康人格,建立正确的价值观,进而成为有用之才。 高中物理学科中渗透情感教育能有效的培养道德感、理智感和美感。道德感包括的内容有爱国主义、集体主义、对公共事业的责任感、义务感、人道主义,等等。新课标物理课程中始终贯穿着这些内容。例如,《墨经》中对力的定义,对小孔成像的解释,火箭对反冲作用的应用等。通过介绍可以使学生更加了解我国占代的科学成就和思维形式,这是爱国主义的一种具体体现。科学是把双刃剑,既可以造福人类,又可以毁灭世界,通过对核能的讲解可以使学生认识到维护世界和平的重要,也就是使学生具有对社会的责任感。 学生欣赏科学美需要教师的引导。物理中充满了美,科学与艺术成为很多人关注的焦点,在中学物理课中应充分体现这一点,如简洁、对称、对立统一等等。让学生在学习物理的过程中也能产生审美的愉悦。当然,这不是简单的为了提升兴趣,而是借助培养学生的审美能力,改变学生认识事物的角度,努力提高学生的综合素质。 二:情感教育对教师的教育教学水平的提高在大力提倡素质教育的今天,教师只向学生传授课本上的知识是远远不够的;这就要求教师不断的进行学习,不断的提高自身的教育教学水平;其中,情感教育是渗透在整个教学和教育过程中的。首先,教师要寓教于乐,给学生鼓励,使学生体验到学习和成功的乐趣。再有,教师要控制好自己的情绪,完善自己人格,用自己的高尚的情操逐步影响学生在中学物理教学过程中,物理教师对自己的工作是乐意还是厌倦,这体现了物理教师对教学工作的情感。由于教师在教学中起主导作用,教师的情感对学生具有强烈的感染作用。如果片面的认为物理教师讲授的是科学知识,只要用符合逻辑和科学的语言去说明事理就可以,课堂教学中表情麻木冷漠,讲授平淡无奇,就很容易造成课堂气氛压抑、沉闷,学生则容易不专心听讲,不愿意回答老师的问题,对老师布置的任务马虎敷衍,久而久之则形成对物理学科的消极情感。教师只有用真诚和爱心在师生之间架起互相信任、互相尊重的桥梁──哪怕“最坏”的也给予尊重、给予关爱,报以微笑,学生才会喜欢他这个人,进而喜欢他教的学科,这样一来,因为学生水平的提高就迫使教师就不断的提高自身的教育教学水平;,而教师自身的教育教学水平越高、就越容易对学生产生强烈的吸引力,这样就形成了良性循环,达到了师生的共同进步。 情感教育是素质教育的重要组成部分,它不仅是学科教学手段、方法,更是学科教学的目标之一。在物理学科的教学中进行情感教育是使学生学好物理的需要,也是全面育人的需要。总之,培养学生积极的情感,需要教师把握好教育教学的每一个环节,不放过任何一个教育时机。因此教师应该用情感教学陶冶学生的性情,完善学生的道德品行,从而把学生培养成身心和谐发展的健康的合格的人才。(河北省邯郸市第四中学)

我们祖国的过去现在和未来

我们祖国的过去,现在和未来 六(2)班吴子捷 我们的祖国拥有着其他国家未曾获得过的悠久历史,从三皇五帝到新中国的成立,已经过去了悠悠的几千年的漫长时间,在这段时间里,我们的中华民族饱经风雨,经历了无数的沧桑巨变,创造了无数的辉煌,收到了无数的侵略,但我们的祖国,我们的民族用我们独有的精神,坚持到了今天,开创了我们今天的新中国。 在过去的几千年时光中,虽然我们的祖国一直处在奴隶制和封建制度的控制之下,但还是获得很多的辉煌和成就,让所有的人类为之惊叹,为世界的今天作出了不可磨灭的发展。 在三皇五帝的时期一直流传着神农氏尝百草、黄帝战蚩尤、大禹治水、尧舜让禅的佳话。商代的盘庚迁都,周代的姜太公钓鱼,春秋战国的长勺之战、卧薪尝胆、周游列国、南门立木、田忌赛马、完璧归赵、窃符救赵、围魏救赵、荆轲刺秦王激励着无数的后来之士。秦时的破釜沉舟,汉时的张骞出使西域、飞将军李广、苏武牧羊、司马迁写史记、昭君出塞、投笔从军、张衡发明地动仪、医圣张仲景,三国时桃园三结义、三顾茅庐、煮酒论英雄、官渡之战、神医华佗、七步成诗,两晋时的闻鸡起舞已经吟唱了几千年。隋代的李春修建赵州桥,让我们见证了古人的精湛技艺;唐代的贞观之治、开元盛世,让当时的中国成为了世界上最强大的国家;宋代的包青天、活字印刷术、资治通鉴,让我看到了当时的文化,韩世忠、岳飞,体现了宋代将领的爱国之心,李清照、辛弃疾、文天祥将宋代的诗词流传于天下;元代的成吉思汗开创了当时最大的帝国,天文学家郭守敬、纺织家黄道婆、书画家赵孟頫、作家关汉卿,体现了元代中国的发展;明代的郑和下西洋讲古中国的文化传播到世界各地,于谦、戚继光、袁崇焕又是一代爱国名将,徐霞客、李时珍编写明代的游记和医术;清代的康熙乾隆又创出一番新盛世。 这些过去的辉煌见证了我们祖国的过去,但我们也不能忘记过去的耻辱,鸦片战争、火烧圆明园、日本的侵略、南京大屠杀让我们铭记,成为了我们心中的一次惨痛的记忆,成了中国历史上最为惨痛的一页。 我们祖国的现在 光阴似箭,日月如梭,悠悠的五千年已经过去,从1949年10月1日开始,我们的伟大祖国进入了一个全新的时代。这个新时代给我们的人民,我们的祖国,带来了前所未有的富足和安定,让历尽沧桑的中国人民真正过上了安居乐业的生活。 在这个美丽的新时代中,我们的祖国得到了前所未有的伟大发展,从而成为了这个世界上的泱泱大国,站立在了世界的屋脊之上,站立在了世界民族之林,让我们的祖先,为我们这一群炎黄子孙感到骄傲,感到自豪,感到无比的光荣,无比的欣慰。 在这个科技发达的新时代,我们完成了我们祖先一直梦想的事,我们拥有了属于自己的飞机、坦克、战舰,拥有了核弹、原子弹、卫星,杨利伟叔叔这些伟大的航天员们,代表着我们的祖国,我们的人民,第一次飞上了太空,第一次走进了太空,第一次将我们中华人民共

中国传统文化的过去现在和未来

《中国传统文化的过去现在和未来》 历经五千年沧桑岁月,中华民族经历了战和更替、聚散分合、对峙与融汇,却始终不曾割断共同的文化传统。民族,而且越是历经磨难,遭遇坎坷,多元一体的中华民族的和对中华文明的越是增强。千百年来,对国家统一的不懈追求日渐发展成为中华民族高于一切的政治理想和。而造就中国历史这一鲜明特征的重要因素,不能不说是“”文化观念的潜移默化影响所致。它像一根坚韧的将中国境内各民族联系、团结在一起,逐渐形成为中华民族大家庭,并日见巩固。我们今天从历史的角度考察中国统一大势的形成、巩固和发展这一历史现象,就不能不充分认识到中国优秀的传统文化在实现国家统一过程中的特殊地位与重要作用。 追求“”的价值观是奠定和强化国家统一的牢固基石 对于国家统一大势的形成与发展的意义,首先在于“”价值观长期以来深入人心,从而使统一成为人们所普遍认同的理想政治秩序。 早在,中华民族随着内部凝聚力的不断增强,就初步形成了“大一统”观念。《·》中的“溥天之下,莫非王土;,莫非”,就表达了这种思想倾向和价值取舍。而战国时代“九州说”与“五服说”的盛行,则反映出人们的大一统观念进一步走向成熟。正如有的学者所指出:“众口言九州的情景,反映了九州观念普遍流行于先秦社会。……九州就是中国,九州的完整代表着中国的完整”(:《“体国经野”:试古代的王朝》,《二十一世纪》2000年8月号)。在出现这种追求统一的思想趋向不是偶然的,而是有其历史必然性。当时,西周社会创立的遭遇到根本性的冲击,早期初始形态的“一统”格局趋于瓦解,天下缺乏合法一统的政治秩序,结果导致,混战绵延,因而人们渴望重新实现政治上的统一,建立起合理合法的政治秩序。这一点在当时大多数思想家的学说中都得到了充分的反映。虽然他们在追求统一的方式上存有歧见,但天下必须“定于一”则是普遍的共识。譬如,法家主张“事在四方,要在中央”(《·扬权》);提倡“尚同”,“天子唯能一同天下之义,是以天下治也”(《墨子·尚同上》);儒家强调“礼乐征伐自天子出”(《孟子·》),并憧憬着“四海之内若一家”(《》)的局面。这些思想充分反映了“大一统”观念已成为人们普遍的和,并发展成为观念的一个重要内容。正是具备着这样的思想基础,当统一条件基本具备之时,才会由秦国通过战争的手段,横扫六合,六国,使这种政治理想变成了现实,“,”,建立起多民族的统一的国家;才会有继秦而起的两汉大统一,出现汉武帝在“文”中所描绘的那幅国家“大一统”的理想图画:“四海之内,莫不为郡县,八蛮,咸来贡职。与天无极,人民,永得。”(《后汉书·祭礼志》注引《风俗通》)

过去现在和将来的名言警句

过去现在和将来的名言警句 ●假如你希望现在与过去不同,请研究过去(斯宾诺沙) ●如今逗乐我们的一切都曾是某种危急关头(弗吉妮亚·伍尔夫) ●不要等到日子过去了才找出它们的心爱之点(法国) ●不要埋首于远昔的过去,把握现在吧(德国) ●不要让昨天占用今天的时间(美洲) ●好汉不夸当年勇 ●毋为已消逝之年华叹息,须正视匆匆溜走的时光(欧洲) ●一切过去了的都会变成亲切的思念(普希金) ●观往知来 ●最可怕的是看见你过去憎恨的一切披着将来的外衣又回到你面前(让·罗斯唐) ●过去属于死神,将来属于你自己(英国) ●“过去”是我们临终的母亲,其实不是已经死亡的事物。我们的将来不断使她出现在我们的心灵中(梅瑞狄斯) ●往者不可谏,来者犹可追 ●应展望将来,莫留恋过去(拉丁美洲) ●记住昨天,假如不是为了激励明天的进取,那就莫如忘却 ●将来现在将来,于现在有意义,才于将来会有意义(鲁迅) ●将来走到我们中间,为了能在它发生之前很久就先行改变我们(里尔克)

●对于将来的真正大方在于向现在献出一切(法国) ●为着后来的回忆,小心着意地描绘你现在的图画 ●追上将来,抓住它的本质,把将来转变为现在(苏联) ●创造明天的是今天,创造将来是眼前,当你痴痴地坐等将来的时候,将来就从你的懒惰的双手中畸形丑恶地走出来(克劳塞维茨) ●把每时每刻都用在自己的事业上的人,对他来说都是足够的原因(塞涅卡) ●时间的步伐有三种:将来姗姗来迟,现在像箭一般飞逝,过去永远静立不动(席勒) ●在无论何时,现在只是一个交点,为过去与将来相遇之处,我们对于二者都不能有什么架打。不能有世界而无传统,亦不能有生命而无活动(蔼理斯)

漫谈男孩物理学

漫谈男孩物理学 --秦承群(08材化) 说起“男孩物理学”,许多人也许不知所云。物理学又有了新的分支嘛?当我告诉你:“男孩物理学”就是量子力学时,你也许就不觉得陌生了,那么了量子力学为什么叫“男孩物理学”呢?原因很简单,它时由一批年轻人建立并发展得科学。爱因斯坦提出量子假说时26岁,玻尔提出量子模型时仅24岁,泡利提出“泡利不相容”原理时仅23岁,还有狄拉克、乌仑贝克、古施密特、约尔当,他们也都是23岁上下而已。故也有人说量子理论得发展时年轻人得天下,这是很有道理的。 谈到量子力学,许多人陌生而又熟悉。量子力学当真时无人不知无人不晓,但真正理解它得人却又是凤毛麟角。从上个世纪初,量子力学以摧枯拉朽之势推翻了经典力学,使人们认识到ijingdianlixue仅是量子力学中特而又特得特例。量子力学应用范围十分广泛,已超出了微观领域范围,在固体物理、院子核物理、天体物理、院子物理、表面物理、戒指物理、分子物理、化学、生物等方面有重要意义。在量子力学得基础上建立了院子物理学理论、原子核理论和凝聚态物理理论,统一解释了院子和分子得光谱、元素周期表、各种分子键以及物性现象。量子力学无疑好似人类理性得新高峰。如此伟大得理论,玻尔说:“谁不对量子力学表示惊

讶,谁就没有真正理解它!然而得它的创立却不像牛顿创立经典力学、爱因斯坦创立相对论那样平坦。 19世纪末,经典力学、经典动力学、经典热力学得以完善。三大理论相互支撑,人们陶醉在喜悦之中。有人放言:“物理学得未来将只有在小数点后第六位后面寻找。“科学得大厦已经建成,剩余的只是做一些修补工作。”然而,1900年开尔文在演讲中说:“物理学充满灿烂阳光得天空笼罩着量多乌云。”开尔文却怎么也没想到这两朵小小的乌云将宣告经典力学注定是昙花一见。着两朵乌云力量之大,至今仍令人惊异。其中一朵乌云就是“关于迈克尔逊—莫雷实验”证明了光速得不变性,直接导致Ulead相对论的产生;另一朵乌云就是“黑体辐射现象”,也被称作“紫外灾难”,这导致了量子理论得出现。想当年,一个苹果砸出了万有引力,而今两朵乌云酝酿了两大奇迹。 第二朵乌云想必时看中了普朗克。他凭着自己对物理学得热情与执着已为解决“紫外灾难”奋斗了6年。六年中,他经历了无数次得失败,他试图用经典理论去解释,但一次又一次得走到绝境。终于普朗克鼓足勇气,抛弃了经典理论,提出量子理论。于1900年12月14日发表了论文。天啊,普拉没课竟然敢向连续性挑战,推翻被无数人承认得连续性,兼职令人不可思议。难怪普朗克对他儿子说自己得发现要不成为牛顿以后最伟大的发现,要不一文不值。显然普朗

过去现在与未来_日记500字

过去现在与未来 过去现在与未来(1)350字看到这个题目,或许很多人都会觉得有点玄虚,其实我想说的只是一个简单的道理罢了。 首先,什么是过去?对我们来说,昨天就是过去,几年前就是过去,也就是时间相对于我们现在来说,已经过去了。而未来也是相同,在那段时间还没发生的就是未来。 但是,过去真的过去了吗?又或者说,未来还没发生吗? 这个宇宙到处充斥着奥秘,时空旅行也将成为现实。而我觉得,时空旅行确实是可以做到的,只是时间与空间,还有是否能够改变历史,成了一个疑问。 昨晚吃了一顿饭,现在在读书,明天去上学,假设我们现在的感知是如此吧。那么,相对于昨晚来说,明天在读书,后天去上学,未来的感知也是不同的。那么,说到这里,我会有这一个疑问,当我们在读书的时候,明天是不是已经去上学了呢?而昨天是否仍在吃饭? 或许有人说,如果我明天不去上学,那么明天就不会有这件事的发生了。也就是我们平常说的改变了未来。而我倒觉得,我们并非改变了未来。 现在仍在读书,决定明天不去上学。那么相对明天来说,只能是昨天选择了不去上学。换句话说,原本今天是要吃饭的,那明天假设就不会饿了,而现在我们就不去吃,那明天就饿了。其中,是不是有改变未来的存在呢? 关于国庆节的作文:回忆过去,珍惜现在,展望未来祖国生日庆典550字新中国成立后,已经有58个年过去了。58年在中国五千年的历史长河中可以算得上弹指一挥间,眨眼即过。但这58年的时间里,中国各个方面、各个领域飞速发展,国富民强,在中华大地上从没有任何一段时间可以比拟。 创业艰辛,百业待兴,一穷二白,正是新中国诞生时的真实写照。解放前的重工业主要集中在东北,还是伪满洲留下来的一点家当;当时的经济在国民党统治下,物价飞涨,法币、金元券大行其市,换走了大量黄金、美元等硬通货。货币被做废多次,民不聊生,人民生活在水深火热之中。就是一根铁钉都叫洋钉,因为当时生产不了,全部要靠进口。一盒火柴也生产不出来,要用银子去换,用大米去换。火柴在清朝成为贵族阶级的奢侈品,叫洋火。经过中国共产党浴血奋战才换来今天的和平,人民才取得了解放,多么来之不易呀。 经过建国58年的努力,从无到有,从小到大,从少到多。国家改革开放,富强起来。吃、穿、用、住这些关乎民生的生产产品种类繁多,款式新潮。人们从原先的吃不饱到现在吃的好,还要吃的有营养,吃得有科学。从一大家住在一间屋里,到现在家家有房住,有宽敞明亮,设施齐全的大屋子里住。从骑自行车,到现在开着的私家小汽车。几年上一个新台阶,使大众由贫到富,由富到贵,向全面小康社会迈进。解放前,租界公园的牌子上写着:华人与狗不得入内。而今我们举办了世界奥运盛会,以宽容的胸怀迎接着四大洋七大洲的朋友们。中国由原先的受侮辱到现在扬眉吐气,走在世界的前列。 所以要继续加深改革开放,继续发展经济,在飞速发展的环境下,更上一层楼,让中国人民更加富裕起来,让国家极积赶上并努力超过发达国家,处于领先的地位。让中国更加强大富强。 - 过去,现在,未来……1100字时间有三种步伐:未来姗姗来迟,现在像箭

(修订版)物理_漫谈社会物理学-张建玮_狄增如

漫谈社会物理学 程洁1张建玮2*狄增如1* 1北京师范大学管理学院系统科学系北京 100875 2北京大学物理学院北京 100871 摘要本文主要回顾了社会物理学从古典时期发展到现在的历史,并简要介绍了当代社会物理学的研究问题和成果,包括三个方面:行人动力学,社会网络分析和舆论动力学。 关键词:社会物理学,行人动力学,社会网络,舆论动力学。 An Introduction to Sociophysics Jie Cheng1,J.W. Zhang2,Zengru Di1 1Department of Systems Science, School of Management, Beijing Normal University, Beijing 100875, China 2School of Physics, Peking University, Beijing 100871, China Abstract This article mainly reviews the history from classic age to nowadays of social physics, and briefly introduces main research topics and progresses. It includes three parts hereunder, i.e., pedestrian dynamics, social network analysis and opinion formation dynamics. Key words: social physics, pedestrian dynamics, social network, opinion formation dynamics. 法国社会哲学家孔德(Auguste Comte)把社会学描述为―社会物理学‖[1]。二十世纪,无论在社会科学还是在自然科学研究中,复杂性问题的涌现,让关注微观机制的社会学家和侧重宏观普适层面的物理学家感到棘手。1996年,权威的古尔班肯社会科学重组委员会建议取消―自然‖和―社会‖科学的界限。把两者看作是以复杂性为特征的科学。该委员会建议,基于动态非均衡,强调多元目标、分叉、选择、历史依赖性等,以及内在及固有不确定性的分析应该是所有科学的模式[2]。―社会物理学‖作为20世纪末兴起的新型交叉学科,它的概念和研究领域,在不断的酝酿和成型。英国经济地理学家思瑞夫特(Nigel Thrift)认为是存在复杂感知结构的涌现[3],美国物理学家卡普拉(Fritjof Capra)设法构建统一的概念框架来理解物质和社会结构[4]。物理学家劳林(Robert Laughlin)和帕恩斯(David Pines)总结认为[5],尽管物理学家曾经研究事物如何被还原的基本准则,但目前它研究的是组织的多重形态。虽然社会物理学到底是一门怎样的学科,仁者见仁,智者见智,尚没有一个统一的定论,但却是给我们提供了更好的理解我们处在的这个真实世界的方法和工具。 当代社会学家、人类学家及哲学家认为,人类历史的形成是偶然中的必然,是具有其自身发展的规律和特点的。从个体心理和行为的角度看来,可能是无序的、杂乱无章的,是具有―自由意志‖的。社会科学的进化生物模型无法预计集体行为,它们假定人群的行为是个人行为的简单外推和迭加,而无视交互所产生的非线性关系。而从宏观的层面上观察,如鸟群的运动,老鼠蚂蚁的恐慌性逃生,通过视频资料,发现了有趣的规律和动力学特征,类似物理中的相变。物理学家利用物理学概念和模型,从一个全新的角度阐释了社会学,并给社会学中存在的问题给出了具有可行性的方案和建设性意见。 本文主要是对社会物理学的研究概况和进展做一个综述性的介绍,以希对社会物理学感兴趣自然科学工作者还是社会科学工作者有所帮助和启发。目前社会物理学,主要在三个领域,有了比较成熟的研究,包括行人动力学,社会网络,以及舆论动力学等。当然在别的领域如经济领域,社会物理学也有大展身手的机会,已有相关的文献和综述对此作系统的介绍,这里就不赘述。 *通讯作者:张建玮(james@https://www.doczj.com/doc/cf7706872.html,),狄增如(zdi@https://www.doczj.com/doc/cf7706872.html,)。

的过去现在与未来历史小论文

的过去现在与未来历史 小论文 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

一戏曲以窥中国文化 举世闻名的四大发明,悠扬悦耳的戏剧,韵味十足的书画,独特的建筑,优美的诗词,这些都是祖先留给我们的丰厚遗产。中国各个时期的科技文化,既保持与发扬了中华文化的优秀传统,继承与发展了前代成就,又借鉴、吸纳了异域文化的成果,包容了本国各族的文化,同时又为世界文化和后世文化发展作出了贡献。今天的中国依然身处于传统文化的影响之中。今天的文化继承和发展了传统文化,但是传统文化也面临着在新时代的转换。只有不断适应时代的发展,跟随历史的潮流,传统文化才能延续下去并发扬光大。 我透过戏曲一窥中国传统文化的过去现在与未来。 “百花齐放,百家争鸣” 戏曲指的是中国传统的戏剧。戏曲的内涵包括唱念做打,综合了对白、音乐、歌唱、舞蹈、武术和杂技等多种表演方式,不同于西方将歌剧、舞剧、话剧。古典戏曲是中华民族文化的一个重要组成部分,她以富于艺术魅力的表演形式,为历代人民群众所喜闻乐见。而且,在世界剧坛上也占有独特的位置,与古希腊悲喜剧、印度梵剧并称为世界三大古剧。 中国戏剧的历史十分悠久。戏曲的形成,最早可以追溯秦汉时代。但形成过程相当漫长,到了宋元之际才得成型。成熟的戏曲要从元杂剧算起,经历、明、清的不断发展成熟而进入现代,历八百多年繁盛不败,如今有360多个剧种。中国古典戏曲在其漫长的发展过程中,曾先后出现了宋元南戏、元代杂剧、明清传奇、清代地方戏及近、现代戏曲等四种戏曲模式。 说到戏曲就不得不说中国的国粹京剧了。自清代前期起,戏曲舞台发生了极大的变化,主要表现为戏曲的民间化和通俗化。先是昆曲、高腔折子戏的盛行,后是地方戏的兴起。从此,戏曲舞台不再是传奇戏的天下,昆曲与高腔有了来自民间的竞争者。戏曲的表演场所也由厅堂亭榭变为了茶肆歌台。乾隆五十五年,即公元1790年,为庆祝乾隆的八十寿辰,三庆班进京献艺,。徽调以其通俗质朴之气赢得了京城观众的欢迎,从此在京城扎下了根。继徽班进京之后,湖北汉调艺人也于道光年间(1828年前后)进京与徽班艺人同台献艺,他们同徽调艺人一样唱皮黄腔,只是更具湖北风格。京剧形成后不久,即迎来了它的第一个繁盛期,时间在清同治、光绪年间。当时出现了一批优秀的京剧演员并在此时引起了宫廷官方的喜爱。宫内优厚的物质条件促进了它艺术上的成熟。世纪初的新思潮极大地促进了京剧艺术的发展,京剧又迎来了它的第二个繁盛期。这一时期京剧的繁荣主要表现在优秀京剧演员的层出不穷上。而且,这个时期也是京剧流派产生最多的时期,旦行的梅(兰芳)、尚(小云)、程(砚秋)、荀(慧生);生行的余(叔岩)派、马(连良)派、麒(麟童)派;净行的金(少山)派、郝(寿辰)派、侯(喜瑞)派、丑行的萧(长华)派等。每个流派的创始者拥有一批数量可观的剧目,所以这个时期也是京剧文学的繁荣期。这个时期一直持续到了20世纪40年代末。 “有心托市,无人问津” 京剧是中华文化之集大成者,是中华文化的标志,是“国粹”。但京剧艺术古老的形式和缓慢的节奏已经不太适合当代人的审美情趣,创作题材单一和缺乏新意,使得近20年来上演的京剧剧目中,传统题材仍占据主导,“老戏

相关主题
文本预览
相关文档 最新文档