当前位置:文档之家› 浅析信道编码检错纠错的原理及方法

浅析信道编码检错纠错的原理及方法

浅析信道编码检错纠错的原理及方法
浅析信道编码检错纠错的原理及方法

浅析信道编码检错纠错的原理及方法

【摘要】信道编码在信息码元中插入一些冗余码元(监督码元),使得整体码元具有一定规律。当出现传输错误时,可以通过规律,对错误进行检测乃至纠正。

【关键词】信道编码;检错纠错;信息码元

在数字通信中,噪声的存在使得最终恢复出的基带信号出现误码。在数字通信中可以依据这样一类方法来减少数据错误:将发送的数字信号码元序列按照某种规则进行编码,使得新的码元序列具有一定的规律。这样接收方能够根据编码的规则,对收到的信号码元组进行检测,从而发现或者纠正数据传输中出现的误码。这便是信道编码,又叫差错控制编码、纠错编码、抗干扰编码或可靠性编码等。这些名称分别体现了信道编码某一方面的特点:编码是为了增强信号在信道中传输的可靠性,也是为了控制码元差错,可以对干扰造成的误码进行检错和纠错。

1 信道编码的概述

信道编码检错和纠错的基本思路是按某种规则在传输的码元序列之中,附加一些冗余的码元。这些冗余码元的取值与原来包含初始信息的码元取值有关。由于插入了冗余码元,原本只是单纯传输信息的码元序列便具有了特定的规律,而这些冗余码元也就对信号起到了监督作用。当数据传输中出现错误时,误码可能会破坏信道编码的规律,这样接收方就能发现错误,即检错;有些情况下,还能根据传输到的错误码组和编码规律,推断出原正确码元组,即纠错。因此,这些冗余码元又被称为“监督码元”。

2 信道编码的分类

按照不同功能分为检错码、纠错码和纠删码。检错码只具备检查码组错误的功能;纠错码还能对部分错误进行纠正。纠删码对超出纠错范围的误码能将其删除。

按照纠正错误的类型不同,分为纠正随机错误的码和纠正突发错误的码。随机错误的误码从统计上是彼此独立的,同一个码组内发生若干个码元错误的概率远远低于只有一两个码元错误的概率。这意味着信道编码哪怕只纠正每个码组内一两个码元错误,也可使得整个系统的误码率大幅度下降。但有时信道中出现强度大,持续时间长的脉冲噪声,使连串的码元受到干扰,称为突发错误。例如连续若干位的0变成1。这时必须用专门针对突发错误信道编码方式。

按照信息码元和监督码元之间的制约规则不同,分为分组码和卷积码。分组码是指在每一组码元(k位信息码元和r位附加监督码元)中,所有的监督码元取值,仅仅与这一组的k位信息码元有关,而与其他组的信息码元无关。分组码

汉明码纠错

汉明码的编码检错原理 针对4位数据的汉明码编码示意图 汉明码是一个在原有数据中插入若干校验码来进行错误检查和纠正的编码技术。以典型的4位数据编码为例,汉明码将加入3个校验码,从而使实际传输的数据位达到7个(位),它们的位置如果把上图中的位置横过来就是: 数据位1234567 代码P1P2D8P3D4D2D1 说明第1个 汉明码 第2个 汉明码 第1个 数据码 第3个 汉明码 第2个 数据码 第3个 数据码 第4个 数据码 注:Dx中的x是2的整数幂(下面的幂都是指整数幂)结果,多少幂取决于码位,D1是0次幂,D8是3次幂,想想二进制编码就知道了 现以数据码1101为例讲讲汉明码的编码原理,此时D8=1、D4=1、D2=0、D1=1,在P1编码时,先将D8、D4、D1的二进制码相加,结果为奇数3,汉明码对奇数结果编码为1,偶数结果为0,因此P1值为1,D8+D2+D1=2,为偶数,那么P2值为0,D4+D2+D1=2,为偶数,P3值为0。这样,参照上文的位置表,汉明码处理的结果就是1010101。在这个4位数据码的例子中,我们可以发现每个汉明码都是以三个数据码为基准进行编码的。下面就是它们的对应表: 汉明码编码用的数据码 P1D8、D4、D1 P2D8、D2、D1 P3D4、D2、D1 从编码形式上,我们可以发现汉明码是一个校验很严谨的编码方式。在这个例子中,通过对4个数据位的3个位的3次组合检测来达到具体码位的校验与修正目的(不过只允许一个位出错,两个出错就无法检查出来了,这从下面的纠错例子中就能体现出来)。在校验时则把每个汉明码与各自对应的数据位值相加,如果结果为偶数(纠错代码为0)就是正确,如果为奇数(纠错代码为1)则说明当前汉明码所对应的三个数据位中有错误,此时再通过其他两个汉明码各自的运算来确定具体是哪个位出了问题。 还是刚才的1101的例子,正确的编码应该是1010101,如果第三个数据位在传输途中因干扰而变成了1,就成了1010111。检测时,P1+D8+D4+D1的结果是偶数4,第一位纠错代码为0,正确。P1+D8+D2+D1的结果是奇数3,第二位纠错代码为1,有错误。P3+D4+D2+D1的结果是奇数3,第三但纠错代码代码为1,有错误。那么具体是哪个位有错误呢?三个纠错代码从高到低排列为二进制编码110,换算成十进制就是6,也就是

编码器知识详解

光电编码器的工作原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90。的两路脉冲信号。 编码器的分类 根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。 1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90。,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。显然,吗道必须N条吗道。目前国内已有16位的绝对编码器产品。 1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 光电编码器的应用 1、角度测量 汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。重力测量仪,采用光电编码器,把他的转轴与重力测量仪中补偿旋钮轴相连,扭转角度仪,利用编码器测量扭转角度变化,如扭转实验机、渔竿扭转钓性测试等。摆锤冲击实验机,利用编码器计算冲击是摆角变化。 2、长度测量 计米器,利用滚轮周长来测量物体的长度和距离。 拉线位移传感器,利用收卷轮周长计量物体长度距离。 联轴直测,与驱动直线位移的动力装置的主轴联轴,通过输出脉冲数计量。 介质检测,在直齿条、转动链条的链轮、同步带轮等来传递直线位移信息。 3、速度测量 线速度,通过跟仪表连接,测量生产线的线速度 角速度,通过编码器测量电机、转轴等的速度测量 4、位置测量 机床方面,记忆机床各个坐标点的坐标位置,如钻床等 自动化控制方面,控制在牧歌位置进行指定动作。如电梯、提升机等 5、同步控制 通过角速度或线速度,对传动环节进行同步控制,以达到张力控制 光电旋转编码器在工业控制中的应用 -------------------------------------------------------------------------------- 1.概述 在工业控制领域,编码器以其高精度、高分辨率和高可靠性而被广泛用于各种位移测量。 目前,应用最广泛的是利用光电转换原理构成的非接触式光电编码器。光电编码器是一种集光、机、电为一体的数字检测装置。作为一次光电传感检测元件的光电编码器,具有精度高、响应快、抗干

绝对值编码器的工作原理

******************************************************************************* 从编码器使用的计数来分类,有二进制编码、二进制循环编码(葛莱码)、二-十进制吗等编码器。 从结构原理来分类,有接触式、光电式和电磁式等几种。最常用的是光电式二进制循环码编码器。码盘上有许多同心圆,它代表某种计数制的一位,每个同心圆上有透光与不透光的部分,透光部分为1,不透光部分为0,这样组成了不同的图案。每一径向,若干同心圆组成的图案带标了某一绝对计数值。二进制码盘每转一个角度,计数图案的改变按二进制规律变化。葛莱码的计数图案的切换每次只改变一位,误差可以控制在一个单位内。精度受到最低位分段宽度的限制。要求更大计数长度,可采用粗精测量组合码盘。 接触式码盘可以做到9位二进制,它的优点是简单、体积小输出信号强,不需要放大;缺点是电刷摩擦是、寿命低、转速不能太高。 光电式码盘没有接触磨损寿命长,转速高,最外层每片宽度可以做得更小,因而精度高。每个码盘可以做到18位进制。缺点是结构复杂价格高。 电磁码盘是在导磁性好的软铁和坡莫合金原盘上,用腐蚀的办法作成相位码制的凹凸图形,当磁通通过码盘时,由于磁导大小不一样,其感应电势也不同,因而可区分0和1,到达测量的目的。该种码盘是一种无接触式码盘,具有寿命长‘转速高等优点。它是一种发展前途的直接编码式测量元件。 工作原理,接触式码盘,每个码道上有一个电刷与之接触,最里面一层有一导电公用区,与各码道到点部分连在一起,而与绝缘部分分开。导电公用区接到电源负极。当被测对象带动码盘一起转动时,与电刷串联的电阻上将会出现电流流过或没有电流流过两种情况,带标二进制的1或0.若码盘顺时针转动,就可依次得到按规定编码的数字信输出。如果电刷安装不准就会照成误差。葛莱码没转换一个数字编码,只改变一位,故照成的误差不会超过一个单位。 *******************************************************************************

最小码距和检错纠错能力关系

最小码距和检错纠错能力关系 一、码距? 码距就是两个码字C1与C2之间不同的比特数。如:1100与1010的码距为2;1111与0000的码距为4。 一个编码系统的码距就是整个编码系统中任意(所有)两个码字的最小距离。若一个编码系统有四种编码分别为:0000,0011,1100,1111,此编码系统中0000与1111的码距为4;0000与0011的码距为2,是此编码系统的最小码距。因此该编码系统的码距为2。 二、码距和检错纠错有何关联? 首先大家要了解以下两个概念: 1.在一个码组内为了检测e个误码,要求最小码距应该满足:d>=e+1 2.在一个码组内为了纠正t个误码,要求最小码距应该满足:d>=2t+1 现在举个例子来说明这个问题: 假如我们现在要对A,B两个字母进行编码。我们可以选用不同长度的编码,以产生不同码距的编码,分析它们的检错纠错能力。 ||-- 若用1位长度的二进制编码。若A=1,B=0。这样A,B之间的最小码距为1。 合法码:{0,1};非法码:{0,1}; 根据上面的规则可知此编码的检错纠错能力均为0,即无检错纠错能力。其实道理很简单,这种编码无论由1错为0,或由0错为1,接收端都无法判断是否有错,因为1,0都是合法的编码。 ||-- 若用2位长度的二进制编码,可选用11,00作为合法编码,也可以选用01,10作为合法编码。若以A=11,B=00为例,A、B之间的最小码距为2。 合法码:{11,00};非法码:{01,10}; 根据上面的规则可知此编码的检错位数为1位,无法纠错。因为无论A(11)或B(00),如果发生一位错码,必将变成01或10,这都禁用码组(非法码),故接收端可以判断为误码,却不能纠正其错误。因为无法判断误码(01或10)是A(00)错误还是B(11)错误造成,即无法判断原信息是A或B,或说A与B形成误码(01

常用的检错码 - 奇偶校验码

3.2差错控制 3.2.2常用的检错码- 奇偶校验码 奇偶校验码是一种简单的检错码,奇偶校验码分为奇校验码和偶校验码,两者原理相同。它通过增加冗余位来使得码字中“1”的个数保持奇数或偶数。 ?无论是奇校验码还是偶校验码,其监督位只有一位; ?假设信息为为I1, I2, …, I n,对于偶校验码,校验位R可以表示为: R =I 1 ⊕I 2 ⊕Λ⊕I n ?假设信息为为I1, I2, …, I n,对于奇校验码,校验位R可以表示为: R =I 1 ⊕I 2 ⊕Λ⊕I n ⊕1 ?无论是奇校验码还是偶校验码,都只能检测出奇数个错码,而 不能检测偶数个错码。 4 4

讨论: 从检错能力、编码效率和代价等方面来评价垂直奇偶校验、水平奇偶校验和水平垂直奇偶校验 3.2 差错控制 3.2.2 常用的检错码 - 奇偶校验码 奇偶校验在实际使用时又可分为垂直奇偶校验、水平奇偶校验和水平垂直奇偶校验等几种。 5

3.2.2常用的检错码–定比码 所谓定比码,即每个码字中“1”的个数与“0”的个数之比保持恒定, 故又名等比码或恒比码。 ?当码字长一定,每个码字所含“1”的数目都相同,“0”的数目也 都相同。 ?由于若n位码字中“1”的个数恒定为m,还可称为“n中取m”码 定比码(n中取m)的编码效率为: log C m R = ?2 n n 定比码能检测出全部奇数位错以及部分偶数位错。实际上,除了码 字中“1”变成“0”和“0”变成“1”成对出现的差错外,所有其它差 错都能被检测出来 6 4

代码“1011011”对应的多项式为x 6 + x 4 + x 3 +1 多项式“x 5 + x 4 + x 2 + x”所对应的代码为“110110” 3.2.2 常用的检错码 – 循环冗余检验 循环冗余码(Cyclic Redundancy Code ,简称CRC )是无线通信中用得最广泛的检错码,又被称为多项式码。 二进制序列多项式:任何一个由m 个二进制位组成的代码序列都可以和一个只含有0和1两个系数的m-1阶多项式建立一一对应的关系。 CRC 有关的多项式: ? 信息位多项式、冗余位多项式、码字多项式、和生成多项式 信息位1010001:K (x ) = x 6 + x 4 + 1 冗余位1101:R (x ) = x 3 + x 2 + 1; 码字10100011101: T (x ) = x 10 + x 8 + x 4 + x 3 + x 2 + 1 7

编码器工作原理汇总

编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理. 编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。绝对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接电缆芯数多,由此带来诸多不便和降低可靠性,

计算机网络 检错码与纠错码

计算机网络检错码与纠错码 在通信系统中广泛应用的差错控制技术是差错控制编码技术。而差错控制编码包括检错码和纠错码两种,其中检错码是为传输的数据信号增加冗余码,以便发现数据信号中的错码,但不能纠正错码;纠错码是为传输的数据信号增加冗余码,以便发现数据信号中的错码,并自动纠正这些错码。下面介绍几种检错码和纠错码的校验方法。 1.奇偶校验码 奇偶校验码是一种最简单的无纠错能力的检错码,其编码规则是先将数据代码分组,例如,将ASCⅡ码中的一个字符或若干个字符分为一组。在各组数据后面附加一位校验位,使该数据连校验位在内的码元中1的个数恒为偶数则为偶校验,恒为奇数则为奇校验。奇偶校验无纠错能力,它只能检测出码元中的任意奇数个错误,若有偶数个错误必定漏检。由于奇偶校验码容易实现,所以当信道干扰较弱,并且数据码长较短时,使用奇偶校验码效果很好,在计算机网络的数据传输中经常使用该检错码。 根据数据代码的分组方法,奇偶校验码可以分为水平奇偶校验、垂直奇偶校验和垂直水平奇偶校验。 ●水平奇偶校验 如表3-1所示,在水平奇偶校验中,把数据先以适当的长度划分成小组,并把码元按表中所示的顺序一列一列地排列起来,然后对水平方向的码元进行奇偶校验,得到一列校验位,附加在其他各列之后,最后按行的顺序进行传输。水平奇偶校验能查出水平方向上奇数个错误和不大于数据代码长度的突发错误,无纠错能力,但产生校验码及校验逻辑相对复杂。 表3-1 水平奇偶校验 ●垂直奇偶校验 如表3-2所示,在垂直奇偶校验中,把数据先以适当的长度划分成小组,并把码元按表中所示的顺序一列一列地排列起来,然后对垂直方向的码元进行奇偶校验,得到一行校验位,附加在其他各行之后,然后按列的顺序进行传输。垂直奇偶校验能够查出列上的奇数个错误,只能查处50%的突发错误,无纠错能力,但产生校验码及校验逻辑相对简单。 表3-2 垂直奇偶校验

编码器工作原理及作用

编码器工作原理及作用-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

编码器工作原理及作用 工作原理 德国siko编码器 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 作用 它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信

检错与纠错

一、常用检错码 (1) 寄偶校验码 寄偶校验码是一种最简单的校验码,其编码规则:先将所要要传送的数据码元分组,并在每组的数据后面附加一位冗余位即校验位,使该组包括冗余位在内的数据码元中“1”的个数保持为奇数(奇校验)或偶数(偶校验)。在接收端按照同样的规则检查,如发现不符,说明有错误发生;只有“1”的个数仍然符合原定的规律时,认为传输正确。实际数据传输中所采用的寄偶校验码分为垂直奇偶校验、水平奇偶校验和水平垂直奇偶校验三种。 垂直奇偶校验是一字符为单位的校验方法。例如,传输数据信息为“1010001”,采用偶校验时,附加位为“1”,则发送信息变为“10100011”;采用奇校验时,附加位为“0”,发送信息变为“10100010”; (2) 循环冗余校验码(CRC) 循环冗余校验码CRC(Cyclic Redundancy Code)采用一种多项式的编码方法。把要发送的数据位串看成是系数只能为“1”或为“0”的多项式。一个k位的数据块可以看成Xk-1到X0的k项多项式的系数序列。例如,“110001”有6位,表示多项式是“X5 + X4+ 1”。多项式的运算是模2运算。 采用CRC码时,发方和收方必须事先约定一个生成多项式G(X),并且G(X)的最高位和最低必须是1。要计算m位数据块的M(X)的校验和,生成多项式必须比该多项式短。其基本思想是:将校验和附加在该数据块的末尾,使这个带校验和的多项式能被G(X)除尽。当接收方收到带校验和的数据块时,用G(X)去除它,如果有余数,则传输有错误。 二、纠错码 纠错码与检错码相比其功能更强,它不但能检错还能纠错。海明码就是一种能够纠正一位错误的检错码。海明码是海明(H.W.Hamming)于1950年提出的一种码制。在发送数据之前将数据按照海明码制形成海明码,然后发送海明码,到达对方后根据接收到的海明码进行解释分析、判错、纠错。 (1) 海明码的形成 ①海明码的组合规则 海明码是由数据与校验位组合而成的。其组合规则为:将数据与校验码(寄偶校验)自左至右进行编码,其中编号为2的幂的位均为校验位,其余为数据位。 ②校验位值的确定 将每一数据位的编号展开成2的幂的和(每一项不可重复),则每一项所对应的位均为该数据位的校验位。据此,按照寄偶校验规则确定各校验位的值。 例:要传送的数据为“11001100” 则相应的海明码为:AB1C100D1100 其中A、B、C、D是加入的校验位。 将每一数据位的编号展开成2的幂的和: 3=2+1 9=8+1

(完整版)数字通信原理第五章纠错编码习题解答

第五章 纠错编码习题解答 1、已知一纠错码的三个码组为(001010)、(101101)、(010001)。若用于检错,能检出几位错码?若用于纠错,能纠正几位错码?若纠检错结合,则能纠正几位错码同时检出几位错码? [解]该码的最小码距为d 0=4,所以有: 若用于检错,由d 0≥e +1,可得e =3,即能检出3位错码; 若用于纠错,由d 0≥2t +1,可得t =1,即能检出1位错码; 若纠检错结合,由d 0≥e +t +1 (e >t ),可得t =1,e =2,即能纠正1位错码同时能检出2位错码。 2、设某(n ,k )线性分组码的生成矩阵为: 001011100101010110G ?? ??=?????? ①试确定该(n ,k )码中的n 和k ; ②试求该码的典型监督矩阵H ; ③试写出该码的监督方程; ④试列出该码的所有码字; ⑤试列出该码的错误图样表; ⑥试确定该码的最小码距。 [解] ①由于生成矩阵G 是k 行n 列,所以k =3,n =6。 ②通过初等行变换,将生成矩阵G 变换成典型生成矩阵

[] 100101010110001011k G I Q ?? ??==?????? 由于101110110011011101T Q P Q ???? ????=???? ????????, ==,可知典型监督矩阵为 []110100011010101001r H PI ?? ??=?? ????= ③监督方程为5424315 300 00 a a a a a a a a a ⊕⊕=??⊕⊕=??⊕⊕=? ④所有码字见下表 ⑤错误图样表即错误图样与校正子关系表,见下表

编码器工作原理及特点介绍

1. 编码器的特点及用途 编码器是通过把机械角度物理量的变化转变成电信号的一种装置;在传感器的分类中,他归属于角位移传感器。 根据编码器的这一特性,编码器主要用于测量转动物体的角位移量,角速度,角加速度,通过编码器把这些物理量转变成电信号输出给控制系统或仪表,控制系统或仪表根据这些量来控制驱动装置。 2. 编码器的主要应用场合: 2.1数控机床及机械附件。 2.2 机器人、自动装配机、自动生产线。 2.3 电梯、纺织机械、缝制机械、包装机械(定长)、印刷机械(同步)、木工机械、塑料机械(定数)、橡塑机械。 2.4 制图仪、测角仪、疗养器雷达等。 最常用的有两种:绝对值编码器和增量式编码器。 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 传感器电源电压一般分为:5V和24V。信号类型: 1、A/B/Z型 2、RS422差分 3、SSI(格雷码) 信号有正弦波的,有方波的。 信号有电流型的,有电压型的 另外SSI编码器输出除了格雷码,也有二进制码的。电压的范围也不仅限于5V和24V 3. 基本原理

3.1 构造 编码器主要是由码盘(圆光栅、指示光栅)、机体、发光器件、感光器件等部件组成。 (1)圆光栅是由涂膜在透明材料或刻画在金属材料上的成放射状的明暗相间的条纹组成的。一个相邻条纹间距称为一个栅节,光栅整周栅节数就是编码器的脉冲数(分辨率)。(注:本公司码盘有三种金属、玻璃、菲林(类似塑料) 三种)。 (2)指示光栅是一片固定不动的,但窗口条纹刻线同圆光栅条纹刻线完全相同的光栅片。 (3)机体是装配圆光栅,指示光栅等部件的载体。 (4)发光器件一般是红外发光管。 (5)感光器件是高频光敏元件;一般有硅光电池和光敏三极管。 3.2 工作原理 由圆光栅和指示光栅组成一对扫描系统,在扫描系统的一侧投射一束红外光,在扫描系统的另一侧的感光器件就可以收到扫描光信号;当圆光栅转动时,感光器件接收到的扫描光信号会发生变化,感光器件可以把光信号转变成电信号并输出给控制系统或仪表。 一般编码器的输出信号为两列成90度相位差的Sin信号和Cos信号(这是由指示光栅的窗口条纹刻线保证的);这些信号的周期等于圆光栅转过一个栅节(P)的移动时间,对Sin信号和Cos信号进行放大及整形就可输出方波脉冲信号。 4. 应用举例 编码器的应用场合十分的广泛,在此列举几个简单事例: (1) 数控机床对加工工件自动检测就是通过编码器来进行检测的:数控机床刀架的对零校准也是通过编码器来实施的。 (2) 编码器在PLC上的应用:一般PLC上都有高速信号输入口,编码器可以作为高速信号输入元件,使PLC更加迅速和精准地实施闭环控制。而在变频器上其一般接变频器的PG卡上。

汉明码计算及其纠错原理详解

汉明码计算及其纠错原理详解 当计算机存储或移动数据时,可能会产生数据位错误,这时可以利用汉明码来检测并纠错,简单的说,汉明码是一个错误校验码码集,由Bell 实验室的R.W.Hamming 发明,因此定名为汉明码。 汉明码(Hamming Code),是在电信领域的一种线性调试码,以发明者理查德·卫斯里·汉明的名字命名。汉明码在传输的消息流中插入验证码,以侦测并更正单一比特错误。由于汉明编码简单,它们被广泛应用于内存(RAM )。其SECDED (single error correction,double error detection)版本另外加入一检测比特,可以侦测两个或以下同时发生的比特错误,并能够更正单一比特的错误。因此,当发送端与接收端的比特样式的汉明距离(Hamming distance)小于或等于1时(仅有1 bit发生错误),可实现可靠的通信。相对的,简单的奇偶检验码除了不能纠正错误之外,也只能侦测出奇数个的错误。 在数学方面,汉明码是一种二元线性码。对于每一个整数,存在一个编码,带有个奇偶校验位个数据位。该奇偶检验矩阵的汉明码是通过列出所有米栏的长度是两两独立。 汉明码的定义和汉明码不等式:设:m=数据位数,k=校验位数为,n=总编码位数=m+k,有Hamming不等式: a)总数据长度为N,如果每一位数据是否错误都要记录,就需要N位来存储。 b)每个校验位都可以表示:对或错;校验位共K位,共可表示2k种状态 c)总编码长度为N,所以包含某一位错和全对共N+1种状态。 d)所以2k≧N+1 e)数据表见下 无法实现2位或2位以上的纠错,Hamming码只能实现一位纠错。 以典型的4位数据编码为例,演示汉明码的工作 D8=1、D4=1、D2=0、D1=1, P1 =1,P2=0、P3=0。 汉明码处理的结果就是1010101 假设:D8出错,P3’P2’P1’=011=十进制的3,即表示编码后第三位出错,对照存储

编码器工作原理

编码器工作原理 Prepared on 22 November 2020

的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器、等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,也能得到一个速度信号,这个信号要反馈给器,从而调节的输出数据。故障现象: 1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电路来处理。编码器pg接线与参数与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的,因此选择合适的pg卡型号或者设置合理. 编码器一般分为增量型与绝对型,它们存着最大的区别:在的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。绝对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接芯数多,由此带来诸多不便和降低可靠性,因此,绝对编码器在多位数输出型,一般均选用串行输出或型输出,德国生产的绝对型编码器串行输出最常用的是SSI (同步串行输出)。

第二节 纠错编码原理

第二节 纠错编码原理 一、纠错编码的原理 一般来讲,信源发出的消息均可用二进制信号来表示。例如,要传送的消息为A 和B ,则我们可以用1表示A ,0表示B 。在信道传输后产生了误码,0错为1,或1错为0,但接收端却无法判断这种错误,因此这种码没有任何抗干扰能力。如果在0或1的后面加上一位监督位(也称校验位),如以00表示A ,11表示B 。长度为2的二进制序列共有种组合,即00、01、10、11。00和11是从这四种组合中选出来的,称其为许用码组,01、10为禁用码。当干扰只使其中一位发生错误,例如00变成了01或10,接收端的译码器就认为是错码,但这时接收端不能判断是哪一位发生了错误,因为信息码11也可能变为01或10,因而不能自动纠错。如果在传输中两位码发生了错误,例如由00变成了11,译码器会将它判为B ,造成差错,所以这种1位信息位,一位监督位的编码方式,只能发现一位错误码。 224=按照这种思路,使码的长度再增加,用000表示A ,111表示B ,这样势必会增强码的抗干扰能力。长度为3的二进制序列,共有8中组合:000、001、010、011、100、101、110、111。这8种组合中有三种编码方案:第一种是把8种组合都作为码字,可以表示8种不同的信息,显然,这种编码在传输中若发生一位或多位错误时,都使一个许用码组变成另一个许用码组,因而接收端无法发现错误,这种编码方案没有抗干扰能力;第二种方案是只选四种组合作为信息码字来传送信息,例如:000、011、101、110,其他4种组合作为禁用码,虽然只能传送4种不同的信息,但接收端有可能发现码组中的一位错误。例如,若000中错了一位,变为100,或001或010,而这3种码为禁用码组。接收端收到禁用码组时,就认为发现了错码,但不能确定错码的位置,若想能纠正错误就还要增加码的长度。第三种方案中规定许用码组为000和111两个,这时能检测两位以下的错误,或能纠正一位错码。例如,在收到禁用码组100时,若当作仅有一位错码,则可判断出该错码发生在“1”的位置,从而纠正为000,即这种编码可以纠正一位差错。但若假定错码数不超出两位,则存在两种可能性,000错一位及111错两位都可能变为100,因而只能检错而不能纠错。 从上面的例子可以得到关于“分组码”的一般概念。如果不要求检错或纠错,为了传输两种不同的信息,只用1位码就够了,我们把代表所传信息的这位码称为信息位。若使用了2位码或3位码,多增加的码位数称为监督位。我们把每组信息码附加若干监督码的编码称为分组码。在分组码中,监督码元仅监督本码组中的信息码元。 图8-2分组码的结构 分组码一般用符号(表示, 其中k 是每组码中信息码元的数目,n 是码组的总位数,又称为码组的长度(码长),为每码组中的监督码元数目,或称为监督位数目。通常将分组码规定为如图8-2所示的结构,图中前面位为信息位,后面附 )n n a a ??,n k n k r ?=k 12(,,...,)r a

纠错输出编码(ECOC)综述和基本原理

纠错输出编码(ECOC )综述和基本原理 目录 <机器学习导论> (1) 《Solving Multiclass Learning Problems via Error-Correcting Output Codes 》 (2) A Subspace to ECOC (3) 中文参考文献 (5) <机器学习导论> 在纠错输出编码中,主要的分类任务通过由基学习器实现的一组子任务来定义。其思想是:将一个类从其他类区分开来的原始任务可能是一个困难的问题。作为替代,我们定义一组简单的分类问题,每个专注于原始任务的一个方面,并通过组合这些简单的分类器来得到最终的分类器。 这时,基分类器是输出为-1/+1的二元分类器,并且有一个K*L 的编码矩阵W ,其K 行是关于L 个基学习器dj 类的二元编码。例如,(2, )[ 1 1 1 1]M =-++-表示若一个样本属于第2类(C 2),则该样本应在h 1和h 4上取负值,在h 2和h 3上取正值;(, 3)[ 1 1 1]T M =-++可理解为第三个基分类器h 3的任务是将属于C 1类的样本与属于C 2和C 3类的样本区分开。同时(, 3)M 也决定了如何构造基分类器h 3的训练样本集T 3:所有标记为C 2类及C 3类的样本形成正样本3χ+,而标记为C 1类的实例构成负样本3χ-,对h 3的训练应使得3T ?∈i x ,当3χ+∈i x 时,3()1h =+i x ;当3χ-∈i x 时,3()1h =-i x 。 这样,编码矩阵使得我们可以用二分类问题定义多分类问题,并且这是一种适用于任意可以实现二分基学习器的学习算法的方法,例如,线性或多层感知器,决策树或初始定义的两类问题的SVM 。 典型的每类一个判别式的情况对应于对角矩阵,其中L=K ,例如,对于K=4,我们有 W=【】 这里的问题是:如果某一个基学习器存在错误,就会有误分类,因为类的码

编码器的工作原理及分类

编码器的工作原理及分类 编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。 故障现象:旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”。。。联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理。 编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用

实验名称 数据链路层-检错与 纠错 课程名称 计算机网络

上 海 理 工 大 学
计 算 机 工 程 学 院
实 验 报 告
实验名称 课程名称 数据链路层-检错与 纠错 计算机网络
学号 992A328B 地点 计算机信息中心 教师 陈家琪
姓名 朱文贵 日期 2002.11.5 成绩
备注:
第1页 共5页

上海理工大学计算机工程学院
实验报告
第2页 共5页
1.实验目的
⑴ 通过《海明编码》演示软件,验证纠错与检错功能和性能,掌握其工作原理; ⑵ 编写海明编码程序和 CRC 编码程序;
2.实验环境(软件、硬件及条件)
⑴ Windws9x/NT/2000/XP ⑵ TCP/IP 协议 (编程工具:Visual C++ 6.0,C++ Builder 或 其它)
3.实验方法
运行《CRC 编码》演示软件 ⑴ 验证纠错能力; ⑵ 验证检错能力; ⑶ 若数据=10011001,海明编码=?,校验位=? ⑷ 若接收端收到的信息=101010101001(海明编码) ,数据=? ⑸ 尝试编写海明编码的程序。
4.实验分析
参考
5.实验结论
通过实验表明海明码是一种可纠正一位错的编码方法。 用 r 个校验位构造出 r 个校验关系式来指示一位错码的 n(=m+r)种 可能位置及表示无差错。 码字排列:从最左边位开始依次编号(1,2,….,n) ; k r 个校验位:在 2 的位置(1,2,4,8…..) ; m 个数据位:在其余位(3,5,6,7…..) 。 r 的确定:r2-r>=m+1; 如果海明距 d>=2t+1,则该编码可纠正任何 t 个(或 t 个以下)的错 误。 如果 d>=e+1,则该编码可检测出任何 e 个(或 e 个以下)的错误。
-2-

光电编码器原理课件

光电编码器原理课件

光电编码器 光电编码器,是一种通过光电转换将输出轴上 的机械 几何位移量转换成脉冲或数字量的传 感器。这是目 前应用最多的传感器,光电编码 器是由光栅盘和光 电检测装置组成。光栅盘是 在一定直径的圆板上等分 地开通若干个长方 形孔。由于光电码盘与电动机同轴,电动机旋 转时,光栅盘与电动机同速旋转,经发光二 极 管等电子元件组成的检测装置检测输出若干 脉冲 信号,通过计算每秒光电编码器输出脉冲 的个数就能 反映当前电动机的转速。此外,为 判断旋转方向,码 盘还可提供相位相差90&or dm;的两路脉冲信号。 根据检测原理,编码器可分为光学式、磁 式、感 应式和电容式。根据其刻度方法及信号 输出形式,可 分为增量式、绝对式以及混合式 三种。(REP) 1.1增量式编码器 111 l=J 1=

增量式编码器是直接利用光电转换原理 输出三组方波脉冲A、和Z相;A、B两组 脉冲相位差9Oº,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 1.2绝对式编码器 绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高, 对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。

相关主题
文本预览
相关文档 最新文档