当前位置:文档之家› 三次、四次方程求根公式的发现优秀教学设计

三次、四次方程求根公式的发现优秀教学设计

三次、四次方程求根公式的发现优秀教学设计
三次、四次方程求根公式的发现优秀教学设计

三次、四次方程求根公式的发现

【教学目标】

1.知识与技能

了解三次、四次方程求根公式的发现的相关内容。

2.过程与方法

用通俗易懂的语言,深入浅出地介绍该节课的基本教学内容及其基本思想。引导学生简述相应的教学内容。在学习过程中,可以针对学生的实际情况,布置不同的任务,采用自主学习与合作学习相结合的方式组织教学活动。

3.情感、态度与价值观

让学生对于数学的科学价值和文化价值有更多的认识,开阔学生的视野,从数学的发展或从一个具体的数学分支,来认识数学的魅力和价值。

【教学重难点】

重点:三次、四次方程求根公式的发现的相关内容的了解。

难点:简述三次、四次方程求根公式的发现的过程。

【教学过程】

一、直接引入

师:今天这节课我们主要学习三次、四次方程求根公式的发现。我们主要了解它的具体内容。

二、讲授新课

(1)教师引导学生在预习的基础上了解三次、四次方程求根公式的发现内容,形成初步感知。

(2)首先,我们先来学习三次、四次方程问题。

在花拉子米发现二次方程的求根公式之后,数学家们自然联想到三次、四次方程的求根公式问题。事实上,三次、四次方程并不比二次方程产生得晚,但通常只有一些特殊的三次、四次方程能根式求解。

公元前3世纪,阿基米德曾用图像法解出一些特殊的三次方程,但与一般求根公式相去甚远。后来的阿拉伯数学家也曾遇到一些三次方程问题,但他们没有把注意力放在求根公式的研究上。

公元1世纪,我国的《九章算术》中就已经出现了特殊的三次方程的解法。公元630年左右,唐代的王孝通(公元7世纪初)在他的《辑古算经》中给出了更一般的三次方程的解法,他是世界上最早给出三次方程代数解的人,但他没有给出一般公式。宋元时期的秦九韶、李冶以及朱世杰等人都在三次、四次方程的求解方面做出过突出贡献。但中国古代的努力方向主要放在求方程的数值解上,尽管能够求得三次、四次甚至更高次的代数方程任意精度的数值解,但始终未能获得求解三次、四次方程的一般公式。

总而言之,在16世纪之前,数学家们对三次、四次方程的求根公式的研究都以失败告终。

(3)接着,我们再来了解世界上最早的数学竞赛。

塔尔塔利亚是意大利人,出生于1500年。他12岁那年,被入侵的法国兵砍伤了头部和舌头,从此说话结结巴巴,人们就给他一个绰号“塔尔塔利亚”(在意大利语中,这是口吃的意思),真名反倒少有人叫了。他自学成才,成了数学家,宣布自己找到了三次方程的解法。

塔尔塔利亚再接再厉,深入研究,终于在6年后获得成功,得到了三次方程的一般解法。但当时他没有公开发表自己的成果,而是准备将来著书立说。可是令塔尔塔利亚始料不及的是,自己用辛勤汗水浇灌出来的硕果却被另一个数学家卡尔达诺摘了去。

(4)接着,我们再来了解张冠李戴的事件。

1545年,卡尔达诺的名著《大术》终于完布了一般三次代数方程的求根公式。这是不久茫成,书中第一次公前他从塔尔塔利亚那里以守密誓约得到的结果,其中也加入了自己的证明和见解。卡尔达诺在本书的一开始就申明:“费罗约在30年前发现了这一法则并传授给菲奥尔,后来曾与宣称也发现该法则的塔尔塔利亚竞赛。塔尔塔利亚在我的恳求下将方法告诉了我,但没有证明。在这种情况下,我克服了很大困难,找到了证明,现陈述如下……”。虽然卡尔达诺写明了方法的来源,但失信行为仍然使塔尔塔利亚义愤填膺,两人又展开了争论。最后由于《大术》的影响,该方法最终张冠李戴地以“卡尔达诺公式”流传后世。

三、课堂总结

这节课我们主要讲了哪些内容?

一元三次方程求根公式的解法

一元三次方程求根公式的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A 和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。由于计算太复杂及这个问题历史上已经解决,我不愿花过多的力气在上面,我做这项工作只是想考验自己的智力,所以只要关键的问题解决了另两个根我就没有花力气去求解。 二、我也曾用类似的方法去求解过一元四次方程的解,具体就是假设一元四次方程的根的形式为x=A^(1/4)+B^(1/4)+C^(1/4),有一次我好象解出过,不过后来多次求解好象说明这种方法求解一元四次方程解不出。不过我认为如果能进一步归纳出A、B、C的形式,应该能求出一元四次方程的求根公式的。由于计算实在太复杂及这个问题古人已经解决了,我后来一直没能完成这项工作。 三、通过求解一元三次方程的求根公式,我获得了一个经验,用演绎法(就是直接推

三次方程的一般解法

一元三次方程的求根公式称为“卡尔丹诺公式” 一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消 去。所以我们只要考虑形如 x3=px+q 的三次方程。 假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。 代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得到 a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时, 3ab+p=0。这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3 由p=-3ab可知 27a6 + p = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x. 除了求根公式和因式分解外还可以用图象法解,中值定理。很多高次方程是无法求得精确解的,对于这类方程,可以使用二分法,切线法,求得任意精度的近似解。参见同济四版的高等数学。 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。我归纳出来的形如x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3

解二元一次方程“十字交叉法”

解二元一次方程:“十字交叉法” 十字相乘就是把二次项拆成两个数的积 常数项拆成两个数的积 拆成的那些数经过十字相乘后再相加正好等于一次项 看一下这个简单的例子m2+4m-12 m -2 ╳ M 6 把二次项拆成m与m的积(看左边,注意竖着写) -12拆成-2与6的积(也是竖着写) 经过十字相乘(也就是6m与-2m的和正好是4m) 所以十字相乘成功了 m2+4m-12=(m-2)(m+6) 重点:只要把2次项和常数项拆开来(拆成乘积的形式),可以检验是否拆的对,只要相加等于1次项就成了,十字相乘法实际就是分解因式。 解释说明:

十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。 十字相乘法解题实例 常规题例1:把m2+4m-12分解因式 分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -2 ╳ 1 6 所以m2+4m-12=(m-2)(m+6)

例2:把5x2+6x-8分解因式 分析:本题中的5可分为1×5,-8可分为-1×8,-2×4, -4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题 解:因为 1 2 ╳ 5 -4 所以5x2+6x-8=(x+2)(5x-4) 例3:解方程x2-8x+15=0 分析:把x2-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。 解:因为 1 -3 ╳ 1 -5 所以原方程可变形(x-3)(x-5)=0 所以x1=3 x2=5 例4:解方程6x2-5x-25=0 分析:把6x2-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。解:因为 2 -5 ╳ 3 5

高次方程求根公式的故事

高次方程求根公式的故事 1545年意大利学者卡丹将一元三次方程ax3 +bx2+cx+d=0的求根公式公开发表,后来人们就把它叫做“卡丹公式(也有人译作“卡尔丹公式”)。事实上,发现公式的人并不是卡丹本人,而是塔尔塔利亚。 塔尔塔利亚是意大利人,出生于1500年。他12岁那年,被入侵的法国兵砍伤了头部和舌头,从此说话结结巴巴,人们就给他一个绰号“塔尔塔利亚”(在意大利语中,这是口吃的意思),真名反倒少有人叫了。他自学成才,成了数学家,宣布自己找到了三次方程的的解法。有人听了不服气,来找他较量,每人各出30道题,由对方去解。结果,塔尔塔利亚30道三次方程的解全做了出来,对方却一道题也没做出来。塔尔塔利亚大获全胜。 后来,意大利医生兼数学家卡丹请求塔尔塔利亚把解方程的方法告诉他,但遭到了拒绝。尽管卡丹千方百计地想探听塔尔塔利亚的秘密,但是在很长时间中塔尔塔利亚都守口如瓶。可是后来,由于卡丹一再恳切要求,而且说要推荐他去当西班牙炮兵顾问,还发誓对此保守秘密,于是塔尔塔利亚在1539年把他的发现写成了一首语句晦涩的诗告诉了卡丹,但是并没有给出详细的证明。 六年后,卡丹不顾原来的信约,在他的著作中将经过改进的三次方程的解法公开发表。他在书中写道:“这一解法来自于一位最值得尊敬的朋友——布里西亚的塔尔塔利亚。塔尔塔利亚在我的恳求之下把这一方法告诉了我,但是他没有给出证明。我找到了几种证法。证法很难,我把它叙述如下。”从此,人们就把一元三次方程的求根公式称为“卡丹公式”,而塔尔塔利亚的名字反而被湮没了,正如他的真名在口吃以后被埋没了一样。 卡丹没有遵守誓言,因而受到塔尔塔利亚及许多文献资料的指责。但是卡丹在公布这一解法时并没有把发现这一方法的功劳归于自己,而是如实地说明了这是塔尔塔利亚的发现,所以算不上剽窃;而且证明过程是卡丹自己给出的,说明卡丹也做了工作。卡丹用自己的工作对塔尔塔利亚泄露给他的秘密加以补充,违背誓言,把秘密公之于世,加速了一元三次方程求根公式的普及和人类探索一元n次方程根式解法的进程。 一元三次方程应有三个根。塔尔塔利亚公式给出的只是一个实根。又过了大

二元一次方程解法大全

二元一次方程解法大全 1、直接开平方法: 直接开平方法就是用直接开平方求解二元一次方程的方法。用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m. 例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解:9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0(a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=

当b^2-4ac≥0时,x+=± ∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方) 解:将常数项移到方程右边3x^2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+()2=+()2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2=. 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。 例3.用公式法解方程2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2,b=-8,c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a) ∴原方程的解为x1=,x2=. 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程:

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

用求根公式法解一元二次方程教学设计说明

“用求根公式法解一元二次方程”教学设计 一、使用教材 新人教版义务教育课程标准实验教科书《数学》九年级上册 二、素质教育目标 (一)知识教学点 1、一元二次方程求根公式的推导 2、利用公式法解一元二次方程 (二)能力训练点 通过配方法解一元二次方程的过程,进一步加强推理技能训练,同时发展学生的逻辑思维能力。 (三)德育渗透点 向学生渗透由特殊到一般的唯物辩证法思想。 三、教学重点、难点、关键点 1、教学重点:一元二次方程的求根公式的推导过程 2、教学难点:灵活地运用公式法解一元二次方程 3、教学关键点: (1)掌握配方法的基本步骤 (2)确定求根公式中a 、b 、c 的值 四、学法引导 1、教学方法:指导探究发现法 2、学生学法:质疑探究发现法 五、教法设计 质疑—猜想—类比—探索—归纳—应用 六、教学流程 (一)创设情境,导入新课:

前面我们己学习了用配方法解一元二次方程,想不想再探索一种 比配方法更简单,更直接的方法? 大家一定想,那么这节课我们一同来 研究。 < 设计意图 > 数学是一种逻辑性较强的科目,并且有时计算量较 大,如果能简化计算,那是我们所期望的,逐步激发学生的学习欲望。 教师;下面我们先用配方法解下列一元二次方程 学生;(每组一题,每组派一名同学板演) 1.2x 2-4x-1=0 2. x 2+1.5=-3x 3.02 1 22=+-x x 4. 4x 2-3x+2=0 完成后小组进行交流,并进行反馈矫正。 学生:总结用配方法解一元二次方程的步骤 教师板书:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程 的解,如果右边是负数,则一元二次方程无解. 教师:通过以上四个方程的求解,你能试着猜想一下上述问题的求 解的一般规律吗? 学生:独立思考 < 设计意图 > 规律的探索与猜想不仅要体现数学知识的应用,而且 要注重在观察实践中抽象出规律。 (二)新知探索

一元四次方程的解法

一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消 去。所以我们只要考虑形如 x3=px+q 的三次方程。 假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。 代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得到 a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时, 3ab+p=0。这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3 由p=-3ab可知 27a6 + p3 = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x。 费拉里发现的一元四次方程的解法和三次方程中的做法一样,可以用一个坐标平移来消去四次方程一般形式中的三次项。所以只要考虑下面形式的一元四次方程:x4=px2+qx+r 关键在于要利用参数把等式的两边配成完全平方形式。考虑一个参数 a,我们有(x2+a)2 = (p+2a)x2+qx+r+a2 等式右边是完全平方式当且仅当它的判别式为0,即 q2 = 4(p+2a)(r+a2) 这是一个关于a的三次方程,利用上面一元三次方程的解法,我们可以 解出参数a。这样原方程两边都是完全平方式,开方后就是一个关于x 的一元二次方程,于是就可以解出原方程的根x。最后,对于5次及以上的一元高次方程没有通用的代数 解法(即通过各项系数经过有限次四则运算和乘方和开 方运算),这称为阿贝耳定理 一元四次求根公式 对于一般一元四次方程: ax4+bx3+cx2+dx+e=0 设方程的四根分别为: x1=(-b+A+B+K)/(4a) x2=(-b-A+B-K)/(4a) x3=(-b+A-B-K)/(4a) x4=(-b-A-B+K)/(4a) (A,B,K三个字母足以表示任意三个复数,根据韦达定理: 方程四根之和为-b/a,所以当x1,x2,x3的代数式为原 方程的三根时,那么x4形式的代数式必是方程的第四个 根。) 将这四个代数式代入到韦达定理中可整理得: x1+ x2+ x3+ x4= -b/a x1x2 +x1x3+ x1x4+ x 2 x3 + x2x4+ x3 x4=(1/8a2)(3b2-A2-B2-K2)=c/a x1x2x3 +x1x2x4+ x1 x3 x4+ x2 x3 x4= (1/16a3)(-b3+bA2+bB2+Bk2+2ABK)= -d/a x1x2 x3 x4=(1/256a4)(b4+ A4+B4+K4-2b2A2-2b2B2-2b2K2-2A2B2-2A2K2-2B2K2-8bA BK)=e/a 整理后为: A2+B2+K2=3b2-8ac———————————————— 记为p A2B2+A2K2+B2K2=3b4+16a2c2-16ab2c+16a2bd-64a3e— —记为q A2B2K2=(b3-4abc+8a2d)2————————————— —记为r 由此可知:A2,B2,K2是关于一元三次方程 y3-py2+qy-r=0的三根 从而可解得±y11/2,±y21/2,±y31/2是A,B,K的解。 若y11/2, y21/2, y31/2是A,B,K的一组解(A,B,K 具有轮换性,所以在代入时无须按照顺序) 那么另外三组为 ( y11/2,- y21/2,- y31/2 (- y11/2, y21/2, -y31/2 (-y11/2,- y21/2, y31/2 从而将以上任意一组解代入到所设代数式中,均可解得 原四次方程的四根。 由这种方法来解一元四次方程,只需求界一个一元三次 方程即可,而费拉里的公式则需先解一个三次方程,再 转化成两个复杂的一元二次方程,并且若要以其系数来 表示它的求根公式的话,其形式也是相当复杂的。我的 求解方法尽管在推导公式的过程中有一定的计算量,但 如果要运用于实际求根,尽用结论在计算上绝对要比费 拉里公式简便。那么我下面再介绍一下有关一元三次方 程的改进公式: 对于一般三次方程: ax3+bx2+cx+d=0 设方程的三根分别为: x1=(-b+A+B)/(3a) x2=(-b+wA+w2B)/(3a) x3=(-b+w2A+wB)/(3a) 则 A3+B3=-2b3+9abc-27a2d————记为p A3B3=(b2-3ac)2————— ———记为q 则A3,B3是关于一元二次方程: y2-py+q=0的两根

公式法解一元二次方程教案

公式法解一元二次方程 一、教学目标 (1)知识目标 1.理解求根公式的推导过程和判别公式; 2.使学生能熟练地运用公式法求解一元二次方程. (2)能力目标 1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思 想. 2.结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能力,全面培养学生解方程的能力,使学生解方程的能力得到切实的提高。 (3)德育目标 让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感. 二、教学的重、难点及教学设计 (1)教学的重点 1.掌握公式法解一元二次方程的一般步骤. 2.熟练地用求根公式解一元二次方程。 (2)教学的难点: 理解求根公式的推导过程及判别公式的应用。 (3)教学设计要点 1.情境设计 上课开始,通过提问让学生回忆一元二次方程的概念及配方法解一元二次方程的一般步骤。利用昨天所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备。 然后让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0) 能否用配方法求出它的解?引出本节课的内容。 2.教学内容的处理 (1)回顾配方法的解题步骤,用配方法来解一般形式的一元二次方程ax2+bx+c=0(a≠0)。 (2)总结用公式法解一元二次方程的解题步骤,并补充理解判别公式的分类与应用。 (3)在小黑板上补充课后思考题:李强和萧晨刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 李强说:“此方程有两个不相等的实数根”,而萧晨反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由. 3.教学方法 在教学中由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形

各类方程解法

各类方程解法一一元一次方程 1 一般形式 ax+b=0 (a≠0) 2 求根公式 x=? b 二二元一次方程 1 一般形式 ax+by=m cx+dy=n 2 求根公式 x=b ? d ÷ a ? m y=a m ? c n ÷ a b ? m n

1 一般形式 ax2+bx+c=0 (a≠0) 2 判别式 △=b2?4ac △>0,方程有两个不等实数根 x=?b±b2?4ac 2a △=0,方程有两个相等实数根 x1=x2=? b △<0,方程无实数根。

1 一般形式 ax 3+bx 2+cx +d =0 (a ≠0) 2 求根公式 x 1= ?27a 2d ?9abc +2b 327a 3+ 27a 2d ?9abc +2b 327a 3 + 3ac ?b 23a 2 3+ ?27a 2d ?9abc +2b 327a 32+ 27a 2d ?9abc +2b 327a 32 2+ 3ac ?b 23a 23 33?b 3a x 2=(?1+ 3i )? ?27a 2d ?9abc +2b 327a 3+ 27a 2d ?9abc +2b 327a 3 + 3ac ?b 23a 2 3+(?1+ 3i )2? ?27a 2d ?9abc +2b 327a 32+ 27a 2d ?9abc +2b 327a 32 2+ 3ac ?b 23a 23 33?b 3a x 3=(?1+ 3i 2)2? ?27a 2d ?9abc +2b 327a 32+ 27a 2d ?9abc +2b 327a 32 2+ 3ac ?b 23a 23 33+(?1+ 3i 2)? ?27a 2d ?9abc +2b 327a 3+ 27a 2d ?9abc +2b 327a 3 + 3ac ?b 23a 2 3?b

元高次方程求解方法

一元高次方程的漫漫求解路 若有人问你:“你会解一元二次方程吗?”你会很轻松地告诉他:会的,而且非常熟练!任给一个一元二次方程 20,0,ax bx c a ++=≠ ① 由韦达定理,①的根可以表示为x =. 若进一步问你,会解一元三次方程或更高次数的方程吗?你可能要犹豫一会儿说,只会一些简单的方程.于是你就会想:一元三次方程或更高次数的方程,是否也像一元二次方程的情形一样,有一个公式,它可以用方程的系数,经过反复使用加减乘除和开方运算,把方程的根表示出来? 数学家们当然应当给出完美的理论来解决高次方程的求解问题.有关理论至少应当包括高次方程是否有解?如果有解,如何求得? n 次方程的一般表达式是 101100,0,n n n n a x a x a x a a --++???++=≠ 而1011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠.当系数01,,a a 1,,n n a a -???都是实数时,称()f x 是n 次实多项式,当系数中至少有一个为复数时,称()f x 为n 次复系数多项式.如果存在复数α,使得()0f α=,就称α是n 次方程()0f x =的一 个根,或称为n 次多项式()f x 的一个根. 1799年,年仅22岁的德国数学家高斯在他的博士论文中首先证明了“代数基本定理”:复数域上任一个次数大于零的多项式,至少有一个复数根. 根据代数基本定理可以推出:复数域上n 次多项式恰有n 个复数根,其中k 重根以k 个根计算.这一结论也可以用多项式的因式分解语言来叙述:“复数域上任何n 次多项式都可以分解成n 个一次式的乘积.” 代数基本定理是一个纯粹的多项式根的存在定理,它没有给出求根的具体方法. 要求得n 次方程的根,一般是希望得到n 次方程 1011()0n n n n f x a x a x a x a --=++???++= ② 的求解公式,如二次方程①的求根公式那样.众所周知,方程①的解早在古代的巴比伦、埃

用公式法解一元二次方程教案精编版

优质课比赛教案 第23章 23.2 用公式法解一元二次方程 整体设计 教学分析 求根公式是直接运用配方法推导出来的,从数字系数的一元二次方程到字母系数的方程,体现了从特殊到一般的思路。用公式法解一元二次方程是比较通用的方法,它体现了一元二次方程根与系数最直接的关系,一元二次方程的根是由系数a,b,c决定的,只要将其代入求根公式就可求解,在应用公式时应首先将方程化成一般形式。 教学目标 知识与技能: 1、理解一元二次方程求根公式的推导过程 2、会用求根公式解简单系数的一元二次方程 过程与方法: 经历探索求根公式的过程,发展学生的合情推理能力,提高学生的运算能力并养成良好的运算习惯 情感、态度与价值观 通过运用公式法解一元二次方程的训练,提高学生的运算能力,并让学生在学习中获得成功的体验,建立学好数学的自信心。 重点: 掌握一元二次方程的求根公式,并能用它熟练地解一元二次方程 难点: 一元二次方程求根公式的推导过程 教学过程: 一、复习引入: 1、用配方法解下列方程: (1)4x2-12x-1=0;(2)3x2+2x-3=0 2、用配方法解一元二次方程的步骤是什么? 说明:教师引导学生回忆配方法解一元二次方程的基本思路及基本步骤,为本节课的学习做好铺垫。 3、你能用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0)吗? 二、问题探究: 问题1:你能用一般方法把一般形式的一元二次方程ax2+bx+c=0(a≠0)转化为(x+m)2=n 的形式吗?

说明:教师引导学生回顾用配方法解数字系数的一元二次方程的过程,让学生分组讨论 交流,达成共识,最后化成(x+a b 2)2=2244a a c b - ∵a ≠0,方程两边都除以a,得x 2+ 0=+a c x a b 移项,得x 2+ a c x a b -= 配方,得x 2+ 22)2(-)2(a b a c a b x a b +=+ 即(x+=2)2a b 2244a ac b - 问题2:当b 2_ 4ac ≥0,且a ≠0时,2244a ac b -大于等于零吗? 教师让学生思考,分析,发表意见,得出结论:当b 2-4ac ≥0时,因为a ≠0,说以4a 2 >0,从而得出04422≥-a ac b 问题3:在问题2的条件下,直接开平方你得到什么结论? 让学生讨论可得x+a ac b a b 2422-±= 说明:若有必要可让学生讨论22224444a ac b a ac b -±=-±为什么成立 问题4:由问题1,问题2,问题3,你能得出什么结论? 让学生讨论,交流,从中得出结论,当b 2-4ac ≥0时,一般形式的一元二次方程 ax 2 +bx+c=0(a ≠0)的根为x+a ac b a b 2422-±=,即x=a ac b b 242-±- 由以上研究结果得到了一元二次方程ax 2+bx+c=0(a ≠0)的求根公式:x=04(2422≥--±-ac b a ac b b ),这个公式就称为“求根公式”。利用它解一元二次方程叫做公式法。 说明和建议: (1)求根公式a 2ac 4-b b -x 2±=(b 2-4ac ≥0)是专指一元二次方程的求根公式,b 2-4ac ≥0是一元二次方程ax 2+bx+c=0(a ≠0)求根公式的重要条件。

一元四次方程求根公式

一元四次方程的求根公式-完整 (2012-01-12 14:42:01) 转载▼ 我以前发过了此文,但文中有缺少部分,此次经过更正2013.06.02 一元三次方程求解,中国的范盛金推导的求根公式较为合理,简明 实质上B2-4AC >0时情况可以作为一个通用公式,因为一般实数均可用复数形式表述。按下述方法可以简明地判断重根。 与三次方程不同的是,四次方程求解需要复数运算支持,因为中间数据均会出现复数。我已经发表的复数系统可作为计算的工具使用。关于四次方程求解程序我暂时无时间写,不过可利用QR方法求任意实数多项式方程的所有根(QR 程序我也已发表于博客中,可以引用)。 一元四次方程一般式:ax4+bx3+cx2+dx+e=0(a≠0,a,b,c,d,e∈R)p=-(3b2-8ac) q=3b4+16a2c2-16ab2c+16a2bd-64a3e r=-(b3-4abc+a2d) 2 A=p2-3q B=pq-9r C=q2-3pr 若A=B=0 y1=y2=y3=-p/3=-q/p=-3r/q x1=1/4a(-b+√y1+√y2+√y3) X3=1/4a(-b+√y1-√y2-√y3) X2=1/4a(-b-√y1+√y2-√y3) X4=1/4a(-b-√y1-√y2+√y3) 若B2-4AC=0 y1=-p+k y2=y3=-k/2 k=B/A A<>0 ///新补充 x1=1/4a(-b+√y1+√y2+√y3) X3=1/4a(-b+√y1-√y2-√y3) X2=1/4a(-b-√y1+√y2-√y3) X4=1/4a(-b-√y1-√y2+√y3) 若B2-4AC<0 T=(2Ap-3B)/(2A1.5 )

一般实系数四次方程的谢国芳公式-绝对准确可靠又最简明快捷的求根公式

一般实系数四次方程的谢国芳求根公式 作者:谢国芳(Roy Xie ) Email: roixie@https://www.doczj.com/doc/c617801439.html, 【摘要】本文给出了一个绝对准确可靠又最简明快捷的一般实系数四次方程的求根公式,其中涉及的运算全部为实数运算,可以在普通的科学计算器上进行。 以下把一般四次方程的形式设为 432 4640ax bx cx dx e ++++= 在系数中引入数字因子4, 6, 4是为了使后面各参数的表达式尽可能地简洁,注意五个系数的数字因子1, 4, 6, 4, 1恰好是二项式系数( 4432(1)4641x x x x x +=++++ ). 一般实系数四次方程的谢国芳求根公式 对于实系数四次方程 432 4640a x b x c x d x e ++++= (0)a > , 定义参数 2 H b ac =-, 2 43I ae bd c =-+, 23 32G a d abc b =-+, 3 2 2 3 4H a H I G J a --= , 3 2 27I J ?=-, 称0G ≠,220I J +≠(即, I J 不同时为0)的情形为一般情形,又可以分为下面这两种情况[1]:

(一)一般情形的求根公式Ⅰ 当32 270 I J ?=-<时,方程的四个根为 1,2 3,4 (sgn(/ (sgn(/ x b G a x b G a ?=-- ? ? ?=-+ ? 其中sgn() G为G的符号(sign), 1 (0) sgn() 1 (0) G G G > ? =? -< ? 2 a t H =+. (二)一般情形的求根公式Ⅱ 当32 270 I J ?=-≥时,方程的四个根为 1 2 3 4 (/ (/ (/ (/ x b a x b a x b a x b a ?=-+++ ? ?=-+ ? ? =--+- ? ? =---+ ?? 其中 1 ) 3 y H θ =+ , 2,3 2 ) 33 y H θπ =±+, 1 cos J θ- - =. s是一个符号因子(sign factor),等于1或1-,视实数 123 ,, y y y的符号 而定:当 123 ,, y y y全为正数时sgn() G s=-,否则sgn() G s=. (三)特殊情形的求根公式

二元一次方程公式法

育英学校九年级自学能力测试题 21.2.2公式法 一、读懂文本,捕捉重要的知识信息,为记住知识和应用知识奠定基础。(30分)。 读懂材料第 页: 1.知识点1: 一般地,式子ac b 42-叫做方程02=++c bx ax (0≠a ) .通常用希腊字母?表示它,即 2.知识点2: 当△≥0时,方程0c b a 2=++x x (a ≠0)的实数根可写为 的形式,这个式子叫作一元二次方程的求根公式。 3.知识点3: [方法归纳] 用公法解下列一元二次方程的步骤: (1)把方程化为一般形式,确定a,b,c,的值。 (2)求出b 2-4ac 的值。 (3)若b 2-4ac ≥0,则将a,b,c,的值代入求根公式求出方程的根。 4.读完文本后,你有哪些疑惑? 5.本文和以前学过的知识有什么联系? 二、加强记忆,巩固知识,解决问题,提升能力。(60分) 1.方程0132=+-x x 的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .只有一个实数根 解下列一元二次方程 (1)x 2-3x-1=0 (2) x 2+x-6=0 (3)3x 2-6x-2=0 (4)4x 2-6x=0

(5)x2+4x+8=4x+11 (6)x(2 x-4)=5 -8x 三、选做题(20分) 1.用公式法解方程4x2-12x=3,得到(). A.x= 36 2 -± B.x= 36 2 ± C.x= 323 2 -± D.x= 323 2 ± 2.代数式x2-8x+12的值是-4,求x的值 四、思想提升(学用结合,让本文与学习者自身的学习、记忆、巩固、再现和应用紧密挂钩,站在学的角度思考文本对于自己有什么用处,达到培养学习者学科思想的目的。)(10分) 1、本节知识的重点内容是什么?学习这些知识后有什么用处?(5分) 2、学习本节内容你有什么好的方法,写下来与大家分享。(5分)

一元二次方程的解法公式法-教案

解:移项得:3832=+x x 化系数为1得:13 8 2=+x x 配方得: 2 2 2 2413438?? ? ??+=??? ??++x 2 23534?? ? ??=??? ??+x 开平方得 35 34±=+x 所以 3 1 1=x 32-=x §2.3 解一元二次方程(公式法) 一、 教学目标 1. 知识与能力 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 2. 能力训练要求 1.通过公式推导,加强推理技能训练,进一步发展逻辑思维能力. 2.会用公式法解简单的数字系数的一元二次方程. 3. 情感感与态度 体会从一般到特殊的思维方式,养成严谨、认真的科学态度和学风 二 、教学重点与难点 1.重点:求根公式的推导和公式法的应用. 2.难点与关键:一元二次方程求根公式法的推导. 三、教学过程 1、复习引入。 用配方法解下列方程 (1) 03832=-+x x (2)2742 -=-x x 解:化系数为1得: 2 1472-=- x x 配方得: 2 2 2 87218747??? ??+-=?? ? ??+-x x 6417872 =?? ? ?? -x 开平方得 8 1787±=- x 所以8 17 71+= x 81772-=x

总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为()n m x =+2 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一 元二次方程无解. 从以上解题过程中,我们发现:利用配方法解一元二次方程的基本步骤是相同的.因此,如果能用配方法解一般的一元二次方程02=++c bx ax ()0≠a ,得到根的一般表达式,那么再解一元二次方程时,就会方便简捷得多 这节课我们就来探讨一元二次方程的求根公式 2、探索新知 问题:刚才我们已经利用配方法求解了一个一元二次方程,那你能否利用配方法的基 本步骤解方程02=++c bx ax ()0≠a 呢? 解: 二次项系数化为1得:;02=++a c x a b x 移项,得: ;2a c x a b x -=+ 配方得: 222)2()2(a b a c a b x a b x +-=++ 2 22 442a ac b a b x -=?? ? ?? + 能直接开平方吗?当b 2-4ac ≥0时 ∵b 2-4ac ≥0且4a 2>0 ∴2 2 44b ac a -≥0 直接开平方,得:x+2b a =±242b ac a - 即a ac b b x 242-±-= ∴x 1=242b b ac a -+-,x 2=242b b ac a ---

一元n次方程的求根公式a

一元 n 次方程的求根公式(一) 寻玉殿 当n 为不小于5的奇数时,一元n 次实系数方程 12 32 2 24 36 120 n n n n n n x nAx t A x t A x t A x B -----++++++= 有解,且必有一根为x = + 。 其中自然数i 满足3 21n i -≤≤,对于不同的奇数n ,i t 是特定的常数。 特别的(1)当5n =时, 15t = 原方程化为 532550 x Ax A x B +++= 则此方程必有一根为 5 x = + 。 (2)当7n =时,114t = 27t = 原方程化为 7523371470 x Ax A x A x B ++++= 则此方程必有一根为 x = + 。

(3)当9n =时,127t = 230t = 39t =原方程化为 97253349273090 x Ax A x A x A x B +++++= 则此方程必有一根为x = + 。 (4)当11n =时,144t = 277t = 355t = 411t = 原方程化为 119273543511447755110 x Ax A x A x A x A x B ++++++= 则此方程必有一根为 x = + 等等! 对于不同的奇数n ,有着相对应之特定的i t 值,就决定了这套5至n 次 系列高次方程的存在形式及数学模型。

而对于n为偶数时,只要设 2 y x ,依然可以采用此套求根公式! 所以这一套高次方程的模型不一而足,穷尽n次。 此方程的原雏产生于1995年,当时我就其中n等于5时一例在《中学生 数理化》刊物投过稿件,但没有被采纳,所以搞得此方程泥牛入海,一直搁浅至今。当时虽然没有完善到n次,但足以奠定并拓开了我日后的探索之路。本来欲将此高次方程向数学学会申报定理,但由于“黑规矩”肆无忌惮的盗稿窃稿,本人一直心有余悸,畏葸犹豫。几十年的经验总结及对此方程的不断更进完善,方形成这套较令人乐观的数学模型。今天,偶见互联网上已经有涉及此 5次方程课题的文志!唯恐被他人误为抄袭之嫌,所以,挑灯不寐,连夜及时将我这套高次方程的数学模型整理打印出炉,大白于天下,作为我申报定理的一个-“前哨站”,希望互联网有一片正大光明的天地为我们莘莘学子的科学探索之路打开通途。 作者寻玉殿 2017年5月3日星期三整理完毕

一元二次方程求根公式及讲解

主讲:黄冈中学高级教师 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为. 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根.

二、重难点知识总结 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是

相关主题
文本预览
相关文档 最新文档