当前位置:文档之家› 专题28 数列求和(教学案)(解析版)

专题28 数列求和(教学案)(解析版)

专题28 数列求和(教学案)(解析版)
专题28 数列求和(教学案)(解析版)

1.熟练掌握等差、等比数列的前n 项和公式;

2.掌握非等差数列、非等比数列求和的几种常见方法。

1.求数列的前n 项和的方法 (1)公式法

①等差数列的前n 项和公式

S n =n (a 1+a n ) 2 =na 1+n (n -1)2d . ②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1;

(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q . (2)分组转化法

把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法

把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法

把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法

主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.

(6)并项求和法

一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n = (-1)n f (n )类型,可采用两项合并求解.

例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1.

(2)1(2n -1)(2n +1)=12????1

2n -1-12n +1. (3)1

n +n +1=n +1-n .

高频考点一 分组转化法求和

例1、已知{a n }是等比数列,前n 项和为S n (n ∈N +),且1a 1-1a 2=2

a 3,S 6=63. (1)求{a n }的通项公式;

(2)若对任意的n ∈N +,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. 解 (1)设数列{a n }的公比为q . 由已知,有1a 1-1a 1q =2a 1q 2, 解得q =2或q =-1.

又由S 6=a 1·1-q 6

1-q =63,知q ≠-1, 所以a 1·1-261-2=63,得a 1=1.

所以a n =2n -1.

(2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n

)=n -1

2, 即{b n }是首项为1

2,公差为1的等差数列. 设数列{(-1)n b 2n }的前n 项和为T n ,则

T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )

=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2n (b 1+b 2n )2

=2n 2. 【方法规律】(1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.

(2)若数列{c n }的通项公式为c n =?????a n ,n 为奇数,b n ,n 为偶数,

其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.

【变式探究】 (1)数列112,314,518,7116,…,(2n -1)+1

2n ,…的前n 项和S n 的值等于 ( )

A.n 2

+1-1

2n

B.2n 2

-n +1-1

2n

C.n 2

+1-1

2

n -1

D.n 2

-n +1-1

2n

(2)数列{a n }的通项公式a n =n cos n π

2,其前n 项和为S n ,则S 2 016等于( ) A.1 008

B.2 016

C.504

D.0

解析 (1)该数列的通项公式为a n =(2n -1)+1

2n , 则S n =[1+3+5+…+(2n -1)]+????12+122

+…+12n =n 2

+1-1

2n .

(2)a 1=cos π

2=0,a 2=2 cos π=-2,a 3=0,a 4=4,….

所以数列{a n }的所有奇数项为0,前2 016项的所有偶数项(共1 008项)依次为-2,4,-6,8,…,-2 014,2 016.

故S 2 016=0+(-2+4)+(-6+8)+…+(-2 014+2 016)=1 008. 答案 (1)A (2)A

高频考点二 裂项相消法求和

例2、已知等差数列{a n }的前n 项和为S n ,公差为d ,若d ,S 9为函数f (x )=(x -2)(x -99)的两个零点且d

(1)求数列{a n }的通项公式;

(2)若b n =1

a n +1

+a n (n ∈N *),求数列{b n }的前n 项和T n .

解 (1)因为d ,S 9为函数f (x )=(x -2)(x -99)的两个零点且d

又因为S n =na 1+n (n -1)2d ,所以9a 1+9×8

2×2=99,解得a 1=3,{a n }是首项为3,公差为2的等差数列. 所以a n =a 1+(n -1)d =2n +1.

(2)∵b n =1a n +1+a n =1

2n +3+2n +1

=1

2(2n +3-2n +1),

∴T n =12(5-3)+12(7-5)+…+12(2n +1-2n -1)+1

2(2n +3-2n +1)=2n +3-32. 【举一反三】[2017·全国卷Ⅲ]设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;

(2)求数列?????

?

a n 2n +1的前n 项和.

解 (1)因为a 1+3a 2+…+(2n -1)a n =2n , 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1), 两式相减得(2n -1)a n =2, 所以a n =2

2n -1(n ≥2).

又由题设可得a 1=2,满足上式, 所以{a n }的通项公式为a n =2

2n -1(n ∈N *).

(2)记?????

?

a n 2n +1的前n 项和为S n .

由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-1

2n +1, 则S n =11-13+13-15+…+12n -1-12n +1=2n

2n +1.

【变式探究】正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2

+n )=0.

(1)求数列{a n }的通项公式a n ;

(2)令b n =n +1(n +2)2a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *

,都有T n <5

64.

解 (1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,

得[S n -(n 2+n )](S n +1)=0.

由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,

当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .当n =1时,a 1=2=2×1符合上式. 综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n ,

故b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=116????1

n

2-1(n +2)2. T n =116[ 1-132+122-142+132-152+…+1(n -1)2-1(n +1)2+1n 2-1(n +2)2 ]=116[ 1+122-1(n +1)2-1(n +2)2 ]

<1

16

????1+122=564.

【方法技巧】裂项相消法求和问题的常见类型及解题策略 (1)直接考查裂项相消法求和.解决此类问题应注意以下两点:

①抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;

②将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ????1a n -1a n +1,1a n a n +2=12d ????1

a n -1a n +2.

(2)与不等式相结合考查裂项相消法求和.解决此类问题应分两步:第一步,求和;第二步,利用作差法、放缩法、单调性等证明不等式.

高频考点三 错位相减法求和

例3、[2017·山东高考]已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;

(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列?????

?

b n a n 的前n 项和T n .

解 (1)设{a n }的公比为q ,

由题意知a 1(1+q )=6,a 21q =a 1q 2,

又a n >0,由以上两式联立方程组解得a 1=2,q =2, 所以a n =2n .

(2)由题意知S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)·b n +1, 又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1. 令c n =b n

a n ,则c n =2n +12n . 因此T n =c 1+c 2+…+c n

=32+522+7

23+…+2n -12n -1+2n +12n , 又12T n =322+523+7

24+…+2n -12n +2n +12n +1, 两式相减得

12T n =32+????12+1

22+…+12n -

1-2n +12n +1, 所以T n =5-2n +5

2n .

【特别提醒】用错位相减法求和应注意的问题

(1)要善于识别题目类型,特别是等比数列公比为负数的情形.

(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.

(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 【变式探究】 已知等差数列{a n }的前n 项和为S n ,若S m -1=-4,S m =0,S m +2=14(m ≥2,且m ∈N *). (1)求m 的值;

(2)若数列{b n }满足a n

2=log 2b n (n ∈N *),求数列{(a n +6)·b n }的前n 项和. 解 (1)由已知得a m =S m -S m -1=4, 且a m +1+a m +2=S m +2-S m =14,

设数列{a n }的公差为d ,则有2a m +3d =14, ∴d =2.

由S m =0,得ma 1+m (m -1)

2×2=0,即a 1=1-m , ∴a m =a 1+(m -1)×2=m -1=4, ∴m =5.

(2)由(1)知a 1=-4,d =2,∴a n =2n -6,

∴n -3=log 2b n ,得b n =2n -

3.

∴(a n +6)·

b n =2n ·2n -3=n ·2n -2. 设数列{(a n +6)·

b n }的前n 项和为T n , ∴T n =1×

2-1+2×20+…+(n -1)×2n -3+n ·2n -2① 2T n =1×20+2×21+…+(n -1)×2n -2+n ·2n -1②

①-②,得-T n =2-1+20+…+2n -

2-n ·

2n -1 =2-1(1-2n )

1-2-n ·2n -1 =2

n -1

-1

2-n ·

2n -1 =(1-n )×

2n -1

-12.

∴T n =(n -1)·

2n -1

+1

2(n ∈N *).

高频考点四 求数列{|a n |}的前n 项和问题

例4、在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;

(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解 (1)由题意得5a 3·

a 1=(2a 2+2)2,

即d 2-3d -4=0,故d =-1或4.

所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n .

因为d <0,由(1)得d =-1,a n =-n +11, 所以S n =-12n 2

+212n ,令a n ≥0,则n ≤11. 当n ≤11时,

|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2

+212n .

当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2

-212n +110.

综上所述,|a 1

|+|a 2

|+|a 3

|+…+|a n

|=???

-12n 2

+21

2n ,n ≤11,

12n 2

-21

2n +110,n ≥12.

【方法技巧】求数列{|a n |}前n 项和的一般步骤 第一步:求数列{a n }的前n 项和; 第二步:令a n ≤0(或a n ≥0)确定分类标准; 第三步:分两类分别求前n 项和; 第四步:用分段函数形式表示结论;

第五步:反思回顾,即查看{|a n |}的前n 项和与{a n }的前n 项和的关系,以防求错结果. 【变式探究】已知数列{a n }的前n 项和S n =12n -n 2. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和T n . 解 (1)∵当n =1时,a 1=S 1=11;

当n ≥2时,S n =12n -n 2,S n -1=12(n -1)-(n -1)2, ∴a n =S n -S n -1=13-2n ; 当n =1时也满足此式成立, 故a n 的通项公式为a n =13-2n .

(2)令a n =13-2n ≥0,n ≤13

2.当n ≤6时,数列{|a n |}的前n 项和T n =S n =12n -n 2; 当n >6时,a 7,a 8,…,a n 均为负数,故S n -S 6<0, 此时T n =S 6+|S n -S 6|=S 6+S 6-S n =72+n 2-12n .

故{|a n |}的前n 项和T n =?

????

12n -n 2,n ≤6,

n 2-12n +72,n >6.

1. (2018年天津卷)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.

(Ⅰ)求S n 和T n ;

(Ⅱ)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. 【答案】(Ⅰ)

;(Ⅱ)4.

【解析】(I )设等比数列的公比为q ,由b 1=1,b 3=b 2+2,可得

因为

,可得

,故

.所以,

. 设等差数列的公差为.由,可得. 由

,可得

从而

,故

,所以,

. (II )由(I ),有

由可得

整理得

解得

(舍),或

.所以n 的值为4.

2. (2018年北京卷)设是等差数列,且

. (Ⅰ)求的通项公式;

(Ⅱ)求.

【答案】(I )

(II )

【解析】(I )设等差数列的公差为,

∵, ∴,

又,∴

. ∴

.

(II)由(I)知,

∵,

∴是以2为首项,2为公比的等比数列.

∴.

3. (2018年江苏卷)设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.

(1)设,若对均成立,求d的取值范围;

(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).

【答案】(1)d的取值范围为.

(2)d的取值范围为,证明见解析。

【解析】(1)由条件知:.

因为对n=1,2,3,4均成立,

即对n=1,2,3,4均成立,

即11,1d3,32d5,73d9,得.

因此,d的取值范围为.

(2)由条件知:.

若存在d,使得(n=2,3,···,m+1)成立,

即,

即当时,d满足.

因为,则,

从而,,对均成立.

因此,取d=0时,对均成立.

下面讨论数列的最大值和数列的最小值().

①当时,,

当时,有,从而.

因此,当时,数列单调递增,

故数列的最大值为.

②设,当x>0时,,

所以单调递减,从而

当时,,

因此,当时,数列单调递减,

故数列的最小值为.

因此,d的取值范围为.

4. (2018年全国卷Ⅱ)记为等差数列的前项和,已知,.

(1)求的通项公式;

(2)求,并求的最小值.

【答案】

(1)a n=2n–9.

(2)–16.

【解析】

(1)设{a n}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2,所以{a n}的通项公式为a n=2n–9.(2)由(1)得S n=n2–8n=(n–4)2–16,所以当n=4时,S n取得最小值,最小值为–16.

5. (2018年全国I卷)已知数列满足,,设.

(1)求;

(2)判断数列是否为等比数列,并说明理由;

(3)求的通项公式.

【答案】(1) b 1=1,b 2=2,b 3=4.

(2) {b n }是首项为1,公比为2的等比数列.理由见解析. (3) a n =n ·2n -1. 【解析】

(1)由条件可得a n +1=

将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.

(2){b n }是首项为1,公比为2的等比数列. 由条件可得,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.

(3)由(2)可得

,所以a n =n ·

2n -1. 6. (2018年全国III 卷)等比数列中,

(1)求

的通项公式;

(2)记为的前项和.若

,求.

【答案】(1)或

(2)

【解析】 (1)设的公比为,由题设得

. 由已知得,解得

(舍去),

故或. (2)若,则

.由得,此方程没有正整数解. 若

,则.由

,解得

,综上,

1.[2017·全国卷Ⅲ]等差数列{}a n 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}a n 前6项的和为( )

A .-24

B .-3

C .3

D .8 答案 A

解析 由已知条件可得a 1=1,d ≠0,

由a 23=a 2a 6可得(1+2d )2

=(1+d )(1+5d ),

解得d =-2.

所以S 6=6×1+6×5×-2

2

=-24.故选A. 2.[2017·全国卷Ⅱ]等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1

n

1

S k =________.

答案 2n

n +1

解析 设等差数列{a n }的公差为d ,则 由?????

a 3=a 1+2d =3,S 4=4a 1+4×32d =10,

得?????

a 1=1,

d =1. ∴S n =n ·

1+n n -12×1=n

n +1

2

, 1S n =2n n +1=2????1

n -1n +1, ∴∑k =1

n

1S k =1S 1+1S 2+1S 3+…+1S n =2????1-12+12-13+13-1

4+…+1n -1n +1 =2??

??1-1n +1=2n n +1.

3.[2017·天津高考]已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.

(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).

解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由已知b 2+b 3=12,得b 1(q +q 2)=12. 而b 1=2,所以q 2+q -6=0,解得q =-3或q =2. 又因为q >0,所以q =2.所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8①. 由S 11=11b 4,可得a 1+5d =16②,

联立①②,解得a 1=1,d =3,由此可得a n =3n -2.

所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b n }的前n 项和为T n .由a 2n =6n -2,得 T n =4×2+10×22+16×23+…+(6n -2)×2n ,

2T n =4×22+10×23+16×24+…+(6n -8)×2n +(6n -2)×2n +1. 上述两式相减,得

-T n =4×

2+6×22+6×23+…+6×2n -(6n -2)×2n +1 =12×1-2n

1-2

-4-(6n -2)×2n +1=-(3n -4)2n +2-16, 所以T n =(3n -4)2n +

2+16.

所以,数列{a 2n b n }的前n 项和为(3n -4)2n +

2+16.

4.【2017课标II ,文17】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,

11221,1,2a b a b =-=+=

(1)若335a b += ,求{}n b 的通项公式; (2)若321T =,求3S . 【答案】(1)(2)见解析

【解析】 解: 设

的公差为d ,

的公比为q ,则

,

.由

d+q=3. ① 由

得 ②

联立①和②解得(舍去),

因此的通项公式

由得.

解得

当时,由①得,则. 当

时,由①得

,则

.

5.【2017课标3,文17】设数列{}n a 满足123(21)2n a a n a n +++-=K . (1)求{}n a 的通项公式; (2)求数列21n a n ??

?

?+??

的前n 项和. 【答案】(1) ()

221n a n N n +=∈-;(2)

221

n

n

+

. 【解析】 (1)当

时,

,当时,由

,①

,②

①②得,即

,验证符合上式,

所以

.

(2).,

.

6.【2017山东,文19】(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==. (I)求数列{a n }通项公式;

(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ??

?

???

的前n 项和n T . 【答案】(Ⅰ)2n

n a =.(Ⅱ)25

52

n n

n T +=-

. 【解析】

(Ⅰ)设{}n a 的公比为q ,由题意知: ()2

2

11116,a q a q a q +==.

又0n a >,

解得: 12,2a q ==,

所以2n

n a =.

(Ⅱ)由题意知: ()()()12121121212

n n n n b b S n b +++++==

+,

又2111,0,n n n n S b b b +++=≠ 所以21n b n =+, 令n

n n

b c a =

, 则21

2n n

n c +=, 因此

12231357212122222

n n n n n n T c c c --+=+++=

+++++L L , 又234113572121

222222n n n n n T +-+=++++

+L , 两式相减得2111

3111212

22222

n n n n T -++??=++++- ???L 所以2552n n

n T +=-

. 7.【2017北京,文15】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{}n a 的通项公式;

(Ⅱ)求和:13521n b b b b -++++K .

【答案】(Ⅰ)21n a n =- ;(Ⅱ)31

2

n -. 【解析】

(Ⅰ)设等差数列{a n }的公差为d . 因为a 2+a 4=10,所以2a 1+4d =10. 解得d =2. 所以a n =2n ?1.

(Ⅱ)设等比数列的公比为q . 因为b 2b 4=a 5,所以b 1qb 1q 3=9. 解得q 2=3.

所以.

从而

.

1.【2016高考新课标1文数】(本题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足

12111

==3

n n n n b b a b b nb +++=1,,,.

(I )求{}n a 的通项公式; (II )求{}n b 的前n 项和. 【答案】(I )31n a n =-(II )

131

.223

n --? 【解析】(Ⅰ)由已知,1221121

,1,,3

a b b b b b +===得12a =,所以数列{}n a 是首项为2,公差为3的等差数列,通项公式为31n a n =-.

(Ⅱ)由(Ⅰ)和11n n n n a b b nb +++= 得13n n b b +=

,因此{}n b 是首项为1,公比为1

3

的等比数列.记{}n b 的前n 项和为n S ,则1

1

1()313.122313

n

n n S --==-?-

2.【2016高考新课标2文数】等差数列{n a }中,34574,6a a a a +=+=. (Ⅰ)求{n a }的通项公式;

(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 【答案】(Ⅰ)23

5

n n a +=;(Ⅱ)24. 【解析】

(Ⅰ)设数列{}n a 的公差为d ,由题意有112+54,+53a d a d ==. 解得121,5

a d ==

. 所以{}n a 的通项公式为23

5

n n a +=. (Ⅱ)由(Ⅰ)知235n n b +??

=????

. 当n=1,2,3时,23

12,15

n n b +≤

<=;

当n=4,5时,23

23,25n n b +≤

<=; 当n=6,7,8时,23

34,35n n b +≤<=; 当n=9,10时,23

45,45

n n b +≤<=. 所以数列{}n b 的前10项和为1322334224?+?+?+?=. 3.【2016高考北京文数】(本小题13分)

已知}{n a 是等差数列,}{n b 是等差数列,且32=b ,93=b ,11b a =,414b a =. (1)求}{n a 的通项公式;

(2)设n n n b a c +=,求数列}{n c 的前n 项和.

【答案】(1)21n a n =-(1n =,2,3,???);(2)2

31

2

-+n

n 【解析】

(Ⅰ)等比数列{}n b 的公比329

33

b q b =

==, 所以2

11b b q

=

=,4327b b q ==. 设等差数列{}n a 的公差为d . 因为111a b ==,14427a b ==, 所以11327d +=,即2d =.

所以21n a n =-(1n =,2,3,???).

(Ⅱ)由(Ⅰ)知,21n a n =-,1

3n n b -=. 因此1

213n n n n c a b n -=+=-+.

从而数列{}n c 的前n 项和

()11321133n n S n -=++???+-+++???+

()12113213

n

n n +--=+

-

2

31

2

n n -=+. 4.【2016高考山东文数】(本小题满分12分)

已知数列{}n a 的前n 项和2

38n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.

(I )求数列{}n b 的通项公式;

(II )令1

(1)(2)n n n n

n a c b ++=

+.求数列{}n c 的前n 项和n T . 【答案】(Ⅰ)13+=n b n ;(Ⅱ)2

23+?=n n n T

【解析】

(Ⅰ)由题意知,当2≥n 时,561+=-=-n S S a n n n , 当1=n 时,1111==S a ,符合上式,所以56+=n a n .

设数列的公差为d ,由???+=+=322211b b a b b a ,即???+=+=d b d b 321721111,解之得3,41==d b ,所以13+=n b n .

(Ⅱ)由(Ⅰ)知1

12)1(3)33()66(=-?+=++=n n

n n n n n c ,

由n n c c c c T +???+++=321,得231

3[2232(1)2]n n T n +=??+?+???++?,

34223[2232(1)2]n n T n +=??+?+???++?,

两式作差, 得

2341

2

224(21)

3[22222

(1)2

]3[4(1)2]3221

n n n n n n T n n n ++++--=??+++???+-+?=?+-+?=-?-.

所以2

23+?=n n n T

5.【2016高考浙江文数】(本题满分15分)设数列{n a }的前n 项和为n S .已知2S =4,1n a +=2n S +1,*N n ∈.

(I )求通项公式n a ;

(II )求数列{2n a n --}的前n 项和.

【答案】(I )1*

3,n n a n N -=∈;(II )2*

2,13511,2,2

n n n T n n n n N =?

?=?--+≥∈?

?. 【解析】 (Ⅰ)由题意得1221421a a a a +=??

=+?,则12

13.a a =??

=?, 又当2n ≥时,由11(21)(21)2n n n n n a a S S a +--=+-+=, 得13n n a a +=.

所以,数列{}n a 的通项公式为13n n a n -=∈*

,N . (Ⅱ)设1

|32|n n b n -=--,*n ∈N ,122,1b b ==. 当3n ≥时,由于132n n ->+,故1

32,3n n b n n -=--≥.

设数列{}n b 的前n 项和为n T ,则122,3T T ==.

当3n ≥时,229(13)(7)(2)3511

31322

n n n n n n n T --+---+=+-=

-, 所以,2*

2,1,

3511,2,2

n n n T n n n n =??

=?--+≥∈?

?.N 【2015高考福建,文17】等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设2

2

n a n b n -=+,求12310b b b b +++???+的值.

【答案】(Ⅰ)2n a n =+;(Ⅱ)2101. 【解析】(I )设等差数列{}n a 的公差为d .

由已知得()()11

14

3615a d a d a d +=???+++=??,

解得13

1a d =??=?

所以()112n a a n d n =+-=+.

(II )由(I )可得2n

n b n =+.

所以()()()()

2

3

10

12310212223210b b b b +++???+=++++++???++

()()2310222212310=+++???+++++???+

()()102121101012

2

-+?=

+

-

()112255=-+

112532101=+=.

【2015高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=. (I )求{}n a 的通项公式;

(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【答案】(I )22n a n =+;(II )6b 与数列{}n a 的第63项相等. 【解析】(Ⅰ)设等差数列{}n a 的公差为d . 因为432a a -=,所以2d =.

又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+ (1,2,)n =L . (Ⅱ)设等比数列{}n b 的公比为q . 因为238b a ==,3716b a ==, 所以2q =,14b =.

所以61

642128b -=?=.

由12822n =+,得63n =. 所以6b 与数列{}n a 的第63项相等.

(完整版)数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

几种常见数列求和方法的归纳

几种常见数列求和方法的归 纳 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

几种常见数列求和方法的归纳 1.公式法:即直接用等差、等比数列的求和公式求和。主要适用于等差,比数列求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (等差数列推导用到特殊方法:倒序相加) (2)等比数列的求和公式??? ??≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定 要讨论) (3)222221(1)(21) 1236n k n n n k n =++=++++=∑(不作要求,但要了解) 例:(1)求=2+4+6+ (2) (2)求=x+++…+(x ) 2.倒序相加:适用于:数列距离首尾项距离相同的两项相加和相同。 例:(1)求证:等差数列{}的前n 项和d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)222 2sin 1sin 2sin 3sin 89+++ + . 3.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 例:(1)求和:(1) 个 n n S 111111111++++= 81 10 9101--+n n (2)2 2222)1 ()1()1(n n n x x x x x x S ++++++=

当1±≠x 时, n x x x x S n n n n 2) 1()1)(1(2 2222+-+-=+ 当n S x n 4,1=±=时 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。(分式求和常用裂项相消) 常见的拆项公式: 111)1(1+-=+n n n n ,) 121 121(21)12)(12(1+--=+-n n n n , 1111 ()(2)22 n n n n =-++, ) 12)(12(1 1)12)(12()2(2+-+=+-n n n n n , 2= 例:(1)求和:111 1 ,,,,, 132435 (2) n n ???+ . (2)求和)12)(12()2(5343122 22+-++?+?=n n n S n 1 2)1(2++= n n n S n 5.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ (适用于:等差数列乘以等比数列的通项求和) 例:求和:23,2,3, ,, n a a a na

数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习) 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+=

2、等比数列求和公式:??? ??≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n

数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法 一.公式法(定义法): 1.等差数列求和公式: 11()(1)22 n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+?,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,( )111n n a q S q -= -,特别要注意对公比的讨论; 3.可转化为等差、等比数列的数列; 4.常用公式: (1)1 n k k ==∑1 2 123(1)n n n ++++=+L ; (2)21n k k ==∑222211 63 1123(1)(21)()(1)2 n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2 123[ ]n n n +++++=L ; (4)1 (21)n k k =-=∑2135(21)n n ++++-=L . 例1 已知3log 1 log 23-= x ,求23n x x x x ++++ 的前n 项和. 解:由21 2log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 23n n S x x x x =++++L =x x x n --1)1(=2 11)211(2 1--n =1-n 2 1 例2 设123n S n =++++ ,*n N ∈,求1 )32()(++=n n S n S n f 的最大值. 解:易知 )1(21+=n n S n , )2)(1(2 1 1++=+n n S n ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64341++=50 )8(1 2+-n n 50 1≤ ∴ 当 8 8 -n ,即8n =时,501)(max =n f . 二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。如:等差数列的前n 项和即是用此法推导的,就是

数列求和常见的7种方法

数列求与得基本方法与技巧 一、总论:数列求与7种方法: 利用等差、等比数列求与公式 错位相减法求与 反序相加法求与 分组相加法求与 裂项消去法求与 分段求与法(合并法求与) 利用数列通项法求与 二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法, 三、逆序相加法、错位相减法就是数列求与得二个基本方法。 数列就是高中代数得重要内容,又就是学习高等数学得基础。在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需 要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、 一、利用常用求与公式求与 利用下列常用求与公式求与就是数列求与得最基本最重要得方法。 1、等差数列求与公式: 2、等比数列求与公式: 3、4、 5、 [例1]已知,求得前n项与。 解:由 由等比数列求与公式得(利用常用公式) ===1- [例2]设S n=1+2+3+…+n,n∈N*,求得最大值、 解:由等差数列求与公式得, (利用常用公式) ∴= == ∴当,即n=8时, 二、错位相减法求与 这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn} 得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。 [例3]求与:………………………① 解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积 设………………………。②(设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列得求与公式得: ∴ [例4] 求数列前n 项得与、 解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积 设…………………………………① ………………………………② (设制错位) ①—②得 (错位相减) ∴ 三、反序相加法求与 这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。 [例5] 求证: 证明: 设…………………………、。 ① 把①式右边倒转过来得 (反序) 又由可得 ………….。……、. ② ①+②得 (反序相加) ∴ [例6] 求得值 解:设…………、 ① 将①式右边反序得 ………….。② (反序) 又因为 ① +②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89 ∴ S=44、5 题1 已知函数 (1)证明:; (2)求得值。 解:(1)先利用指数得相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明得结论可知, 两式相加得: 所以、 练习、求值:

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6112++==∑=n n n k S n k n [ [∴当8 -n ,即n =8时,50)(max =n f 题1.等比数列的前n项和S n=2n-1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a =,b =,c = . 解:原式=答案:

二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. [例3]求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=……………………….②(设制错位) n n 1432-∴[例4]2 练习题1已知,求数列{答案: 练习题2的前n 项和为____ 答案: 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5]求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++

高中数列求和方法大全

1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列的求和公式?????≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定要讨论) 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常见拆项公式: 111)1(1+-=+n n n n ; 1111()(2)22 n n n n =-++ )1 21 121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=? 5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 6.合并求和法:如求22222212979899100-++-+-Λ的和。 7.倒序相加法: 8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析: 例1.求和:①321ΛΛ个 n n S 111111111++++= ②22222)1 ()1()1(n n n x x x x x x S ++++++ =Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。 解:①)110(9 110101011112 -= ++++==k k k k a Λ321Λ个 ] )101010[(9 1 )]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ81 10910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++ =n n n x x x x x x S Λ

(完整)高中数列求和方法集锦

数列求和的常用方法 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+=+= 2、等比数列的前n 项和公式 ?? ???≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(213211 += +?+++==∑=n n n k S n k n (2)、)12)(1(6132122221 2++= +?+++==∑=n n n n k S n k n (3)、233331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1-n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

高考数列求和解题方法大全

高考数列求和解题方法 大全 YUKI was compiled on the morning of December 16, 2020

高考数列求和解题方法大全 数列求和问题是数列的基本内容之一,也是高考的热点和重点。由于数列求和问题题型多样,技巧性也较强,以致成为数列的一个难点。鉴于此,下面就数列求和问题的常见题型及解法技巧作一归纳,以提高同学们数列求和的能力。 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:??? ??≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(61 1 2++==∑=n n n k S n k n 例1. 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x , 由等比数列求和公式得 n n x x x x S +???+++=32=x x x n --1)1(=211) 21 1(2 1--n =1-n 21 二、错位相减法求和

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2. 求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 当时1=x ,()()[]22 121127531n n n n S n =-+=-+++++= 当时1≠x 设n n x n x x x x xS )12(7531432-+???++++=……………② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ 例3.已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令 )(lg N n a a b n n n ∈?=,求数列{}n b 的前n 项和n S 。 解析: ①-②得:a na a a a S a n n n lg )()1(12+-+++=-

数列求和的常用方法(新)

数列求和的常用方法 永德二中 王冬梅 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1 S n 2S n 3(1(2(3的前n 例1解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

?)1(11132n n n nq q q q q q S -+?++++-=- ?)11(11n n n nq q q q S ----= ?q nq q q S n n n ----=1)1(12 ?1(1(2(3(42、根式形式,如: n n n n a n -+=++=111 例2:求数列211?,321?,4 31?,…,)1(1+n n ,…的前n 项和n S 解:∵)1(1+n n =1 11+-n n

1 11313121211+-+?++-+-=n n S n ?1 11+-=n S n 例3:求数列 311?,421?,531?,…,)2(1+n n ,…的前n 项和n S 解:由于:)2(1+n n =2 11(21+-n n ) ? ? 例3例4(1 (2则,由条件:对任意R x ∈都有2)1()(=-+x f x f 。 ?)( 1222222+=+?+++=n a n ?1+=n a n ?21+=+n a n ?11=-+n n a a 从而:数列}{n a 是1,21==d a 的等差数列。

数列求和方法及巩固

数列求和的方法 1、公式法: 如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求. ①等差数列求和公式:()() 11122 n n n a a n n S na d +-= =+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q q q ?=? =-?-=≠? --? 常见的数列的前n 项和:123+++……+n=(1)2 n n +, 1+3+5+……+(2n-1)=2 n 2222123+++……+n =(1)(21)6n n n ++,3333 123+++……+n =2 (1)2n n +?????? 等. 2、倒序相加法: 类似于等差数列的前n 项和的公式的推导方法。如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。这一种求和的方法称为倒序相加法. 例1、 已知函数( )x f x = (1)证明:()()11f x f x +-=; (2)求128910101010f f f f ?? ?????? + +++ ? ? ? ??? ?? ?? ?? 的值. 解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知, 1928551101010101010f f f f f f ????????????+=+==+ = ? ? ? ? ? ??? ???? ?? ???? 128910101010S f f f f ?? ?? ????=+ +++ ? ? ? ?????????令 982110101010S f f f f ?? ??????=+ +++ ? ? ? ??? ?? ?? ?? 则 两式相加得: 192991010S f f ? ? ????=?+= ? ? ??????? 所以92S =.

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11) 211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 题1.等比数列的前n项和S n=2n-1,则=

(完整word版)数列求和的各种方法

数列求和的方法 教学目标 1.熟练掌握等差、等比数列的前n 项和公式. 2.掌握非等差、等比数列求和的几种常见方法. 3.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题. 教学内容 知识梳理 1.求数列的前n 项和的方法 (1)公式法 ①等差数列的前n 项和公式 S n = ()21n a a n +=na 1+()d n n 2 1-. ②等比数列的前n 项和公式 (Ⅰ)当q =1时,S n =na 1; (Ⅱ)当q ≠1时,S n =() q q a n --111=a 1-a n q 1-q . ③常见的数列的前n 项和:, 1+3+5+……+(2n -1)= ,等 (2)分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法 这是推导等差数列前n 项和时所用的方法,将一个数列倒过来排序,如果原数列相加时,若有公因式 可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和. (5)错位相减法 这是推导等比数列的前n 项和公式时所用的方法,主要用于求{a n ·b n }的前n 项和,其中{a n }和{b n }分别是等差数列和等比数列. (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 123+++……+n= (1)2 n n +2 n 2222123+++……+n =(1)(21)6n n n ++3333 123+++……+n =2 (1)2n n +??????

数列求和常用公式

数列求和常用公式: 1、1+2+3+......+n=n ×(n+1)÷2 2、12+22+32+......+n 2=n(n+1)(2n+1)÷6 3、 13+23+33+......+n 3=( 1+2+3+......+n)2 =n 2×(n+1)2÷4 4、 1×2+2×3+3×4+......+n(n+1) =n(n+1)(n+2)÷3 5、 1×2×3+2×3×4+...+n(n+1)(n+2)=n(n+1)(n+2)(n+3)÷4 6、 1+3+6+10+15+... =1+(1+2)+(1+2+3)+(1+2+3+4)+...+(1+2+3+...+n) =[1×2+2×3+3×4+...+n(n+1)]/2=n(n+1)(n+2) ÷6 7)1+2+4+7+11+...=1+(1+1)+(1+1+2)+(1+1+2+3)+......+(1+1+2+3+...+n) = (n+1)×1+[1×2+2×3+3×4+......+n(n+1)]/2=(n+1)+n(n+1)(n+2) ÷6 8)12 +12×3 +13×4 +1n(n+1) =1-1/(n+1)=n ÷(n+1)

9)1 1+2+ 1 1+2+3 + 1 1+2+3+4 + 1 1+2+3+4+…+n = 2 2×3 + 2 3×4 + 2 4×5 + 2 n(n+1) =(n-1) ÷(n+1) 10) 1 1×2 + 2 2×3 + 3 2×3×4 + (n-1) 2×3×4×…×(n-1) = 2×3×4×…(n-1) 2×3×4×…×n 11)12+32+52+..........(2n-1)2=n(4n2-1) ÷3 12)13+33+53+..........(2n-1)3=n2(2n2-1) 13)14+24+34+..........+n4=n(n+1)(2n+1)(3n2+3n-1) ÷30 14)15+25+35+..........+n5=n2 (n+1)2 (2n2+2n-1) ÷12 15)1+2+22+23+......+2n=2(n+1)–1

(完整word版)数列求和的各种方法

教学目标 1熟练掌握等差、等比数列的前 n 项和公式. 2 ?掌握非等差、等比数列求和的几种常见方法. 3?能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题. 教学内容 知识梳理 1求数列的前n 项和的方法 (1) 公式法 ①等差数列的前n 项和公式 n n 1 , =na i + d . 2 ②等比数列的前n 项和公式 (I )当 q = 1 时,S n = na i ; (2) 分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3) 裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4) 倒序相加法 这是推导等差数列前 n 项和时所用的方法,将一个数列倒过来排序,如果原数列相加时,若有公因式 可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和. (5) 错位相减法 这是推导等比数列的前 n 项和公式时所用的方法,主要用于求 {a n ? b n }的前n 项和,其中{a n }和{b n } 分 别是等差数列和等比数列. ⑹并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如 a n = (— 1)n f (n)类型,可采用两项 合并求解. 例如,S n = 1002— 992+ 982 — 972+…+ 22 — 12= (100 + 99) + (98 + 97)+…+ (2 + 1) = 5 050. 数列求和的方法 n a i a n Si=— 2 (n )当q 丰1时, a i 1 q n 1 q a 1 — a n q 1 - q ③常见的数列的前 n 项和:1 +n=垃 1) , 1+3+5+??…+(2r — 1)= n 2 2 12 22 32 +n 2 n(n 罟,13 23 33 +n 3 2 n(n 1)等 2

数列求和7种方法(方法全_例子多)

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式)

=x x x n --1)1(= 2 11) 211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 题1.等比数列的前n项和S n=2n -1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2 +cn ,则a = ,b = ,c = . 解: 原式= 答案: 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和.

(完整word版)数列中裂项求和的几种常见模型.docx

数列中裂项求和的几种常见模型 数列问题是高考的一大热点,而且综合性较强,既注重基础知识 的掌握,又注重数学思想与方法的运用。而此类问题大多涉及数列求 和,所以数列求和方法是学生必须掌握的,主要的求和方法有:公式 法、拆项重组法、并项求和法,裂项相消法、错位相加法、倒序相加 法等等,而裂项相消法是其中较为基础、较为灵活的一种,也是出现 频率最高,形式最多的一种。下面就例举几种裂项求和的常见模型,以供参考。 模型一:数列 { a n } 是以 d 为公差的等差数列,且 d 0,a n 0(n 1,2,3, ),则 1 1 1 1 a n a n 1 ( ) d a n a n 1 例 1 已知二次函数 y f ( x) 的图像经过坐标原点,其导函数为 f ' (x) 6x 2 ,数列 { a n } 的前 n 项和为 S n ,点 (n, S n )(n N ) 均在函数 y f ( x) 的 图像上。 (Ⅰ)求数列 { a n } 的通项公式; (Ⅱ)设 b n 1 ,T n 是数列 {b n } 的前 n 项和,求使得 T n m 对所有 a n a n 1 20 n N 都 成 立 的 最 小 正 整 数 m ; (2006 年湖北省数学高考理科试题) 解:(Ⅰ)设这二次函数 f(x) =ax 2+bx (a ≠0) , 则 f`(x)=2ax+b, 由于 f`(x)=6x -2, 得 a=3 , b= -2, 所以 f(x) =3x 2- 2x. 又因为点 (n, S n )( n N ) 均在函数 y f ( x) 的图像上,所以 S n =3n 2-2n. 当 n ≥2 时, a =S -S =( 2 n =6n -5. 3n -2n )- ( n 1) 2 2( 1) n n n -1 3 1 1 2 n n N ) 当 n =1 时,a = S =3×1-2=6×1- 5,所以,a =6n -5 ( (Ⅱ)由(Ⅰ)得知 b n 3 = 3 = 1 ( 1 1 ) , a n a n 1 (6n 5) 6(n 1) 5 2 6n 5 6n 1

数列求和常用方法(经典讲解)

求数列前n 项和常用方法(经典讲解) 一.公式法(定义法): 1.等差数列求和公式: 11()(1)22 n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+?,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,( )111n n a q S q -= -,特别要注意对公比的讨论; 3.可转化为等差、等比数列的数列; 4.常用公式: (1)1n k k ==∑1 2 123(1)n n n ++++=+L ; (2)21n k k ==∑222211 63 1123(1)(21)()(1)2 n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2 123[ ]n n n +++++=L ; (4)1(21)n k k =-=∑2135(21)n n ++++-=L . 例1 已知3log 1 log 23-= x ,求23n x x x x ++++的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 23n n S x x x x =++++L =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 2 1 例2 设123n S n =++++,*n N ∈,求1 )32()(++=n n S n S n f 的最大值. 解:易知 )1(21+=n n S n , )2)(1(2 1 1++=+n n S n ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64341++=50)8(12+-n n 50 1 ≤ ∴ 当 8 8-n ,即8n =时,501 )(max =n f . 二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那 么求这个数列的前n 项和即可用倒序相加法。如:等差数列的前n 项和即是用此法推导的,就是

相关主题
文本预览
相关文档 最新文档