当前位置:文档之家› 全特征子群,特征子群,正规子群的关系

全特征子群,特征子群,正规子群的关系

全特征子群,特征子群,正规子群的关系
全特征子群,特征子群,正规子群的关系

《近世代数》论文

课程:《近世代数》

姓名:XXX

学号:XXXXXXX

专业:XXXXXXXXXXXXX

全特征子群,特征子群,正规子群的关系

内容:1)引入群的定理

2)表述其关系

3)证明并且举例

4)总结

摘要:本论文通过对近世代数的一些基本定理及相关性质的阐述,如:全

特征子群,特征子群,正规子群等等。从而推导出全特征字群,特征子群,正规子群间的关系。本文的结构是先从相关的定理及相关性质着手,然后根据定理及相关性质来推导全特征字群,特征子群,正规子群间的关系。本文先从全特征子群开始研究,依次为特征子群,正规子群。经过本文对全特征字群,特征子群,正规子群的研究,我发现了其规律:全特征子群包含与特征子群,特征子群包含于正规子群;全特征子群特征子群正规子群。

一、有关群的定理

定理1设H是群G的一个子群,如果H对G的每个自同态映射都不变,既对每个自同态映射θ都有

θ(H)∈H,

则称H为群G的一个全特征子群。

定理2设H是群G的一个子群,a∈G。则称群G的子集aH={ax|x∈H}为群H关于子群H的一个左陪集。而称Ha={xa|x∈H}为群G关于子群H的一个右陪集。

左陪集的相关性质:⑴如果a∈H,则a∈aH。

⑵a∈H ﹤﹦﹥aH=H

⑶b∈aH﹤﹦﹥aH=bH

⑷aH=bH,即a与b同在一个作陪集中﹤﹦﹥ a b∈H(b ∈H)

⑸若aH∩bH≠空集,则aH=bH

定理3对群G的所有自同构都不变的子群,亦即对G的任何自同构ε都有

ε(N)∈N

的子群N,叫做G的一个特征子群。

定理4如果用aH,bH,cH,…表示子群G中的所有不同的左陪集,则有等式G=aH∪bH∪cH…,称其为群G关于子群H的左陪集分解。而称{a,b,c, …}为G关于H的一个左陪集代表系。

同理关于有陪集的分解:G=H a ∪H b ∪Hc …。则称{ a ,b ,c ,…}是关于子群H的一个右陪集代表系。

例1:取S的子群H={(1),(12)},则(1)H={(1),(12)},H(1)={(1),(12)},(13)H={(13),(123)},H(13)={(13),(132)},(132)H={(132),(23)};H(123)={(123),(23)}。则

有:S=H∪(13)H∪(132)H=H∪H(13)∪H(123)。

定理5 设H,K是群G的两个子群,则群G关于交H∩K的所有左陪集,就是关于H与K的左陪集的所有非空的交。

即有:c(H∩K)=cH∩cK。

定理6设N是群G的一个子群,如果对G中每个元素a都有

aN=Na,

则称N是群G的一个正规子群。

定理7 设群G的子群H由有限个元素构成,即H={a,b,c, …n}则称H为G 的一个有限子群。

例2:H≦G,且H有有限个元素构成,H={a,b,c, …n},则称H为G的一个有限子群。

定理8群G中关于子群H的互异的左(或右)陪集的个数,叫做H在G的指数,记为:(G∶H)。

定理9设H是有限群G的一个子群,则:|G|=|H|(G∶H),从而任何子群的阶和指数都是群G的阶的因数。

推论有限群中的每个元素的阶都整除群的阶。

例3:由于S(3)=6,故三次对称群S(3)的子群及元素的阶都是6的因数。例如:子群H={(1),(12)}的阶是2,指数是3,且有|S(3)|=|H|(S(3):H),即6=2 ?3。

定理10设G是一个有限群,又K≤H≤G,则:(G∶K)(H∶K)=(G∶K)。

定理11如果用aH,bH,cH,…表示子群G中的所有不同的左陪集,则有等式G=aH∪bH∪cH…,称其为群G关于子群H的左陪集分解。而称{a,b,c, …}为G关于H的一个左陪集代表系。

同理关于有陪集的分解:G=H a ∪H b ∪Hc …。则称{ a ,b ,c ,…}是关于子群H的一个右陪集代表系。

例1:取S的子群H={(1),(12)},则(1)H={(1),(12)},H(1)={(1),(12)},(13)H={(13),(123)},H(13)={(13),(132)},(132)H={(132),(23)};H(123)={(123),(23)}。则

有:S=H∪(13)H∪(132)H=H∪H(13)∪H(123)。

二、其三者的关系如下

全特征子群是特征子群的子集,特征子群是正规子群的子集。即是全特征子群必然是特征子群反之不然,是特征子群肯定是正规子群,反之也不成立。下面我们证明并举例。

三、讨论全特征字群,特征子群,正规子群间的关系

先证明全特征子群是特征子群的关系

证明:①因为G与e都是G的特征子群,特征子群一定是正规子群显然反之不成立。

例如,由于Klein四元群是交换群,它的每个子群都是正规子群,因此由已知可得N={e,a}是Klien的一个正规子群,但它不是Klien的特征子群。

是Klien的一个自同构,然而却有

θ(N)={e,b}≠N

②同理G与e都是群G的全特征子群,显然。且全特征子群一定是特征子群显然。反之不成立。

反例如下

例如:群G的中心C是G的一个特征子群。

证明:任取c∈C,x∈G, θ∈AutG,则

θ(c)x=θ(c)[θ(θ(x))]= θ[cθ(x)]

=θ[θ(x)c]=θ[θ(x)]θ(c)

=xθ(c)

即θ(c)∈C, θ(c) C,即C是G的一个特征子群。

但应注意,群的中心不一定是全特征子群。

例如:有理数域Q上的2阶线性群G=GL(Q)的中心(Q上所有2阶纯量矩阵)不是全特征子群。

证明:任取A∈G,即A为有理数域Q上一个2阶满稚方阵,则ㄧAㄧ是个有理数。因此可令

ㄧAㄧ=

其中a,b为奇数,n(A)是与A有关的整数。

由于ㄧABㄧ=ㄧAㄧㄧBㄧ,故有

n(AB)=n(A)+n(B).

于是易知

η:是G到自身的一个映射。又η(AB)=

故η是群G的一个自同态映射。但是,η把G的中心元素却变成非中

心元素,因此,G的中心不是全特征子群

再证特征子群与正规子群的关系

又:若S和T为群G的子集,则其乘积为G的子集,其定义为

其中,S和T不必然需要是子群。其乘积的结合律源自群的結合律。因此,群子集的乘积定义出了一个G幂集上的自然么半群结构。

即使S和T为G的子群,其乘积也不必然会是个子群。其乘积为子群若且唯若ST = TS。在這一情形之下,ST会是个由S和T生成出的群,即ST = TS = 。若S或T有一是G的正子群,上述情形便会满足,ST会是个子群。设S 是正规子群,则根据第二同定理,S∩ T是T的正规子群且ST/S同于T/(S∩ T)。

若G为一有限群,且S和T为G的子群,則ST的元素个数可由乘积公式给定:

即使S和T都不是正规子群。

特别地,如果S和T的交集仅为单位元,那么ST的每一个元素都可以唯一地表示为乘积st,其中s位于S内,t位于T内。如果S和T还是可交换的,那么ST就是一个群,称为扎帕-塞普乘积。更进一步,如果S或T在ST中正规,那么ST便称为半直积。最后,如果S和T都在ST中正规,那么ST便称为直积。

由此引入:一个群按其子群的分解

1)设已知群G的两个子集M和N,所谓这两个集的乘积MN,是群G中所有能表示成M中某一元素和N中某一元素的乘积的那样一些元素的集合.如果M和N这两个集合之一是由一个元素a所成的,那么我们就得出:一个元素和一个集合的乘积aN,或一个集合和一个元素的乘积Ma的定义.

子集的乘法满足结合律:

(MN)P=M(NP),

但一般说来,不满足交换律.如果对于某两个集合M和N等式

MN=NM

成立(就是说,对任意两个元素a和b,a∈M,b∈N,可以找到这样两对元素a′,a″∈M和b′,b″∈N,使ab=b′a′, ba=a″b″),那么集合M和N 就称为可换的.这一情形的特例是一个元素和一个子群可换,两个子群可换等等.

可注意的是:在A和B都是群G的子群时,集合AB不一定是一个子群,也就是说,两个子群A和B的乘积AB一般来说并不等于所定义的子群{A,B}.我们只能断定

AB {A,B}.

群G的子群A和B所生成的子群{A,B}与这两个子群的乘积AB相重合的充分必要条件是A与B可换.

2) H是群G的子群当且仅当其为非空集且在乘积和逆运算下为封闭的。(封闭条件是指:任两个在H内的元素a和b,ab和a?1都为在H中。这两个条件可以结合成一个等价的条件:任两个在H内的a和b,ab?1也会在H内。)在H是有限的情状下,则H是一个子群当且仅当H在乘积下为封闭的。(在此一情下,每一个H的元素a都会产生一个H的有限循环子群,且a的逆元素会是a?1 = an ? 1,其中n为a的目。)

上述的条件可以用同态来叙述;亦即,H为群G的子群当且仅当H为G 的子集且存在一个由H映射到G的内含同态(即对每个a,i(a) = a)。

子群的单位元亦是群的单位元:若G是个有单位元素eG的群,且H为具有单位元素eH之G的子群,则eH = eG。

一个子群内的一元素之逆元素为群内的此元素的逆元素:若H是群G

的子群,且a和b为会使得ab=ba=eH之H内的元素,则ab = ba = eG。

子群A和B的交集亦为一个子群。但其联集亦为一个子群当且仅当A

或B包含着另外一个,像是2和3是在2Z与3Z的联集中,但其总和5则不是。

若S是G的子集,则存在一个包括S的最小子群,其可以由取得所有包括S的子群之交集来找出;此一最小子群被标记为且称为由S产生的子群。G 内的一个元素在内当且仅当其为S内之元素的有限乘积且其逆元。

在证明的过程中我们用到两个重要的定理:欧拉定理和拉格朗日定理以及欧拉函数。

综上所述:全特征子群包含与特征子群,特征子群包含于正规子群。

四、总结

做出这篇论文是我对全特征子群、特征子群、正规子群,有了更深刻的认识。在做论文的过程中查了不少资料。根据本篇论文的研究,我们从中得到了全特征字群,特征子群,正规子群间的关系则:全特征子群包含与特征子群,特征子群包含于正规子群。设是一个群,H是G的子集,若H在运算·下也是群,则称H是G的子群。H是G的子群,若H的左陪集与右陪集相等,则称H是G的正规子群,又称自共轭子群。对G中任一元素α,映射Piα:g->αg(α逆)对G中任意g定义G到G上的一个一一对应,且为G的一个自同构,称为内自同构。一个正规子群就是一个在所有内自同构下不变的子群,因此又称为不变子群。对于群G的子群H来说,它在G中的左陪集与右陪集不一定相等,但对一些G和G 的一些特殊子群,则具有性质:"x?G,都有xH=Hx. 这样的子群被称为正规子群. 正规子群是一类特殊的子群,它在整个群论中起到非常重要的作用. 把正规子群与群的同态与同构结合起来,可以得到群论中最基本最重要的一些结果.

参考文献:

1. 杨子胥,宋宝和.近世代数习题解.济南:山东科技技术出版社,2003

2. 杨子胥.近世代数.北京:高等教育出版社,2011

3. 杨子胥.近世代数学习辅导与习题选解. 北京:高等教育出版社,2011

全特征子群

全特征子群特征子群正规子群间的关系 (2010-12-30 13:59:12) 转载▼ 标签: 分类:课程论文 左陪集 右陪集 定理 自同态 特征子群 全特征子群 正规子群 休闲 摘要本论文通过对近世代数的一些基本定理及相关性质的阐述,如:全特征子群,特征子群,正规子群等等。从而推导出全特征字群,特征子群,正规子群间的关系。本文的结构是先从相关的定理及相关性质着手,然后根据定理及相关性质来推导全特征字群,特征子群,正规子群间的关系。本文先从全特征子群开始研究,依次为特征子群,正规子群。经过本文对全特征字群,特征子群,正规子群的研究,我发现了其规律:全特征子群包含与特征子群,特征子群包含于正规子群;全特征子群特征子群正规子群。 关键字全特征字群特征子群正规子群陪集 一、有关群的定理 定理1设H是群G的一个子群,如果H对G的每个自同态映射都不变,既对每个自同态映射θ都有 θ(H)∈H, 则称H为群G的一个全特征子群。 定理2设H是群G的一个子群,a∈G。则称群G的子集aH={ax|x∈H}为群H关于子群H的一个左陪集。而称Ha={xa|x∈H}为群G关于子群H的一个右陪集。 左陪集的相关性质:⑴如果a∈H,则a∈aH。 ⑵a∈H ﹤﹦﹥aH=H ⑶b∈aH﹤﹦﹥aH=bH ⑷aH=bH,即a与b同在一个作陪集中﹤﹦﹥ a b∈H(b ∈H)

⑸若aH∩bH≠空集,则aH=bH 定理3对群G的所有自同构都不变的子群,亦即对G的任何自同构ε都有 ε(N)∈N 的子群N,叫做G的一个特征子群。 定理4如果用aH,bH,cH,…表示子群G中的所有不同的左陪集,则有等式G=aH∪bH∪cH…,称其为群G关于子群H的左陪集分解。而称{a,b,c, …}为G关于H的一个左陪集代表系。 同理关于有陪集的分解:G=H a ∪H b ∪Hc …。则称{ a ,b ,c ,…}是关于子群H的一个右陪集代表系。 例1:取S的子群H={(1),(12)},则(1)H={(1),(12)},H(1)={(1),(12)},(13)H={(13),(123)},H(13)={(13),(132)},(132)H={(132),(23)};H(123)={(123),(23)}。则有:S=H∪(13)H∪(132)H=H ∪H(13)∪H(123)。 定理5 设H,K是群G的两个子群,则群G关于交H∩K的所有左陪集,就是关于H与K的左陪集的所有非空的交。 即有:c(H∩K)=cH∩cK。 定理6设N是群G的一个子群,如果对G中每个元素a都有 aN=Na, 则称N是群G的一个正规子群。 定理7 设群G的子群H由有限个元素构成,即H={a,b,c, …n}则称H为G 的一个有限子群。 例2:H≦G,且H有有限个元素构成,H={a,b,c, …n},则称H为G的一个有限子群。 定理8群G中关于子群H的互异的左(或右)陪集的个数,叫做H在G的指数,记为:(G∶H)。 定理9设H是有限群G的一个子群,则:|G|=|H|(G∶H),从而任何子群的阶和指数都是群G的阶的因数。 推论有限群中的每个元素的阶都整除群的阶。 例3:由于S(3)=6,故三次对称群S(3)的子群及元素的阶都是6的因数。例如:子群H={(1),(12)}的阶是2,指数是3,且有|S(3)|=|H|(S(3):H),即 6=2 ?3。 定理10设G是一个有限群,又K≤H≤G,则:(G∶K)(H∶K)=(G∶K)。 定理11如果用aH,bH,cH,…表示子群G中的所有不同的左陪集,则有等式G=aH∪bH∪cH…,称其为群G关于子群H的左陪集分解。而称{a,b,c, …}为G关于H的一个左陪集代表系。 同理关于有陪集的分解:G=H a ∪H b ∪Hc …。则称{ a ,b ,c ,…}是关于子群H的一个右陪集代表系。

群的自同构群

§8 群的自同构群 给定一个群,可以有各种方式产生新的群。比如,给定 群G 的任何一个正规子群N ,就可以产生一个商群G H ,它就是一种新的群。本节要讲的自同构群也是一种产生新的群 的方法。 1. 自同构群的定义: 定理1 设M 是一个有代数运算的集合(不必是群),则M 的 全体自同构关于变换的乘法作成一个群,称为M 的自同构群。 证明 设,στ是M 的任意两个自同构,则,a b M ?∈,有 ()[()][()()](())(())()()ab ab a b a b a b στστσττστστστστ====, 即στ也是M 的一个自同构。这表明,全体自同构关于变换 的乘法封闭。 又因为x M ?∈有 11()()x x x σσσσ--==,故 111111111()[()()][(()())]()()ab a b a b a b σσσσσσσσσσσσ---------=?== 即1σ-也是M 的一个自同构。群的定义的第3条成立。 另外,变换的乘法显然满足结合律,且恒等变换就是单位元, 群的定义的第1、2条也成立。所以,M 的全体自同构关于变换的乘法作成一个群。 注意:前面有M 的全体双射关于变换的乘法作成一个群,记为()S M ,称为M 的对称群。定理1表明M 的自同构群是

()S M 的一个子群。 推论1 群G (在定理1中取M G =)的全体自同构关于变换的乘法作成一个群。这个群叫作群G 的自同构群,记作 Aut G 。由上面,如果||G n =,则Aut n G S ≤。 例1 求Klein 四元群 {}{}4(1),(12)(34),(13)(24),(14)(23),,,K e a b c == 的自同构群。 解 4Aut K σ?∈。由于σ是自同构,必有()e e σ=(幺元变成幺元)。又由于σ是双射,因此()()()e a b c e a b c σσσσ??= ??? ,其中 (),(),()a b c σσσ是,,a b c 的全排列。每个全排列不一定都是自同构,但根据4K 的运算特点,可以验证这些全排列都是4K 的自同构。 例如,设(),(),(),()e e a b b a c c σσσσ====,则可以验证它是4K 的自同构: ()()()()ab c c ba a b σσσσ====, ()()()()ac b a bc a c σσσσ====,. 由于,,a b c 的全排列共有6 个,与3S 同构,因此4K 的全体自 同构也有6 个,43Aut K S ?。 2.循环群的自同构群 定理2 (1)无限循环群的自同构群是一个2阶循环群; (2)n 阶循环群的自同构群是一个阶的群,其中()n ? 是欧拉函数(即小于n 且与n 互素的正整数的个数)。 证明 由于在同构映射下,循环群的生成元与生成元相对应,

正规子群

§3.4 正规子群同态基本定理 在本节中讨论群的同态基本定理。首先考虑一种特殊的等价关系。 3.4.1 定理H是G的子群,在G上定义二元关系~如下: a ~ b当且仅当ab-1∈H,则~是G上等价关系。 证(1) 任给a∈G,都有aa-1 = e∈H,所以a ~ a; (2) 任给a, b∈G,如果a ~ b,则ab-1∈H,所以ba-1 = (b-1)-1a-1 = (ab-1)-1∈H,因此b ~ a; (3) 任给a, b, c∈G,如果a ~ b且b ~ c,则ab-1, bc-1∈H,所以ac-1 = aec-1 = a(b-1b)c-1 = (ab-1)(bc-1)∈H,因此a ~ c。■这种等价关系记为~H,称为由H生成的等价关系。由H生成的等价关系中的等价类有一个明显的表示。 3.4.2 定理H是G的子群,~H是由H生成的等价关系。 (1) 任给a∈G,都有a= Ha = {ha | h∈H}。特别地,e= He = H。 (2) 任给a∈G,都有|a|= |H|。 证(1) 任给x∈a,都有x ~H a,由~H的定义得xa-1∈H,设xa-1 = h∈H,则x = xe = x(a-1a) =(xa-1)a = ha,因此y∈Ha。 任给x∈Ha,都存在h∈H,使得x = ha,所以xa-1 = (ha)a-1 = h(aa-1) = he = h∈H,由~H的定义得x ~H a,因此x∈|a|。 (2) 取H到a的映射F:H→a F(h) = ha。 显然F是满射。 任给x, y∈H,如果F(x) = F(y),则xa = ya,由消去律得x = y,所以F是单射。 因为F是双射,所以|a| = |H|。■ 因为e= H,所以a~H b当且仅当ab-1∈H=e当且仅当ab-1~H e。 1

3。2 正规子群与商群

§3.2 正规子群与商群 对一般的群G 及N G ≤,左、右陪集不一定相等,即一般aN N a ≠, (见上一章例子,3,{(1),(12)}G S N ==,(13)(13)N N ≠)。 但对某些群G 及其子群N G ≤,总有性质:,a G aN Na ?∈=。 例如,取3,G S = 3{(1),(123),(132)},N A G ==≤ 则当 a 取3(1),(123),(132)A ∈时,总有aN N a =。而当a 取(12),(13),(23)时, (12){(12),(23),(13)}(12)N N ==, (13){(13),(23),(12)}(13)N N ==, (23){(23),(13),(12)}(23)N N ==, 所以3a G S ?∈=,都有aN N a =。 再比如,交换群的子群总满足上述性质。 设G 是群,N G ≤,若,a G aN Na ?∈=有,则 称N 是G 的正规子群(Normal subgroup ),记作N G 。 由前面,3A 是3S 的正规子群:33.A S 交换群的子群都是正规子群; 任何群的中心都是的正规子群:()C G G 。 {}e 和G 总是G 的正规子群,称为平凡正规子群,其余的正规子 群称为非平凡正规子群。

定理1. 设N G ≤,则 1 ,N G a G aNa N -??∈? 有; ?,,a G x N ?∈?∈ 都有1 .axa N -∈ 例1 证明:次交错群n A 是次对称群n S 的正规子群:n n A S 。 例2. 设(){|(),||0}n n G G L R A A M R A =∈≠ 且, (){|||1}n N SL R A A R A =∈= ,且, 证明:N G 。 证明:,X G A N ?∈?∈,则 111 ||||||||||||||||1,X AX X A X X A X A ---==== 从而,1X AX N -∈,所以N G 。 例3 证明:{}44(1),(12)(34),(13)(24),(14)(23)K S = 。 证明:注意,4K 中除单位元之外其余3个元素是4S 中仅有的2 阶偶置换。现44,x K S σ?∈?∈,则1 x σσ -的阶为2且是偶置换, 从而1 4 x K σσ-∈,故44K S 。 由,H K K N H N ≤≤?≤,即子群具有传递性。 但正规子群不具有传递性,即由,H K K N 推不出H N 。 例如,由例3,44K S 。现取{}44(1),(12)(34)B K =≤,由于4K 是 交换群,显然有4 4B K 。但是4 B 不是4S 的正规子群,因为取 4(13)S ∈,有{}{}44(13)(13),(1234)(13),(1432)(13)B B =≠=。

3.5群的自同构群

> §8 群的自同构群 给定一个群,可以有各种方式产生新的群。比如,给定 群G 的任何一个正规子群N ,就可以产生一个商群G H ,它就是一种新的群。本节要讲的自同构群也是一种产生新的群 的方法。 1. 自同构群的定义: ! 定理1 设M 是一个有代数运算的集合(不必是群),则M 的 全体自同构关于变换的乘法作成一个群,称为M 的自同构 群。 证明 设,στ是M 的任意两个自同构,则,a b M ?∈,有 ()[()][()()](())(())()()ab ab a b a b a b στστσττστστστστ====, 即στ也是M 的一个自同构。这表明,全体自同构关于变换 的乘法封闭。 又因为x M ?∈有 11 ()()x x x σσσσ--==,故 111111111()[()()][(()())]()()ab a b a b a b σσσσσσσσσσσσ---------=?== 即1 σ-也是M 的一个自同构。群的定义的第3条成立。 · 另外,变换的乘法显然满足结合律,且恒等变换就是单位元, 群的定义的第1、2条也成立。所以,M 的全体自同构关于变换的乘法作成一个群。

注意:前面有M 的全体双射关于变换的乘法作成一个群,记为()S M ,称为M 的对称群。定理1表明M 的自同构群是 ()S M 的一个子群。 推论1 群G (在定理1中取M G =)的全体自同构关于变换的乘法作成一个群。这个群叫作群G 的自同构群,记作 Aut G 。由上面,如果||G n =,则Aut n G S ≤。 ` 例1 求Klein 四元群 {}{}4(1),(12)(34),(13)(24),(14)(23),,,K e a b c == 的自同构群。 解 4Aut K σ?∈。由于σ是自同构,必有()e e σ=(幺元变成幺元)。又由于σ 是双射,因此()()()e a b c e a b c σσσσ??= ??? ,其中 (),(),()a b c σσσ是,,a b c 的全排列。每个全排列不一定都是自同构,但根据4K 的运算特点,可以验证这些全排列都是4K 的自同构。 例如,设(),(),(),()e e a b b a c c σσσσ====,则可以验证它是4K 的自同构: ()()()()ab c c ba a b σσσσ====, ()()()()ac b a bc a c σσσσ====, . 由于,,a b c 的全排列共有6 个,与3S 同构,因此4K 的全体自同构也有6 个,43Aut K S ?。 {

论述全特征子群 特征子群与正规子群之间的关系

本科生代数论文 课题:论述全特征子群,特征子群与正规子群之间的关系 班级:2011级应用数学班 姓名:xx 学号:xxxxxxxx 专业:xxxxxxxxxxx 学院:xxxxxxxxxxxxxxxxxxxx 指导老师:xxxx

摘要本论文通过对近世代数的一些基本定理及相关性质的阐述,如:全特征子群,特征子群,正规子群等等。从而推导出全特征字群,特征子群,正规子群间的关系。本文先从全特征子群开始研究,依次为特征子群,正规子群。经过本文对全特征字群,特征子群,正规子群的研究,我发现了其规律:全特征子群包含与特征子群,特征子群包含于正规子群。 一.陪集的引入 定理1 设H是群G的一个子群,a∈G。则称群G的子集aH={ax|x∈H}为群H关于子群H的一个左陪集。而称Ha={xa|x∈H}为群G关于子群H的一个右陪集。 左陪集的相关性质:⑴如果a∈H,则a∈aH。 ⑵a∈H ﹤﹦﹥aH=H ⑶b∈aH﹤﹦﹥aH=bH ⑷aH=bH,即a与b同在一个作陪集中﹤﹦﹥ a b∈H(b ∈H) ⑸若aH∩bH≠空集,则aH=bH 定理2 设H,K是群G的两个子群,则群G关于交H∩K的所有左陪集,就是关于H与K的左陪集的所有非空的交。 即有:c(H∩K)=cH∩cK。 定理3如果用aH,bH,cH,…表示子群G中的所有不同的左陪集,则有等式G=aH∪bH∪cH…,称其为群G关于子群H的左陪集分解。而称{a,b,c, …}为G关于H的一个左陪集代表系。 同理关于有陪集的分解:G=H a ∪H b ∪Hc …。则称{ a ,b ,c ,…}是关于子群H的一个右陪集代表系。 例1:取S的子群H={(1),(12)},则(1)H={(1),(12)},H(1)={(1),(12)},(13)H={(13),(123)},H(13)={(13),(132)},(132)H={(132),(23)};H (123)={(123),(23)}。则有:S=H∪(13)H∪(132)H=H∪H(13)∪H(123)。 定理4群G中关于子群H的互异的左(或右)陪集的个数,叫做H在G的指数,记为:(G∶H)。 定理5设H是有限群G的一个子群,则:|G|=|H|(G∶H),从而任何子群的阶和指数都是群G的阶的因数。 推论有限群中的每个元素的阶都整除群的阶。 例2:由于S(3)=6,故三次对称群S(3)的子群及元素的阶都是6的因数。例如:子群H={(1),(12)}的阶是2,指数是3,且有|S(3)|=|H|(S(3):H),即6=2 ?3。 定理6设G是一个有限群,又K≤H≤G,则:(G∶K)(H∶K)=(G∶K)。 二.自同构群的定义 定理1 设M是一个有代数运算的集合(不必是群),则M的

有限群的几乎次正规子群与可解性

有限群的几乎次正规子群与可解性 摘要:引进几乎次正规子群的概念,应用某些子群的几乎次正规性给出了有限群为可解群的若干充分条件。 关键词:几乎次正规子群可解群有限群 在群论中,人们常常利用有限群g的子群的性质来研究原群的结构。1996年王燕鸣引进了c-正规的概念,称有限群g的子群h在g 中c-正规的,如果存在g的正规子群k,使得g=hk且h∩k≤hg。2003年张新建等减弱c-正规的条件,给出了s-正规子群的概念,称有限群g的子群h在g中s-正规的, 如果存在g的次正规子群k,使得g=hk且h∩khsg,其中hsg是包含在h中的g的最大次正规子群。2006年杨高才从另一个方面减弱了c-正规的条件,给出了几乎正规子群的概念,称有限群g的子群h在g中几乎正规,如果存在g的正规子群n,使得nh和n∩h都是g的正规子群。本文将引入一个比s-正规和几乎正规更加广泛的概念——几乎次正规,并研究某些子群具有几乎次正规性质的有限群的结构。文中的所有群皆为有限群,soc(g)表示g的基柱;h g表示h是g的正规子群;h g 表示h是g的次正规子群;h≤g表示h是g的子群;h<g表示h是g的真子群;sylp(g)表示群g的sylowp-子群集合;表示某一素数集; (g)表示|g|的素因子的集;p,q表示素数。所用的概念和符号参考文献[4]。 1 基本概念

定义1 群g的子群h称为在g中几乎次正规,如果存在g的一个次正规子群n,使得nh和n∩h都是g的次正规子群。 注:显然s-正规子群, 几乎正规子群和次正规子群一定是几乎次正规子群。但反之不真。事实上,设g=s4为四次对称群, h1={(1),(1,2,3),(1,3,2)}是g的几乎次正规子群,但不是g的s-正规子群,也不是g的次正规子群。h2={(1),(1,2),(3,4)}是g的几乎次正规子群,但不是g的几乎正规子群。 为了获得本文的主要结果,我们先证明下面的引理。 引理1 若群g的子群h在g中几乎次正规, (1)k是g的子群并且h≤k,则h也k是的几乎次正规子群。 (2)t是g的正规子群且t≤h,则h/t在g/t中几乎次正规当且仅当h/t在g/t中几乎次正规。 证明 (1)h在g中几乎次正规,那么存在n g使得hn g且h ∩n g。注意到k∩n k,我们有(k∩n)h=nh∩k k且(k∩n)∩h=h ∩n k,故h是k的几乎次正规子群。 (2)h在g中几乎次正规,那么存在n g使得hn g且h∩n g。同时注意到nt/t为g/t的次正规子群,我们有(nt/t)∩(h/t)=(n ∩h)t/t g/t且(nt/t)(h/t)=nh/t g/t,即h/t在g/t中几乎次正规。反之若h/t在g/t中几乎次正规,那么存在s/t g/t使得 (s/t)(h/t)=sh/t g/t,且(s/t)∩(h/t)=s∩h/t g/t。显然 s,sh,s∩h都是g中的次正规子群,即h在g中几乎次正规。

3.5群的自同构群

§8 群的自同构群 给定一个群,可以有各种方式产生新的群。比如,给定 群G 的任何一个正规子群N ,就可以产生一个商群G H ,它就是一种新的群。本节要讲的自同构群也是一种产生新的群 的方法。 1. 自同构群的定义: 定理1 设M 是一个有代数运算的集合(不必是群),则M 的 全体自同构关于变换的乘法作成一个群,称为M 的自同构群。 证明 设,στ是M 的任意两个自同构,则,a b M ?∈,有 ()[()][()()](())(())()()ab ab a b a b a b στστσττστστστστ====, 即στ也是M 的一个自同构。这表明,全体自同构关于变换 的乘法封闭。 又因为x M ?∈有 11()()x x x σσσσ--==,故 111111111()[()()][(()())]()()ab a b a b a b σσσσσσσσσσσσ---------=?== 即1 σ-也是M 的一个自同构。群的定义的第3条成立。 另外,变换的乘法显然满足结合律,且恒等变换就是单位元, 群的定义的第1、2条也成立。所以,M 的全体自同构关于变换的乘法作成一个群。 注意:前面有M 的全体双射关于变换的乘法作成一个群,记为()S M ,称为M 的对称群。定理1表明M 的自同构群是 ()S M 的一个子群。

推论1 群G (在定理1中取M G =)的全体自同构关于变换的乘法作成一个群。这个群叫作群G 的自同构群,记作 Aut G 。由上面,如果||G n =,则Aut n G S ≤。 例1 求Klein 四元群 {}{}4(1),(12)(34),(13)(24),(14)(23),,,K e a b c == 的自同构群。 解 4Aut K σ?∈。由于σ是自同构,必有()e e σ=(幺元变成幺元)。又由于σ是双射,因此()()()e a b c e a b c σσσσ??= ??? ,其中 (),(),()a b c σσσ是,,a b c 的全排列。每个全排列不一定都是自同构,但根据4K 的运算特点,可以验证这些全排列都是4K 的自同构。 例如,设(),(),(),()e e a b b a c c σσσσ====,则可以验证它是4K 的自同构: ()()()()ab c c ba a b σσσσ====, ()()()()ac b a bc a c σσσσ====,L . 由于,,a b c 的全排列共有6 个,与3S 同构,因此4K 的全体自同构也有6 个,43Aut K S ?。 2.循环群的自同构群 定理2 (1)无限循环群的自同构群是一个2阶循环群; (2)n 阶循环群的自同构群是一个阶的群,其中()n ? 是欧拉函数(即小于n 且与n 互素的正整数的个数)。 证明 由于在同构映射下,循环群的生成元与生成元相对应, 而生成元的对应关系完全决定了群中其它元素的对应关系。

全特征子群,特征子群,正规子群的关系

《近世代数》论文 课程:《近世代数》 姓名:XXX 学号:XXXXXXX 专业:XXXXXXXXXXXXX

全特征子群,特征子群,正规子群的关系 内容:1)引入群的定理 2)表述其关系 3)证明并且举例 4)总结 摘要:本论文通过对近世代数的一些基本定理及相关性质的阐述,如:全 特征子群,特征子群,正规子群等等。从而推导出全特征字群,特征子群,正规子群间的关系。本文的结构是先从相关的定理及相关性质着手,然后根据定理及相关性质来推导全特征字群,特征子群,正规子群间的关系。本文先从全特征子群开始研究,依次为特征子群,正规子群。经过本文对全特征字群,特征子群,正规子群的研究,我发现了其规律:全特征子群包含与特征子群,特征子群包含于正规子群;全特征子群特征子群正规子群。 一、有关群的定理 定理1设H是群G的一个子群,如果H对G的每个自同态映射都不变,既对每个自同态映射θ都有 θ(H)∈H, 则称H为群G的一个全特征子群。 定理2设H是群G的一个子群,a∈G。则称群G的子集aH={ax|x∈H}为群H关于子群H的一个左陪集。而称Ha={xa|x∈H}为群G关于子群H的一个右陪集。 左陪集的相关性质:⑴如果a∈H,则a∈aH。 ⑵a∈H ﹤﹦﹥aH=H ⑶b∈aH﹤﹦﹥aH=bH ⑷aH=bH,即a与b同在一个作陪集中﹤﹦﹥ a b∈H(b ∈H) ⑸若aH∩bH≠空集,则aH=bH

定理3对群G的所有自同构都不变的子群,亦即对G的任何自同构ε都有 ε(N)∈N 的子群N,叫做G的一个特征子群。 定理4如果用aH,bH,cH,…表示子群G中的所有不同的左陪集,则有等式G=aH∪bH∪cH…,称其为群G关于子群H的左陪集分解。而称{a,b,c, …}为G关于H的一个左陪集代表系。 同理关于有陪集的分解:G=H a ∪H b ∪Hc …。则称{ a ,b ,c ,…}是关于子群H的一个右陪集代表系。 例1:取S的子群H={(1),(12)},则(1)H={(1),(12)},H(1)={(1),(12)},(13)H={(13),(123)},H(13)={(13),(132)},(132)H={(132),(23)};H(123)={(123),(23)}。则 有:S=H∪(13)H∪(132)H=H∪H(13)∪H(123)。 定理5 设H,K是群G的两个子群,则群G关于交H∩K的所有左陪集,就是关于H与K的左陪集的所有非空的交。 即有:c(H∩K)=cH∩cK。 定理6设N是群G的一个子群,如果对G中每个元素a都有 aN=Na, 则称N是群G的一个正规子群。 定理7 设群G的子群H由有限个元素构成,即H={a,b,c, …n}则称H为G 的一个有限子群。 例2:H≦G,且H有有限个元素构成,H={a,b,c, …n},则称H为G的一个有限子群。 定理8群G中关于子群H的互异的左(或右)陪集的个数,叫做H在G的指数,记为:(G∶H)。 定理9设H是有限群G的一个子群,则:|G|=|H|(G∶H),从而任何子群的阶和指数都是群G的阶的因数。 推论有限群中的每个元素的阶都整除群的阶。

文本预览