当前位置:文档之家› 差压液位计迁移计算

差压液位计迁移计算

差压液位计迁移计算
差压液位计迁移计算

差压液位计安装如图所示:

密度1为ρ

1,为充装介质密度,密度2为ρ

2

,为物料密度,H为测量高度.

注意事项:

1.变送器的安装位置与其测量量程没有关系(在适当的正负取压口之间),变送器上移或下

移不影响它测量的量程.它的迁移量为-ρ

1gH,量程为-ρ

1

gH----(ρ

1

2

)Gh,单位为

kpa.

2.正负压侧的毛细管长度应该有所实际,以为过长将会引起测量的迟滞,压力的变化引到

变送器的时间将会变长,具体长度应该根据实际位置来决定,一般来说,变送器的安装位置与正压取压口相水平,所以正压侧毛细管差不多是1m即可.

3.在测量黏度大,易结晶,易气化的物料时应该使用带毛细管的差压变送器,以为用别的表

还要进行保温拌热,成本会增加,带毛细管的变送器能减少成本.

4.变送器的安装位置不宜高出负压取压口太多,如果太多,正压侧承受负压,越高,其负压

承受越大,则会吸引负压侧,大的负压会使负压侧受损,所以安装时不要高出负压取压口, 在正负取压口之间任何位置都不会影响它测量的结果,最好与正压取压口水平.

5.迁移的方法:①计算迁移:根据仪表规格书获得介质的密度等数据,通过计算得到需要迁

移的数值.②实际迁移:打开正负压取压法兰对空,此时如果将正负法兰水平放置,应该显示为0.当在实际测量位置将正负取压法兰口对空,仪表表头显示的数据即为要迁移的数值.例如,对空时表头显示为-10kpa,则需要迁移的值为为10kpa .将零点迁移到-10kpa,此时表头显示应该为0即可.如果测量量程为30kpa,则表的量程应该改为-10kpa到20kpa ,量程依然为30kpa.

液位测量之差压式液位计细节

液位测量之差压式液位计细节 一、差压式液位计概述 差压式液位计是利用液柱产生的压力来测量液位高度的仪表,在液位发生变化后,高压侧法兰处膜片所接收到的压力就会随之变化,变送器计算出的压差值也会随之发生变化,它们之间有线性的关系。通常情况下高压侧(H侧)与低压侧(L侧)不能装反,一般H侧装于设备低处,L侧装于设备高处。 变送器根据测量范围可分成一般压力变送器(0.001MPa~35MPa)和微差压变送器(0~1.5kPa),负压变送器三种。从精度角度讲一般压力变送器精度等级为0.5。所以近年来又可以分为高精度压力变送器(0.1或0.2或0.075)。 如果液相密度变化较大,则不宜采用差压式液位计。 二、差压式液位计的结构及工作原理 1、双法兰差压变送器结构:主要部件为传感器模块、电子元件外壳、毛细管、高低压侧法兰及膜片。 2、差压式液位计工作原理:将一个空间用敏感元件(多用膜盒)分割成两个腔室,分别向两个腔室引入压力时,传感器在两方压力共同作用下产生位移,这个位移量和两个腔室压力差(差压)成正比,将这种位移转换成可以反映差压大小的标准信号(4-20mADC信号)输

出,毛细管、导压管、填充液的作用是将所接收到的压力传递给变送器内部进行运算。差压 变送器所测量的结果是压强差,即△P=ρg△h。 三、差压式液位计的种类及应用 差压变送器有普通差压变送器和微差压变送器,根据外形结构可分为:单法兰式差压液位计、双法兰式差压液位计、平衡容器式差压液位计。 1、单法兰式差压液位计:单法兰液位变送器可对各种敞口容器进行液位测量,有平法兰和 插入式法兰两种,它可以直接安装容器的法兰上。可以测量高温、高粘度、易结晶、易沉淀 和强腐蚀等介质的液位、压力和密度。 与双法兰式差压液位计的区别:从工程应用来说:都只能测固定密度液体液位,单法兰变送 器只能用于与大气想通的常压设备的液位,而双法兰变送器则可以适用密闭设备测液位; 2、双法兰式差压液位计:双法兰式液位变送器是使用毛细管法兰变送器进行测量,它相当 于将变送器测量元件中的隔离膜片延长到设备开口处,可以有效的消除粘稠、腐蚀或存在严 重相变的介质对测量带来的影响。 3、变送器毛细管内“硅油”常识 对于操作温度超过300℃的工况,我们一般不建议使用法兰膜片测量的方式。 工艺温度超过300℃,就会引起硅油膨胀,当超过硅油的汽化点,硅油就发生蒸发。可考虑 导压管或者磁致伸缩液位计。 对于真空高温应用场合,不推荐使用毛细管远传方式。因为毛细管会随环境温度的升高,而 引起变送器的响应时间延迟。

差压计计算液位公式

一、计算液位的高度(卧罐计算公式) h(m)=P/(ρ气*g)? P=差压变送器测到的值,单位为Kpa ρ气=~(看流量计正常加气后的最大密度值,可设置,单位:g/cm2)g= 重力加速度(m/s2) 二、计算储罐容积 (1)如果hr时(r为内罐容器的半径,单位m,项目为 角度L AOB=2*arccos((h-r)/r),单位为弧度 截面积S=πr2*(2π-L AOB)/(2π)+(1/2)*r2*sinL AOB u 显示体积=S*罐长度(项目罐长度米)

二、线性换算公式(适用在立罐) (V代表压差,V_H代表压差的下一次,V_L代表本次压差,H,为液位的下一次,L为当前液位) 首先把下一次压差和当前压力想减得到在某个区间中的压力值,然后液位也同样想减得到在这个区间内液位的大小,然后把现场采集来的压差减去当前压差得到实际压差 H-L=值1 V_H-V_L = 值2 压力差-V_L = 值3 根据区间计算出来的液位和压差,相除得到了每kpa多少立方,然后通过现场压差和储罐的当前压差想减的值相乘得到的当前压差的液位,然后在加上储罐在上一区间的压差液位,既到的了液位 值1/值2 = 值4 值4/值3 = 值5 值5+L= 液位

差压变送器负迁移

差压变送器负迁移用差压变送器测量锅炉汽包液位时,应很好地注意负迁移的问题,即当汽包液位在最低液位时,差压变送器输出应指示O%,而当汽包液位在最高液位时,差压变送器输出指示100%.因此,在进行测量时,应将气相即高液位接在变送器的负压侧,将液相即低液位接在变送器的正压侧,将差压变送器进行全量程负向迁移,即将(O—h)毫米水柱(1mmH2O 9.8P)迁移成(-h~O)毫米水柱.当用电动仪表测量时,当在负压侧不加测量信号时,变送器输出应为2OmA(电Ⅲ型),如在负压侧加上全量程信号时,则变送器输出应为4mA(电Ⅲ型).从双室平衡容器引出的管线接至差压变送器,差压变送器负压侧的液位高度由于汽包蒸汽的冷凝作用,双室平衡容器负压侧的冷凝液始终是满的,加在差压变送器负压侧的液位始终是最大的,而变送器正压侧的液位则随着汽包液位的变化而同步变化,当汽包液位在设计零位时,变送器输出最小;而当双室平衡容器的冷凝液水被排完时,变送器输出应指示最大,所以变送器正压侧的水柱高度永远小于负压侧的水柱高度(汽包实际水位全满除外),也就是正压侧所受的压力永远小于负压侧所受的压力,当汽包实际水位全满时,变送器正,负压室的

水柱高度相等,变送器输出满刻度,就和当汽包液位在设计零位时,把负压侧液位冷凝液全排光指示是一样的.全负迁移的差压变送器在正常生产时,如果负压侧漏水,即双室平衡容器的冷凝液不能全满时,则变送器的输出指示应该是偏离的,当然,如果双室平衡容器中蒸汽的冷凝量大于负压侧的外漏量,即能保持双室平衡容器的冷凝水恒定不变时,则变送器的输出是不会变化的.在正常生产时,由于双室平衡容器负压侧的水柱高度总是太于正压侧的水柱高度,所以变送器正,负压侧的引压管线一旦装反,则变送器正压室的压力永远大于负压室的压力,变送器输出一直最大,这种情况就和不带负迁移的变送器不一样了,因为不带负迁移的变送器引压管线一旦装反,变送器输出一直最小.当正,负导压管的排放阀稍微有点内漏,而在开车过程中确实又关不严时,如果是正导压管排放阀内漏,则一般是不影响指示的,如果是负压管的排放阀内漏,且内漏量已大于双室平衡容器内蒸汽的冷凝量时,则变送器的指示会偏高,甚至慢慢的会指向最大,而如果蒸汽的冷凝量大于内漏量,变送器输出是不会变化的.应当引起注意的是双室平衡容器负压侧的进气阀门和负压侧导压管的排放阀门即使外漏量相同,但它们对双室平衡容器负压侧冷凝水

常用20种液位计工作原理

本文通过对常用20种液位计工作原理的解读,从各液位计安装使用及注意事项的分析,来判断液位计可能出现的故障现象以及如何来处理,系统的了解液位计,从而为遇到工况能够在选择液位计上,做出准确的判断提供依据。常见液位计种类1、磁翻板液位计2、浮球液位计3、钢带液位计4、雷达物位计5、磁致伸缩液位计6、射频导纳液位计7、音叉物位计8、玻璃板/玻璃管液位计9、静压式液位计10、压力液位变送器11、电容式液位计12、智能电浮筒液位计13、浮标液位计14、浮筒液位变送器15、电接点液位计16、磁敏双色电子液位计17、外测液位计18、静压式液位计19、超声波液位计20、差压式液位计(双法兰液位计)常用液位计的工作原理1、磁翻板液位计磁翻板液位计:又叫磁浮子液位计,磁翻柱液位计。原理:连通器原理,根据浮力原理和磁性耦合作用研发而成,当被测容器中的液位升降时,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示面板,使红白翻柱翻转180°,当液位上升时翻柱由白色转为红色,当液位下降时翻柱由红色转为白色,面板上红白交界处为容器内液位的实际高度,从而实现液位显示。2、浮球液位计浮球液位计结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串连入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。3、钢带液位计它是利用力学平衡原理设计制作的。当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带的移动达到新的平衡。液位检测装置(浮子)根据液位的情况带动钢带移动,位移传动系统通过钢带的移动策动传动销转动,进而作用于计数器来显示液位的情况。4、雷达液位计雷达液位计是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。探头发出高频脉冲并沿缆式探头传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。5、磁致伸缩液位计磁致伸缩液位计的传感器工作时,传感器的电路部分将在波导丝上激励出脉冲电流,该电流沿波导丝传播时会在波导丝的周围产生脉冲电流磁场。在磁致伸缩液位计的传感器测杆外配有一浮子,此浮子可以沿测杆随液位的变化而上下移动。在浮子内部有一组永久磁环。当脉冲电流磁场与浮子产生的磁环磁场相遇时,浮子周围的磁场发生改变从而使得由磁致伸缩材料做成的波导丝在浮子所在的位置产生一个扭转波脉冲,这个脉冲以固定的速度沿波导丝传回并由检出机构检出。通过测量脉冲电流与扭转波的时间差可以精确地确定浮子所在的位置,即液面的位置。6、射频导纳液位计射频导纳料位仪由传感器和控制仪表组成,传感器可采用棒式、同轴或缆式探极安装于仓顶。传感器中的脉冲卡可以把物位变化转换为脉冲信号送给控制仪表,控制仪表经运算处理后转换为工程量显示出来,从而实现了物位的连续测量。7、音叉物位计音叉式物位控制器的工作原理是通过安装在音叉基座上的一对压电晶体使音叉在一定共振频率下振动。当音叉与被测介质相接触时,音叉的频率和振幅将改变,这些变化由智能电路来进行检测,处理并将之转换为一个开关信号。8、玻璃板液位计(玻璃管液位计)玻璃板式液位计是通过法兰与容器连接构成连通器,透过玻璃板可直接读得容器内液位的高度。9、压力液位变送器压力式液位计采用静压测量原理,当液位变送器投入到被测液体中某一深度时,传感器迎液面受到的压力的同时,通过导气不锈钢将液体的压力引入到传感器的正压腔,再将液面上的大气压Po与传感器的负压腔相连,以抵消传感器背面的Po,使传感器测得压力为:ρ.g.H,通过测取压力P,可以得到液位深度。10、电容式液位计电容式液位计是采用测量电容的变化来测量液面的高低的。它是一根金属棒插入盛液容器内,金属棒作为电容的一个极,容器壁作为电容的另一极。两电极间的介质即为液体及其上面的气体。由于液体的介电常数ε1和液面上的介电常数ε2不同,比如:ε1>ε2,则当液位升高时,电容式液位计两电极间总的介电常数值随之加大因而电容量增大。反之当液位下降,ε值减小,电容量也减小。所以,电容式液位计可通过两电极间的电容量的变化来测量液位的高低。11、智能电浮筒液位计智能电浮筒液位计是根据阿基米德定律和磁藕合原理设计而成的液位测量仪表,仪表可用来测量液位、界位和密度,负责上下限位报警信号输出。12、浮标液位计它是利用力学平衡原理设计制作的。当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带(绳)的移动达到新的平衡。液位检测装置(浮子)根据液位的情况带动钢带(绳)移动,位移

用差压变送器测液位的零点迁移问题

用差压变送器测液位的零点迁移问题 什么是零点迁移?有几种情况? 差压变送器安装位置的高低造成的 为什么会出现零点迁移? 被测液体和通向差压变送器的液体不一样 零点迁移的本质是什么? 被测液体和差压变送器输出的的对应关系 测量范围、量程范围和迁移量的关系 差压变送器的输出=测量范围+迁移量 正迁移故障判断 是否=4mA 负迁移故障判断 是否=20mA 差压变送器投用 比值控制的定义 比值控制系统也叫流量比值控制系统,工业生产上为保持两种或两种以上物料比值为一定的控制叫比值控制。需要保持比值关系的两种物料中,处于主导地位物料,称之为主动量(主流量), 按主物量进行配比变化的物料,在控制过程中随主物料而变化,称之为从动量(副流量). 比值控制系统就是要实现副流量Q2与主流量Q1成一定的比值关系 比值控制系统的分类 比值控制系统分为开环比值控制系统,单闭环比值控制系统,双闭环比值控制系统等。 开环比值控制系统的应用场合及特点 适用于副流量较平稳且比值关系要求不高的场合,生产上很少用。 的波动无法克服,比值精度低。由于系统是开环的,对副流量Q 2 单闭环比值控制系统的应用场合及特点 从动量控制平稳,又随主动量的变化而动,保持比值,比值更精

确。总流量不固定。 双闭环比值控制系统的应用场合及特点 克服了单闭环比值控制系统主动量不可控制,两个流量都有闭环不会失控,但是仪表使用较多。 现场总线技术的特点 系统的开放性 互操作性与互用性 现场设备的智能化与功能自治性 系统结构的高度分散性 对现场环境的适应性 DCS控制系统的缺点? 硬件多,投资大安装复杂维护成本高兼容性差 现场总线系统区别与DCS有哪些? 现场总线系统打破了传统控制系统采用的按控制回路要求,设备一对一的分别进行连线的结构形式。把原先DCS系统中处于控制室的控制模块、各输入输出模块放入现场设备,加上现场设备具有通信能力,因而控制系统功能能够不依赖控制室中的计算机或控制仪表,直接在现场完成,实现了彻底的分散控制。 现场总线系统的优点 以数字信号完全取代传统DCS的4~20mA模拟信号,且双向传输。 许多现场总线就地设备采用由智能化仪表管理。 组态十分方便。 现场总线在结构上只有现场设备和操作管理站两个层次,将传统DCS的I/O控制站并入现场智能设备,取消了I/O模件,现场仪表都是内装微处理器. 弹簧管式压力计的结构 弹簧管连杆扇形齿轮中心齿轮

对差压式液位变送器迁移的调校

差压式液位变送器的迁移 1.液位的迁移 应用差压变送器测量液面时,如果差压变送器的正、负压室与容器的取压点处在同一水平面上,就不需要迁移。而在实际应用中,出于对设备安装位置和便于维护等方面的考虑,测量仪表不一定都能与取压点在同一水平面上;又如被测介质是强腐蚀性或重粘度的液体,不能直接把介质引入测压仪表,必须安装隔离液罐,用隔离液来传递压力信号,以防被测仪表被腐蚀。这时就要考虑介质和隔离液的液柱对测压仪表读数的影响。 差压变送器测量液位安装方式主要有三种,为了能够正确指示液位的高度,差压变送器必须做一些技术处理——即迁移。迁移分为无迁移、负迁移和正迁移。 1.无迁移 将差压变送器的正、负压室与容器的取压点安装在同一水平面上,如图1所示。 图1 无迁移原理图 图2 负迁移原理图 设A点的压力为P-,B点的压力为P+,被测介质的密度为ρ,重力加速度为g,则ΔP= P+- P-=ρgh+ P-- P-=ρgh;如果为敞口容器,P-为大气压力,ΔP=P+=ρgh,由此可见,如果差压变送器正压室和取压点相连,负压室通大气,通过测B点的表压力就可知液面的高度。 当液面由h=0变化为h=hmax时,差压变送器所测得的差压由ΔP=0变为ΔP=ρghmax,输出由4mA变为20mA。 假设差压变送器对应液位变化所需要的仪表量程为30kPa,当液面由空液面变为满液面时,所测得的差压由0变为30kPa,其特性曲线如图4中的(a)所示。

1.2 负迁移 如图2所示,为了防止密闭容器内的液体或气体进入差压变送器的取压室,造成引压管线的堵塞或腐蚀,在差压变送器的正、负压室与取压点之间分别装有隔离液罐,并充以隔离液,其密度为ρ1 。 当H=0时,P+=ρ1gh1 P-=ρ1g(H+h1) ΔP= P+- P-=-ρ1gH 当H=Hmax时,P+=ρ1gh1 +ρgH P-=ρ1g(H+h1) ΔP= P+- P-=ρgH-ρ1gH=(ρ-ρ1)gH 当H=0时,ΔP=-ρ1gH,在差压变送器的负压室存在一静压力ρ1gH,使差压变送器的输出小于4mA。当H=Hmax时,ΔP=(ρ-ρ1)gHmax,由于在实际工作中ρ1?ρ,所以,在最高液位时,负压室的压力也远大于正压室的压力,使仪表输出仍小于实际液面所对应的仪表输出。这样就破坏了变送器输出与液位之间的正常关系。为了使仪表输出和实际液面相对应,就必须把负压室引压管线这段H液柱产生的静压力ρ1gH消除掉,要想消除这个静压力,就要调校差压变送器,也就是对差压变送器进行负迁移,ρ1gH这个静压力叫做迁移量。 调校差压变送器时,负压室接输入信号,正压室通大气。假设仪表的量程为30kPa,迁移量ρ1gH=30kPa,调校时,负压室加压30kPa,调整差压变送器零点旋钮,使其输出为4mA;之后,负压室不加压,调整差压变送器量程旋钮,直至输出为20mA,中间三点按等刻度校验。输入与输出的关系见表1)。 表1) 当液面由空液面升至满液面时,变送器差压由ΔP=-30kPa变化至ΔP=0kPa,输出电流值由4mA变为20mA,其特性曲线如图4中的(b)所示。 1.3 正迁移 在实际测量中,变送器的安装位置往往与最低液位不在同一水平面上,如图3所示。容器为敞口容器,差压变送器的位置比最低液位低h距离,ΔP=P =ρgH+ρgh。 当H=0时,ΔP=ρgh,在差压变送器正压室存在一静压力,使其输出大于4mA。 当H=Hmax时,ΔP=ρgH+ρgh,变送器输出也远大于20mA,因此,也必须把ρgh这段静压力消除掉,这就是正迁移。

差压式液位计的模拟校验法

[现场仪表]差压式液位计的模拟校验法(原创) 发表于 2008-1-18 21:33:10 标签(TAG):差压式液位计校验 本文以电动差压变送器为例,介绍一种差压式液位计的模拟校验法。此法简便易行,而且直观,尤其对初学者了解差压法测量液位的工作原理很有帮助,并还可在教中应用。此外还可解决校验低量程水位表(如锅炉汽包水位的量程才2KPa左右)时,难找标准表的问题。 根据流体静力学,由被测对象液柱的静压力,就可判断液位的高低。而静压力可用差压计等仪表把它检测出来。液位与差压有如下关系: H=△P/ρ 式中: H——液位高度(mm); △P——差压(Pa); ρ—-液体密度(g/cm3)。 当液体密度恒定时,测出差压就就可知道液位高度,而与液体容积无关,或者说知道了液体高度,也就知道了差压,即△P=ρH。模拟校验法就是基于上述原理进行的。现以校验水位计为例,介绍一下具体方法,校验装置及接线如图所示: 将被校差压变送器及读数标尺(可用钢直尺或U形压力计标尺)垂直固定好.准备两个手动气体分析仪用的的水准瓶,用橡胶管分别接到差压变送器的三阀组阀门接头上,为使读数方便和准确,可自制一活动支架来放置水准瓶。将三阀组的三只阀门全打开,旋松差压变送器上端的排气螺钉,从任一个水准瓶内灌水;待水从排气螺钉内溢出;排完气泡后,旋紧排气螺钉。并使两水准

瓶的水面保持半瓶左右,将两水准瓶置于同高度(通常定为标尺的“0”刻度),使两瓶的水面平衡。送电预热后,检查差压变送器的零位,不符时可调变送器的调零电位器,使之输出为4mA.,调好零位后,关闭平衡阀门。此时抬高与变送器H端相连的水准瓶,以改变两个水准瓶的水面垂直距离,并使其为最大测量量程,看变送器的输出是否为20mA,否则调量程电位器,使输出为20mA。零位和满量程合乎要求后,再改变水准瓶的水面垂直距离,看中间各量程是否超差。正常后再进行迁移调整工作。正、负迁移的调整视差压变送器的用途而定,通常情况下:测开口容器的液位用正迁移,测封闭容器的液位用负迁移。只是涉及到抬高哪只水准瓶的问题。在迁移时应该那个水准瓶升降?应根据正、负迁移情况来定。但都是以一个水准瓶的水面作为基准点,将另一个水准瓶沿标尺上下移动,两个水准瓶的水面距离(可从标尺上读数),即为液位H值,也即差压△P值。根据仪表量程把移动的那个水准瓶移到液位最高点(或最低点),然后调迁移电位器,使之合乎要求。 对测量其它液体及工况下的水位时,应该按其实际密度来计算量程后调校。

差压式液位计工作原理说明新选

差压式液位计工作原理说明 差压式液位变送器安装在液体容器的底部,通过表压信号反映液位高度。此类差压式仪表包括气动、电动差压变送器及法兰式液位变送器,安装方便,容易实现远传和自动调节,工业上应用较多。在制药、食品、化工行业液位测量控制过程中,盛装液体的容器经常处于有压的情况下工作,此时常规的静压式液位变送器变不能满足测量要求。 差压式液位计有气相和液相两个取压口。气相取压点处压力为设备内气相压力;液相取压点处压力除受气相压力作用外,还受液柱静压力的作用,液相和气相压力之差,就是液柱所产生的静压力。差压计一端接液相,另一端接气相时,根据流体静力学原理,有: PB=PA+Hρg (1);式中: H——液体高度;ρ——被测介质密度;g——被测当地的重力加速度。 由式(1)可得:ΔP= PB-PA= Hρg ;在一般情况下,被测介质的密度和重力加速度都是已知的,因此,差压计测得的差压与液体的高度H成正比,这样就把测量液体的高度的问题变成了测量差压的问题。 差压式液位计的模拟校验法。此法简便易行,而且直观,尤其对初学者了解差压法测量液位的工作原理很有帮助,并还可在教中应用。此外还可解决校验低量程水位表(如锅炉汽包水位的量程才2KPa左右)时,难找标准表的问题。 根据流体静力学,由被测对象液柱的静压力,就可判断液位的高低。而静压力可用差压计等仪表把它检测出来。液位与差压有如下关系: H=△P/ρ 式中: H――液位高度(mm); △P――差压(Pa); ρ―-液体密度(g/cm3)。 当液体密度恒定时,测出差压就就可知道液位高度,而与液体容积无关,或者说知道了液体高度,也就知道了差压,即△P=ρH。模拟校验法就是基于上述原理进行的。 差压式液位计的模拟校验法。此法简便易行,而且直观,尤其对初学者了解差压法测量液位的工作原理很有帮助,并还可在教中应用。此外还可解决校验低量程水位表(如锅炉汽包水位的量程才2KPa左右)时,难找标准表的问题。 根据流体静力学,由被测对象液柱的静压力,就可判断液位的高低。而静压力可用差压计等仪表把它检测出来。液位与差压有如下关系: H=△P/ρ 式中: H――液位高度(mm); △P――差压(Pa); ρ―-液体密度(g/cm3)。 当液体密度恒定时,测出差压就就可知道液位高度,而与液体容积无关,或者说知道了液体高度,也就知道了差压,即△P=ρH。模拟校验法就是基于上述原理进行的。现以校验水位计为例,介绍一下具体方法,校验装置及接线如图所示:

压力变送器零位迁移正迁移

压力变送器零位迁移正迁移 为在实际操作中便于理解,现举例说明,如有一压力变送器,其原始规格为0~40kPa,现需调到30~40kPa(即零位具有30 kPa的下迁移,量程由40kPa减低到10kPa)其调整步骤如下: 在迁移前,先将量程调到需要的数值.按上述零位量程的调整将变送器的测量范围调到0~10 kPa,然后进行迁移。 如果零位的迁移量不大,则可直接调节零位电位器来实现.使输出为4mA。如迁移量过大时,如本例,则应关掉电源,拔出变送器的放大线路板,将短路块(见附图),拔到”正迁移(SZ)位置,然后插好放大线路板,接通电源,加入给定的正迁移起始压力(30 kPa),调节零位电位器,使输出为4mA。最后复核当输入压力册测量上限时(40kPa)其输出应为20mA,如有偏差可微调量程电位器。负迁移(负迁移的调整跟正迁移的调整大致相同)为在实际操作中便于理解,现举例说明,如有一变送器,其原始规格为0~40kPa,现需调到-10~+10kPa(即零位具有10kPa的负迁移,量程由40kPa减低到20kPa)其调整步骤如下: 在迁移前,先将量程调到需要的数值.按上述零位量程的调整将变送器的测量范围调到0~20kPa,然后进行迁移。 如果零位的迁移量不大,则可直接调节零位电位器来实现.使输出为4mA。如迁移量过大时,如本例,则应关掉电源,拔出变送器的放大线路板,将短路块,拔到”负迁移位置,然后插好放大线路板,接通电源,加入给定的负迁移起始压力(-10kPa),调节零位电位器,使输出为4mA。最后复核当输入压力在测量上限时(+10kPa)其输出应为20mA,如有偏差可微调量程电位器。

双法兰液位计的量程计算

双法兰液位计的量程如何计算,如果将变送器装在上下法兰中间的位置如何计算迁移量。 1:双法兰液位计的量程迁移量只和两法兰的距离有关,变送器在任何位置都一样,需要迁移, 量程迁移量=H(法兰间距)x 毛细管灌充液的密度X 重力加速度。 2:将容器清空,测出此时的压力,用卷尺测量上下法兰的间距,量程下限设为空罐时的压力, 上限=毛细管硅油密度X重力加速度X间距+下限压力 3:双法兰液位计,通常正压侧要低于下法兰口。量程只和上下法兰间距有关。 range=h(毛细管内灌冲液的密度)* H(法兰间距)* g(重力加速度) 单位:h(kg/m3) H(m)g(N/kg) range=(N/m2)=Pa 4:正负毛细管中的介质是相同的,变送器的位置无论在哪里,毛细管中的介质产生的静压是相同的! 所以说迁移量的话是不变的!有一点就是毛细管的封闭的无空气的,这个东西在中国好像是做不出来的! 如果是担心毛细管介质的自重,呵呵,不用担心的!!!封闭的! 说一个很简单的双法兰找零点的方法: 1 将正负一次阀关闭,工艺介质排空 2 用终端读取差压值,这个值就是你的零点

3 最后是根据规格表中的工艺介质的密度来计算出量程! 最后告诫一点:千万不要因为工艺说仪表不准就修改双法兰的零点和量程!! 5:量程只与上下法兰之间的距离和被测介质密度有关. 量程=介质密度* g * 法兰之间距离. 迁移量安装上之后就是固定的了,你上下移一般来说对测量没有影响. 6:要区分量程和测量范围的关系,4mA是迁移量,20mA是迁移量加量程。 重力加速度的含义: 如果高度较低的话一般来讲被忽略了,认为是不变的`` 这个高度较低,是指相对于地球半径来讲可以被忽略. 但是确切来讲是有关的,如果你学了高一的重力学就会知道了,计算加速度有一个公式. 南极和赤道处的重力加速度是不同的,就是因为他们俩点与地心的距离不同.(地球是俩极部位略扁的近似球体) 重力加速度与高度没关系(当然别高到超越了地球的引力场),是恒定的9.8. 差压式液位变送器安装在液体容器的底部,通过表压信号反映液位高度。此类差压式仪表包 括气动、电动差压变送器及法兰式液位变送器,安装方便,容易实现远传和自动调节,工业上应用较多。在制药、食品、化工行业液位测量控制过程中,盛装液体的容器经常处于有压的情况下工作,此时常规的静压式液位变送器变不能满足测量要求。

差压计计算液位公式

差压计计算液位公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

一、计算液位的高度(卧罐计算公式) h(m)=P/(ρ气*g) P=差压变送器测到的值,单位为Kpa ρ气=~(看流量计正常加气后的最大密度值,可设置,单位:g/cm2) g= 重力加速度(m/s2) 二、计算储罐容积 (1)如果hr时(r为内罐容器的半径,单位m,项目为 角度L AOB=2*arccos((h-r)/r),单位为弧度 截面积S=πr2*(2π-L AOB)/(2π)+(1/2)*r2*sinL AOB u 显示体积=S*罐长度(项目罐长度米) 二、线性换算公式(适用在立罐) (V代表压差,V_H代表压差的下一次,V_L代表本次压差,H,为液位的下一次,L为当前液位)

首先把下一次压差和当前压力想减得到在某个区间中的压力值,然后液位也同样想减得到在这个区间内液位的大小,然后把现场采集来的压差减去当前压差得到实际压差 H-L=值1 V_H-V_L = 值2 压力差-V_L = 值3 根据区间计算出来的液位和压差,相除得到了每kpa多少立方,然后通过现场压差和储罐的当前压差想减的值相乘得到的当前压差的液位,然后在加上储罐在上一区间的压差液位,既到的了液位 值1/值2 = 值4 值4/值3 = 值5 值5+L= 液位

差压负迁移

水冷塔液位波动的处理及量程迁移 何小川 摘要:本论文详细阐述了二车间9月份水冷塔液位控制室仪表显示波动过大的原因及处理过程,同时对差压变送器的量程迁移作了详细的阐述。 关键词:水冷塔、仪表、控制系统、量程迁移 一.概述 水冷塔是一种混合式换热器。从空冷塔来的温度较高的冷却水(35℃左右),从顶部喷淋向下流动,切换式换热器来的温度较低的污氮气(27℃左右)自上而下的流动,二者直接接触,既传热又传质,是一个比较复杂的换热过程。一方面水的温度高于污氮气的温度,就有热量直接从水传给污氮,使水得到冷却;另一方面,由于污氮比较干燥,相对湿度只有30%左右,所以水的分子能不断蒸发、扩散到污氮中去。而水蒸发需要吸收汽化潜热,从水中带走热量,就使得水的温度不断降低。这种现象犹如一杯热开水放在空气中冷却一样,热开水和空气接触,一方面将热量直接(或通过容器壁)传给空气,另一方面又在冒汽,将水的分子蒸发扩散到空气中而带走热量(汽化潜热),使热开水不断降温,得以冷却。为了防止水分的过度流失,在塔的顶部设置了防雾环,这样空气中的一部分水分就又回到了水中。水冷塔的底部积聚了已经经过冷却的水,水的液位经过PID控制保持恒定,这样就可以保证水冷塔有良好的液封。冷却的水从水冷塔的底部流出经过高压泵又流入空冷塔去冷却空气。二.故障现象 二车间在9月初重新启动投入生产,在正常生产后发现控制室仪表显示水冷塔的液位波动幅度比较大,严重超出了正常的波动范围。操作人员立即到现场核查就地显示仪表(翻板液位计),发现现场就地显示的水冷塔液位并没有大的波动,这说明控制室仪表显示的液位波动是假信号。经过仪表工作人员的观察发现每次在污氮放空阀切换时控制室仪表显示的波动都非常大,波动经过大约4秒后有回到正常值。 三.故障分析及处理 水冷塔液位的测量方式是通过测量塔顶与塔底的差压,然后通过物理运算而得到的。所以问题的关键是在于差压是不是能够准确的得到。归根结底控制室仪表显示液位的波动就是变送器两端差压的波动。在正常的情况下,变送器对差压的测量有一定的滞后,所以差压有一定的波动是正常的。但是现在差压的波动幅度过大,说明变送器对水冷塔内差压的测量存在这着严重的滞后。出现这种情况原因一般为测量管路堵塞;变送器正负压室脏污;经检查变送器的正负压室均无脏污现象,那么问题就在引压管上。引压管对压力导输不畅导致塔内压力测量滞后。正管测量的塔内水底部的压力,基本上是静压。由于水的压容系数很小,所以水传播压强的能力是很强的。正管只要不完全堵塞压强就能及时的传送到变送器的正端,所以正管出问题的几率很小。负管主要传输的是气体的压力,考虑到水冷塔内环境的特殊因素,负管内的气体含有大量的水蒸气,长期使用会使导压管内垂直段产生积水,从而影响变送器对真实差压的测量,另外负引压管长期和潮湿的空气相接触容易被氧化而堵塞负管。 知道了故障的原因,那么处理起来就相对容易的多了。将负导压管一端从变送器的负端拆下,另一端从法兰处拆下。利用仪表气对管路进行吹扫和清污。问题解决后将负压管回装。 眼前的问题虽然解决了,但回想一下问题产生的原因室因为导压管长期工作在潮湿的空气中,被空气氧化、腐蚀而导致的堵塞。如果就象上述的处理,时间长了肯定还会出现同样的问题。所以要专门针对负管采取一些措施想办法阻止潮湿的气体进入导压管,但又不能阻碍压力的传输。最实惠的办法就是向负管内注水。将负管的垂直段注满水,就可以有效的阻止潮湿气体对导压管的腐蚀。但是负压管内多了水压这个静压,需要对变送器的量程进行迁

差压液位计故障判断

差压液位计故障判断 ——邹春寿 XLP公司的差压液位计可分为引压管安装和膜盒安装两种方式,而引压管安装方式又分为带冲洗和不带冲洗两种。以下分别对以上3种差压液位计可能出现的故障做分析(电源线路方面在本文中不做分析): 一、膜盒差压液位计 膜盒差压液位计,从外观上看就是1个变送器表头、两个带膜片的法兰、2根引压的毛细管。 1、如果是刚安装的膜盒差压液位计指示不准,那问题就有以下几 个方面的原因:㈠、量程设置不对,需要根据毛细管硅油密度、介质密度和正负压侧高度,重新计算0%液位压差和100%液位 压差值,把得出的数据再输入表头;㈡、正负压侧两个法兰安 装位置对调了,检查正压侧法兰是否安装在罐的正压侧位置(罐 下部),如果有错需要更改;㈢、如果生产是根据玻璃板液位计 来判断差压液位计不准的,则需要检查玻璃板的正负压取压口 与差压液位计正负压的取压口是否一致,如果不一致,要计算 出玻璃板液位与差压液位的对应数据。 2、已经正常使用一段时间后指示不准,那问题就有以下几个方面 的原因:㈠、毛细管硅油有漏,检查毛细管的完好性;㈡、膜 片上的原因:①、膜片磨损,需要拆检并更换;②、膜片变形 出现漂移,需要拆下正负压2个法兰,放在同一个平面上做零

点校正;③、两个取压口有堵异物,需要拆清。 二、不带冲洗的差压液位计 1、如果是新安装的表出现指示不准,那出现的问题有以下几 个方面:㈠、量程设置不对,需要根据介质密度和正负压 侧高度,重新计算0%液位压差和100%液位压差值,把得 出的数据再输入表头;㈡、正负压侧两根引压管安装位置 对调了,检查正压侧引压管是否安装到变送器的正压侧, 如果有错需要更改;㈢、如果生产是根据玻璃板液位计来 判断差压液位计不准的,则需要检查玻璃板的正负压取压 口与差压液位计正负压的取压口是否一致,如果不一致, 要计算出玻璃板液位与差压液位的对应数据。 2、已经正常使用一段时间后指示不准,那问题就有以下几个 方面的原因:㈠、变送器零点漂移,需要把表头隔离出来, 变送器表头正负压侧都对大气,再到DCS对该表做零点校 正,如果漂移量太大,无法校正则表头膜片变形严重需要 更换新表;㈡、负压侧引压管介质没有充满,需要重新加 满液(加入的液体必须是当初用来计算压差时的液体);㈢、 正负引压管有堵,检查引压管是否畅通,如果不畅则清通; ㈣、如果生产是根据玻璃板液位计来判断差压液位计不准 的,则需要检查玻璃板的正负压取压口与差压液位计正负 压的取压口是否一致,如果不一致,要计算出玻璃板液位 与差压液位的对应数据。

差压式液位计作业指导书

巴陵石化分公司供排水事业部 差压式液位计仪表检维修作业指导书 徐建 编写:—————————— 审核:—————————— 2012.12 日期:——————————

目录 1 工作原理 2 作业目的 3 作业要求 4作业准备和危害识别 5维护检查 6投用及验收 7 注意事项

差压式液位计检修作业指导书 1 工作原理 差压变送器工作原理压力变送器被测介质的两种压力通入高、低两压力室,作用在δ元件(即敏感元件)的两侧隔离膜片上,通过隔离片和元件内的填充液传送到测量膜片两侧。测量膜片与两侧绝缘片上的电极各组成一个电容器。 当两侧压力不一致时,致使测量膜片产生位移,其位移量和压力差成正比,故两侧电容量就不等,通过振荡和解调环节,转换成与压力成正比的信号。压力变送器和绝对压力变送器的工作原理和差压变送器相同,所不同的是低压室压力是大气压或真空。 A/D转换器将解调器的电流转换成数字信号,其值被微处理器用来判定输入压力值。微处理器控制变送器的工作。另外,它进行传感器线性化。重置测量范围。工程单位换算、阻尼、开方,,传感器微调等运算,以及诊断和数字通信。 本微处理器中有16字节程序的RAM,并有三个16位计数器,其中之一执行A /D转换。 D/A转换器把微处理器来的并经校正过的数字信号微调数据,这些数据可用变送器软件修改。数据贮存在EEPROM内,即使断电也保存完整。 数字通信线路为变送器提供一个与外部设备(如275型智能通信器或采用HART协议的控制系统)的连接接口。此线路检测叠加在4-20mA信号的数字信号,并通过回路传送所需信息。通信的类型为移频键控FSK技术并依据BeII202标准。 2 作业目的: 使得差压式液位计处于正常运行和工作。 3作业要求: 3.1 该仪表从系统上拆下作维护或检查时,必须要求设备安全交出,卸压并排尽内部介质; 3.2 维护、检查作业过程中,应注意以下三点:1、如被测液体具腐蚀性,拆换维修时应谨慎操作,以免液体从过程接头处溅到其他部件上,2、本变送器通常用专用工具维修。3、处理CPU组件。CPU 组件内含敏感元件,易被静电破坏。操作时应避免直接触摸电器部件和电路板上的印刷电路,处理该部件可用诸如金属导线接地方法,以防静电。 4作业准备和危害识别 4.1、作业人员联系工艺,根据仪表回路和作业类别开相应的工作票,并落实工作票所要求的安全措施;重要控制回路和联锁作业必须编制方案,进行危害识别评估,做好JHA分析。 4.2、作业人员佩带相应的工器具,根据测量介质的不同,携带相应的防护器材。 4.3、如需交出检查,应要求工艺配合,并把内部介质安全排放干净,不得污染周围环境,并注意附近高温设备和管线,严禁随地排放。 5、维护检查 5.1、仪表检查检修前,应该切断电源进行停机。对变送器受压部位进行排液和排气。

差压液位计培训

差压式液位计工作原理:差压式液位计是利用容器内的液位改变时,由液柱产生的静压也相应变化的原理工作的。对密闭贮槽或反应罐,设底部压力为P,液面上的压力为PS,液位高度为H,则有 P=P3+Hpg 式中:p为介质密度,g为重力加速度。由式可得△P=P-P3=Hpg 通常被测介质的密度是已知的,压差△P与液位高度H成正比,测出压差就知道被测液位高度。当被测容器敞口时,气相压力为大气压。差压计的负压室通大气即可,此时也可用压力计来测量液位;若容器是密闭的,则需将差压计的负压室与容器的气相相连接。 差压式液位计主要用于密闭有压容器的液位测量。测量密闭容器的液位,由于容器内气相压力pw对P B点的压力有影响,需要将差压变送器的负压室与容器的气相空间相连,以平衡气相压力的静压作用。这时作用于正压室和负压室的压力差为△p=pw+ρgH- pw=ρgH 由上式可知:差压的大小同样代表了液位高度的大小。用差压计测量气、液两相之间的差压值来得知液位 高低。由测量原理可知,凡是能够测量差压的仪表都可以用于密闭容器液位的测量。差压式液位计就是利 用液体液位差引起的静压变化来测量液位高度的 注意事项: 1.变送器的安装位置与其测量量程没有关系(在适当的正负取压口之间),变送器上移或下移不影响它测量的量程.它的迁移量为-ρ1gH,量程为-ρ1gH----(ρ1-ρ2)Gh,单位为kpa. 2.正负压侧的毛细管长度应该有所实际,以为过长将会引起测量的迟滞,压力的变化引到变送器的时间将会变长,具体长度应该根据实际位置来决定,一般来说,变送器的安装位置与正压取压口相水平,所以正压侧毛细管差不多是1m即可. 3.在测量黏度大,易结晶,易气化的物料时应该使用带毛细管的差压变送器,以为用别的表还要进行保温拌热,成本会增加,带毛细管的变送器能减少成本. 4.变送器的安装位置不宜高出负压取压口太多,如果太多,正压侧承受负压,越高,其负压承受越大,则会吸引负压侧,大的负压会使负压侧受损,所以安装时不要高出负压取压口,在正负取压口之间任何位置都不会影响它测量的结果,最好与正压取压口水平. 5.迁移的方法:①计算迁移:根据仪表规格书获得介质的密度等数据,通过计算得到需要迁移的数值.②实际迁移:打开正负压取压法兰对空,此时如果将正负法兰水平放置,应该显示为0.当在实际测量位置将正负取压法兰口对空,仪表表头显示的数据即为要迁移的数值.例如,对空时表头显示为-10kpa,则需要迁移的值为10kpa .将零点迁移到-10kpa,此时表头显示应该为0即可,如果测量量程为30kpa,则表的量程应该改为-10kpa到20kpa ,量程依然为30kpa. 现场膜盒差压液位计,从外观上看就是1个变送器表头、两个带膜片的法兰、2根引压的毛细管。 1、如果是刚安装的膜盒差压液位计指示不准,那问题就有以下几个方面的原因:㈠、量程设置不对,需要根据毛细管硅油密度、介质密度和正负压侧高度,重新计算0%液位压差和100%液位压差值,把得出的数据再输入表头;㈡、正负压侧两个法兰安装位置对调了,检查正压侧法兰是否安装在罐的正压侧位置(罐下部),如果有错需要更改;㈢、如果生产是根据玻璃板液位计来判断差压液位计不准的,则需要检查玻璃板的正负压取压口与差压液位计正负压的取压口是否一致,如果不一致,要计算出玻璃板液位与差压液位的对应数据。 2、已经正常使用一段时间后指示不准,那问题就有以下几个方面的原因:㈠、毛细管硅油有漏,检查毛细管的完好性;㈡、膜片上的原因:①、膜片磨损,需要拆检并更换;②、膜片变形出现漂移,需要拆下正负压2个法兰,放在同一个平面上做零点校正;③、两个取压口有堵异物,需要拆清。

变送器迁移及校验方法与常见问题处理合集

差压变送器怎么确定的迁移量程 所谓变送器的“迁移”,是将变送器在量程不变的情况,将测量范围移动。通常将测量起点移到参考点(0)以下的,称为负迁移;将测量起点移到参考点(0)以上的,称为正迁移。 . 下图中: 曲线①为变送器的正常输出曲线,即输入0~100% 时对应0~100% 输出; 曲线②为变送器负迁移(量程的)100%的输出曲线,其量程仍为100%,但输入范围则成为-100~0% ; 曲线③为变送器正迁移100%的输出曲线,输入范围为100~200% ; 曲线④为变送器负迁移50%的输出曲线,输入范围为-50~+50% ; . 以一台1bar 量程的差压变送器为例,正常时测量范围为0~1bar;正迁100%时测量范围为1~2bar;负迁100%时测量范围为-1~0bar;负迁50%时测量范围为-0.5~0.5bar . 实际操作时先确定量程,校准后使用迁移螺钉将测量起始点或满程输出调整到相应位置,或用手操器将迁移量输入即可。 . 例如: 需测量-0.5~1bar 的压力。则量程为1.5bar ,按0~1.5bar 校表,然后在输入1bar 时用迁移螺钉将输出调整为20mA。当然在没有输入的情况下将输出调整为9.3333mA(1/3量程)也是可以的。如果用手操器的话则可以输入负迁移33.333% 或直接输入测量范围的起始、满程。 向TA求助

迁移量的计算 液面的迁移应用差压变送器测量液面时,如果差压变送器的正、负压室与容器的取压点处在同一水平面上,就不需要迁移。而在实际应用中,出于对设备安装位置和便于维护等方面的考虑,测量仪表不一定都能与取压点在同一水平面上;又如被测介质是强腐蚀性或重粘度的液体,不能直接把介质引入测压仪表,必须安装隔离液罐,用隔离液来传递压力信号,以防被测仪表被腐蚀。这时就要考虑介质和隔离液的液柱对测压仪表读数的影响。差压变送器测量液位安装方式主要有三种,为了能够正确指示液位的高度,差压变送器必须做一些技术处理——即迁移。迁移分为无迁移、负迁移和正迁移。1.1 无迁移将差压变送器的正、负压室与容器的取压点安装在同一水平面上,如图1所示。,图1 无迁移原理图 图2 负迁移原理图设A点的压力为P-,B点的压力为P+,被测介质的密度为ρ,重力加速度为g,则ΔP= P+- P-=ρgh+ P-- P-=ρgh;如果为敞口容器,P-为大气压力,ΔP=P+=ρgh,由此可见,如果差压变送器正压室和取压点相连,负压室通大气,通过测B点的表压力就可知液面的高度。当液面由h=0变化为h=hmax时,差压变送器所测得的差压由ΔP=0变为ΔP=ρghmax,输出由4mA变为20mA。假设差压变送器对应液位变化所需要的仪表量程为30kPa,当液面由空液面变为满液面时,所测得的差压由0变为30kPa,其特性曲线如图4中的(a)所示。1.2 负迁移如图2所示,为了防止密闭容器内的液体或气体进入差压变送器的取压室,造成引压管线的堵塞或腐蚀,在差压变送器的正、负压室与取压点之间分别装有隔离液罐,并充以隔离液,其密度为ρ1 。当H=0时,P+=ρ1gh1 P-=ρ1g(H+h1) ΔP= P+- P-=-ρ1gH 当H=Hmax时,P+=ρ1gh1 +ρgH P-=ρ1g(H+h1)ΔP= P+- P-=ρgH-ρ1gH=(ρ-ρ1)gH当H=0时,ΔP=-ρ1gH,在差压变送器的负压室存在一静压力ρ1gH,使差压变送器的输出小于4mA。当H=Hmax时,ΔP=(ρ-ρ1)gHmax,由于在实际工作中ρ1»ρ,所以,在最高液位时,负压室的压力也远大于正压室的压力,使仪表输出仍小于实际液面所对应的仪表输出。这样就破坏了变送器输出与液位之间的正常关系。为了使仪表输出和实际液面相对应,就必须把负压室引压管线这段H液柱产生的静压力ρ1g H消除掉,要想消除这个静压力,就要调校差压变送器,也就是对差压变送器进行负迁移,ρ1gH这个静压力叫做迁移量。调校差压变送器时,负压室接输入信号,正压室通大气。假设仪表的量程为30kPa,迁移量ρ1gH=30kPa,调校时,负压室加压30kPa,调整差压变送器零点旋钮,使其输出为4mA;之后,负压室不加压,调整差压变送器量程旋钮,直至输出为20mA,中间三点按等刻度校验。输入与输出的关系见表1)。 当液面由空液面升至满液面时,变送器差压由ΔP=-30kPa变化至ΔP=0kPa,输出电流值由4mA 变为20mA,其特性曲线如图4中的(b)所示。1.3 正迁移在实际测量中,变送器的安装位置往往与最低液位不在同一水平面上,如图3所示。容器为敞口容器,差压变送器的位置比最低液位低h距离,ΔP=P =ρgH+ρgh。当H=0时,ΔP=ρgh,在差压变送器正压室存在一静压力,使其输出大于4mA。当H=Hmax时,ΔP=ρgH+ρgh,变送器输出也远大于20mA,因此,也必须把ρgh这段静压力消除掉,这就是正迁移。图3 正迁移原理图调校时,正压室接输入信号,负压室通大气。假设仪表量程仍为30kPa,迁移量ρgh=30kPa。输入与输出的关系见表2) 表2),其特性曲线如图4中的(c)所示。如果现场所选用的差压变送器属智能型,能够与HART 手操器进行通讯协议,可以直接用手操器对其进行调校。1.4 测量范围、量程范围和迁移量的关系差压变送器的测量范围等于量程和迁移量之和,即测量范围=量程范围+迁移量。如图4所示,a量程为30kPa,无迁移量,测量范围等于量程为30kPa;b量程为30kPa,迁移量为-30kPa,测量范围为-30~0kPa;c量程为30kPa,迁移量为30kPa,测量范围为30~60kPa。图4 测量范围、量程范围和迁移量的关系由此可见,正、负迁移的输入、输出特性曲线为

相关主题
文本预览
相关文档 最新文档