当前位置:文档之家› 双胶合望远镜头设计

双胶合望远镜头设计

双胶合望远镜头设计
双胶合望远镜头设计

XX大学

课程设计说明书

201X/201X 学年第 1 学期

学院:信息与通信工程学院

专业:XXXXXXXX

学生姓名:XXXXX 学号:XXXXX

课程设计题目:双胶合望远镜头设计

起迄日期:20XX年12月22日~20XX年01月02日课程设计地点:XX大学5院楼513、606

指导教师:XXXX 职称: 教授

摘要 (1)

关键词 (1)

第一章课题要求

1.1课题背景 (2)

1.2设计目的 (2)

1.3设计内容和要求 (2)

第二章方案分析

2.1课题名称 (3)

2.2主要数据 (3)

2.3设计思路 (3)

2.4实现原理 (3)

2.5主要过程 (4)

第三章光学系统设计

3.1光圈参数设定 (5)

3.2视场参数设定 (5)

3.3波长设定 (6)

3.4玻璃厚度的设定 (6)

3.5像空间的设定 (7)

第四章光学系统分析

4.1 2D光路分布草图 (7)

4.2 标准点列图Spot Diagram (8)

4.3 光路图OPD FAN (9)

4.4 光线相差图RAY FAN (10)

4.5波前分布图 (11)

第五章光学系统优化

5.1光学系统调焦 (12)

5.2设置可变参数 (13)

5.3优化函数设定 (13)

5.4最终优化 (14)

第六章系统优化前后比较

6.1优化后的2D草图 (15)

6.2优化后的标准点列 (15)

6.3优化后光路图 (16)

第七章心得体会

心得体会 (17)

ZEMAX是一款多功能的光学设计软件,可建立反射、折射、绕射等光学模型,可以用来模拟、分析和辅助设计光学系统,并对光学系统进行优化。双胶合透镜不仅有较好的横向分辨率,而且有较高的轴向分辨率,能够作为共焦3-D成像的一种理想光学元件,在光学领域得到了广泛的应用。本次课程设计,我们将利用ZEMAX软件设计一个双胶合望远镜头,展示利用ZEMAX设计、分析和优化一个简单光学系统的过程,进一步掌握该软件。

关键词:ZEMAX双胶合望远镜头光学系统设计分析

第一章课题要求

1.1课题背景

随着计算机技术的不断进步和发展,在光学系统的设计过程中越来越多得利用到计算机技术,其中ZEMAX就是一款应用十分广泛的的光学设计软件,具有功能完善、操作简单、准确性高、人机交互性好等特点,极大地简化了光学系统的设计过程。

1.2 设计目的:

本次课程设计是在学习专业基础课和专业课工程制图基础、C程序语言设计基础、应用光学和精密仪器零件设计的基础上,主要在光学仪器、程序设计实践、光学设计计算与仿真等几个方面开展实践活动,巩固所学知识、培养动手能力。

1.3 设计内容和要求:

1) 掌握Zemax光学设计的软件的使用方法;

2) 理解双胶合透镜的组成及其消色差、球差的原理;

3) 设计光源的波长为632.8nm,焦距为100mm,相对孔径为1:5;

4) 给出透镜的具体设计参数、波前分布、结构图、评价函数、求差和点列图。

5)参考五篇相关论文。

第二章方案分析

2.1 课题名称

双胶合望远镜头设计

2.2 主要数据

(1)透镜的具体设计参数

(2)波前分布

(3)结构图

(4)评价函数

(5)差和点列图

2.3 设计思路

1、查阅相关资料学习双胶合透镜的基本构造和原理;

2、了解ZEMAX光学软件的基本功能并学习该软件的基本操作;

3、利用ZEMAX进行镜头的初步设计并进一步熟悉该软件的使用;

4、对光学系统进行进一步的分析和优化,达到所定参数要求;

2.4 实现原理

1、双胶合透镜的原理:单正透镜具有负球差,单负透镜具有正球差,所以单透镜是不能校正球差的。在光焦度一定时,玻璃的阿贝数越大,色差越小,通常情况下,正透镜产生负色差,负透镜产生正色差,因此消色差的光学系统往往都是将正负透镜进行组合,以实现它们的色差互补。消色差双胶合透镜是一种把低分散的玻璃正透镜和高分散的火石玻璃负透镜粘接而成的消色差透镜。设计时,在蓝色(486.1nm),绿色(546.1nm)和红色(656.3nm)三个波长,对分散的不同值和透镜形状进行了优化,实现了最小色差。因此,此类透镜可在整个可见光区域使用。其球差在设计时也进行了优化,和单个透镜相比,消色差双胶合透镜的球差要小得多。使用于无限共轭状态时,其球差最小,并且消色差双胶合透镜都镀了可见光(400—700 nm)用宽带防反射多层膜。

2、望远镜镜头的原理:单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱,如图1所示在满足一定设计条件时,还可消去球差和彗差。由于剩余色差和其他像差的影响,

双透镜物镜的相对口径较小,一般为1/15-1/20,很少大于1/7,可用视场也不大。口径小于8厘米的双透镜物镜可将两块透镜胶合在一起,称双胶合物镜,留有一定间隙未胶合的称双分离物镜。为了增大相对口径和视场,可采用多透镜物镜组。对于伽利略望远镜来说,结构非常简单,光能损失少。镜筒短,很轻便。而且成正像,但倍数小视野窄,一般用于观剧镜和玩具望远镜。对于开普勒望远镜来说,需要在物镜后面添加棱镜组或透镜组来转像,使眼睛观察到的是正像。

图1 消色差原理图

2.5 主要过程

研究课题→原理分析→设计透镜参数→熟悉ZEMAX软件→利用软件设计光学系统→系统的分析和优化

第三章光学系统设计

镜头数据编辑器是一个主要的电子表格,将镜头的主要数据填入就形成了镜头数据。这些数据包括系统中每一个面的曲率半径、厚度、玻璃材料。单透镜由两个面组成 (前面和后面) ,物平面和像平面各需要一个面,这些数据可以直接输入到电子表格中。当镜头数据编辑器显示在显示屏时,可以将光标移至需要改动的地方并将所需的数值由键盘输入到电子表格中形成数据。每一列代表具有不同特性的数据,每一行表示一个光学面 (或一个)。移动光标可以到需要的任意行或列,向左和向右连续移动光标会使屏幕滚动,这时屏幕显示其他列的数据,如半口径,二次曲线系数,以及与所在的面的面型有关的参数。屏幕显示可以从左到右或从与右到左滚动。”上翻页”和”下翻页”键可以移动光标到所在列的头部或尾部。当镜头面数足够大时,屏幕显示也可以根据需要上下滚动。

3.1 光圈参数设定

先打开ZEMAX 软件,根据设计要求修改系统设定,包括系统孔径,镜头单 位,视场,和波长。 1.焦距为100mm ;2.波长为0.6328um;3.光源为无穷远处;4.像空间F/﹟=4;5.前一块玻璃为BAK1,后一块玻璃为F3。根据要求的设计参数计算物方孔径EPD 。提供的有效焦距efl 为100mm ,像空间F/﹟=5 。 EPD efl

/#F (1.1)

由公式(1.1)得物方孔径EPD 约等于20。

如图2所示,在ZEMAX 主菜单软件中,选择 系统> 通用配置,在弹出的对话框中,光圈类型选择入瞳直径,光圈数值选择20,单位毫米。

图2光圈参数设定

3.2 视场参数设定

在ZEMAX 主菜单软件中,选择 系统> 视场,弹出对话框,如图3

所示,视

场类型选择角度,并输入三组视场数据,(0, 0), (0, 3)和 (0, 5)。:

图3 视场参数设定

3.3 波长设定

如图4所示,在ZEMAX主菜单软件中,选择系统> 波长,在弹出的对话框中,选择要求的波长0.6328um,单击确定完成配置。

图4 波长设定

系统配置完毕,即可在LDE中输入数据。

3.4 玻璃厚度的设定

添加镜面,设计要求双胶合镜头,所以添加2个镜面,如图5所示,在镜面编辑窗口中选择编辑 > 插入曲面。曲面插入完毕,即可向镜头数据编辑窗口写入镜头数据。设计要求第一块镜面材料BAK7第二块镜面材料为F3。在glass窗口中写入材料的类型。

在Thickness栏中填入玻璃厚度。

图5 玻璃厚度的设定

3.5 像空间的设定

如图6所示,设定像空间数据,使用求解去执行设计约束,设置像空间F/#为恒定值5。

图6 像空间的设定

第四章光学系统的分析

4.1 2D光路分布草图

步骤:选择分析>草图>2D草图,将出现2D草图LAYOUT。

目的:显示光线的大致传播路径。

点击“生成DXF文件”按钮将产生一个2D DXF 文件,并将它存储起来。它的文件名用“DXF 文件”处输入的文件名确定。如图7所示,DXF文件是由弧和线组成,弧用来显示镜头面的曲率。如果是只使用球面 (或平面)的透镜,那么弧可

以完全的表示镜头。但是,弧只能近似的表示非球面。如果面是非球面,那么弧只有在顶点,最高点和最低点是正确的。ZEMAX 在这三个地方用适合的弧表示确切的面。若光线未能射入到一个面,那么在发生该错误的面光线不画出。如够光线发生全反射,那么在发生全反射的面入射的光线画出,出射的光线不画出。

图7 2D光路分布草图

4.2 标准点列图Spot Diagram

步骤:选择分析>点列图>标准,将出现标准点列图Spot Diagram。

目的:光线密度有一个依据视场数目,规定的波长数目和可利用的内存的最大值。离焦点列图将追迹标准点列图最大值光线数目的一半光线。

列在曲线上的每个视场点的GEO 点尺寸是参考点(参考点可以是主波长的主光线,所有被追迹的光线的重心,或点集的中点)到距离参考点最远的光线的距离。如图8所示,GEO 点尺寸是由包围了所有光线交点的以参考点为中心的圆的半径。RMS 点尺寸是径向尺寸的均方根。先把每条光线和参考点之间的距离的平方,求出所有光线的平均值,然后取平方根。点列图的RMS 尺寸取决于每一根光线,因而它给出光线扩散的粗略概念。

图8 标准点列图Spot Diagram

GEO点尺寸只给出距离参考点最远的光线的信息。艾利圆环的半径是1.22 乘以主波长乘以系统的F/# ,它通常依赖于视场的位置和光瞳的方向。对于均匀照射的环形入瞳,这是艾利圆环的第一个暗环的半径。艾利圆环可以被随意的绘制来给出图形比例。

在点列图中,ZEMAX 不能画出拦住的光线,它们也不能被用来计算RMS 或GEO 点尺寸。ZEMAX 根据波长权因子和光瞳变迹产生网格光线。有最大权因子的波长使用由“Ray Density”选项设置的最多光线的网格尺寸。有最小权因子的波长在图形中设置用来维持正确表达的较少光线的网格。如果变迹被给定,光线网格也被变形来维持正确的光线分布。位于点列图上的RMS 点尺寸考虑波长权因子和变迹因子。但是,它只是基于光线精确追迹基础上的RMS 点尺寸的估算。在某些系统中它不是很精确。像平面上参考点的交点坐标在每个点列图下被显示。如果是一个面被确定而不是像平面,那么该坐标是参考点在那个面上的交点坐标。既然参考点可以选择重心,这为重心坐标的确定提供了便利的途径。

4.3 光路图 OPD FAN

步骤:选择分析>特性曲线>光路,将出现光路图OPD FAN。

目的:是显示用光瞳坐标函数表示的光程差。

垂轴刻度在图形的下端给出。如图9所示,绘图的数据是光程差,它是光线的光程和主光线的光程的差,通常,计算以返回到系统出瞳上的光程差为参考。每个曲线的横向刻度是归一化的入瞳坐标。若显示所有波长,那么图形以主波长的参考球面和主光线为参照基准的。若选择单色光那么被选择的波长的参考球面和主光线被参照。由于这个原因,在单色光和多色光切换显示时,非主波长的数据通常被改变。

图9 光路图OPD FAN

4.4 光线相差图RAY FAN

步骤:选择分析>特性曲线>光线像差,将出现光线像差图RAY FAN。

目的:显示作为光瞳坐标函数的光线像差。

横向特性曲线是用光线的光瞳的y 坐标的函数表示的横向光线像差的x 或y 分量。缺省选项是画出像差的y 分量曲线。但是由于横向像差是矢量,它不能完整的描述像差。当ZEMAX 绘制y 分量时,曲线标称为EY,当绘制x 分量时,曲线标称为EX。垂轴刻度在图形的下端给出。如图10所示,绘图的数据是光线坐标和主光线坐标之差。横向特性曲线是以光瞳的y 坐标作为函数,绘制光线和像平面的交点的x 或y 坐标和主波长的主光线x 或y 坐标的差。

图10 光线像差图RAY FAN

弧矢特性曲线是以光瞳的x 坐标作为函数,绘制光线和像平面的交点的x或y 坐标和主波长的主光线x 或y 坐标的差。每个曲线图的横向刻度是归一化的入瞳坐标 PX 或PY。若显示所有波长,那么图形参考主波长的主光线。若选择单色光那么被选择的波长的主光线被参照。由于这个原因,在单色光和多色光切换显示时,非主波长的数据通常被改变。因为像差是有x 和y 分量的矢量,光线像差曲线不能完全描述像差,特别是像平面倾斜或者系统是非旋转对称时。另外,像差曲线仅仅表示了通过光瞳的两个切面的状况,而不是整个光瞳。像差曲线图的主要目的是判断系统中有哪种像差,它并不是系统性能的全面描述,尤其系统是非旋转对称时。

4.5 波前分布图

步骤:选择分析>波前>波前列表,将出现波前分布图。

目的:显示光波透过透镜后的传播路径。

如图11所示,波前面是某时刻刚刚开始位移的质点构成的面。它代表某时刻波能量到达的空间位置,它是运动着的。波前与射线成正交。因此,使用射线或波前来研究波是等效的。根据波前的形状一般可以把波分为球面波、平面波,柱面波等。同一波阵面上各点的振动相位相同。它表示了光标经过透镜后的传播的状态。

图11 波前分布图

第五章光学系统优化

5.1 光学系统调焦

步骤:选择工具 > 杂项 > 快速对焦,在弹出的窗口中点选以像平面上光线的重心为参照计算选项。

目的:通过调整后截距对光学系统快速调焦。

从2D草图可以看出,镜头的性能参数并非最优,原因是像平面的位置并未确定,ZEMAX提供自动对焦的工具,如图12所示,选择辐射状向斑点大小来进行快速对焦。

图12 光学系统快速调焦

本功能调整像平面前面的厚度。厚度是依照RMS 像差最小化的原则选择的。最佳调焦位置与标准的选择有关。RMS 用定义的视场,波长和权因子计算整个视场的多色光的平均值。

5.2 设置可变参数

步骤:在ZEMAX主菜单软件中,选择编辑> 优化函数,在弹出的窗口中选择工具 > 默认优化函数。完成后进行进一步优化,建立默认的评价函数。设置可变参数。

目的:评价函数是一个如何使一个光学系统接近一组指定的目标的数值表示。如图13所示,设定可变参数,即可创建默认评价函数DMF。

图13 设置可变参数

ZEMAX 使用了一系列操作数,它们分别代表系统不同的约束和目标。操作数代表的目标如像质,焦距,放大率,和其他一些。定义一个评价函数的最容易的方法就是在评价函数编辑界面的菜单条中选择工具,默认评价函数选项,这时出现一个对话框,这将允许你选择一些选项来构建默认评价函数。

5.3 优化函数设定

如图14所示,玻璃边缘厚度填入最小2mm,最大12mm。点确定后,评价函数编辑窗口出现优化函数。MTF 操作数可正确地计算出像由分析,衍射菜单选项得到的图形一样的完整的衍射或几何MTF 值。因此,那些MTF 曲线图中产生非法数据的系统在优化过程中也将产生没有意义的数据。

图14 优化函数设定

5.4 最终优化

步骤:选择工具 > 优化 > 优化在弹出的窗口中执行最终优化,优化步骤及结果如图15和图16所示。

图15 最终优化结果

图16 最终优化结果

第六章系统优化前后比较

6.1 优化后的2D草图:

从图17中可以看出,总长度为98.94704毫米。镜头完成对焦,调整像平面前面的厚度。厚度是依照RMS 像差最小化的原则选择的。有多种不同的RMS 计算方法。最佳调焦位置与标准的选择有关。RMS 用定义的视场,波长和权因子计算整个视场的多色光的平均值。

图17 优化后的2D草图

6.2 优化后的标准点列:

RMS 点尺寸是径向尺寸的均方根。先把每条光线和参考点之间的距离的平方,求出所有光线的平均值,然后取平方根。如图18所示,点列图的RMS 尺寸取决于每一根光线,因而它给出光线扩散的粗略概念。GEO点尺寸只给出距离参考点最远的光线的信息。艾利圆环的半径是1.22 乘以主波长乘以系统的F# ,它通常依赖于视场的位置和光瞳的方向。对于均匀照射的环形入瞳,这是艾利圆环的第一个暗环的半径。

图18 优化后标准点列图

6.3 优化后光路图:

垂轴刻度在图形的下端给出。如图19所示,绘图的数据是光程差,它是光线的光程和主光线的光程的差,通常,计算以返回到系统出瞳上的光程差为参考。每个曲线的横向刻度是归一化的入瞳坐标。若显示所有波长,那么图形以主波长的参考球面和主光线为参照基准的。若选择单色光那么被选择的波长的参考球面和主光线被参照。由于这个原因,在单色光和多色光切换显示时,非主波长的数据通常被改变。

图19 优化后的光路图

第七章心得体会

双高斯物镜的设计

双高斯物镜的ZENAX优化设计《光学课程设计》

目录 一、介绍 .................................................... - 2 - 二、用初级像差理论确定初始结构.............................. - 3 - 三、用ZEMAX优化............................................ - 8 - 四、结论 ....................................... 错误!未定义书签。 五、心得体会 ............................................... - 12 -参考文献 ................................................... - 13 -

一、介绍 双高斯物镜是一种中等视场大孔径的摄影物镜。双高斯物镜是以厚透镜矫正匹兹万场曲的光学结构,半部系统是由一个弯月形的透镜和一个薄透镜组成,如图1所示。 图 1 双高斯物镜 由于双高斯物镜是一个对称的系统,因此垂轴像差很容易校正。设计这种类型的系统时,只需要考虑球差、色差、场曲、像散的校正。在双高斯物镜中依靠厚透镜的结构变化可以校正场曲ⅣS ,利用薄透镜的弯曲可以校正球差ⅠS ,改变两块厚透镜之间的距离可以校正像散ⅢS ,在厚透镜中引入一个胶合面可以校正色差ⅠC 。双高斯物镜的半部系统可以看作是由厚透镜演变而来,一块校正了匹兹万场曲的厚透镜是弯月形的,两个球面的半径相等。在厚透镜的背后加上一块正、负透镜组成的无光焦度薄透镜组,对整个光焦度的分配和像差分布没有明显的影响,然后把靠近厚透镜的负透镜分离出来,且与厚透镜合为一体,这样就组成了一个两球面半径不等的厚透镜和一个正光焦度的薄透镜的双高斯物镜半部系统。这个半部系统回来了承受无限远物体的光线时,可用薄透镜的弯曲校正其球差。由于从厚透镜射出的轴上光线近似平行与光轴,因此薄透镜越向后弯曲,越接近与平凸透镜,其上产生的球差及高级量越小。但是,该透镜上的轴外光线的入射状态变坏,随着透镜向后弯曲,轴外光线的入射角增大,于是产生了较大的像散。为了平衡ⅢS ,需要把光阑尽量地靠近厚透镜,使光阑进一步偏离厚透镜前表面的球心,用该面上产生的正像散平衡ⅢS 。于此同时,轴外光线在前表面上的入射角急剧增大,产生的轴外球差及其高级量也在增大,从而引出了球差校正和高级量减小时,像散的高级量和轴外球差增大的后果。相反,若将光阑离开厚透镜,使之趋向厚透镜的前表面球心,则轴外光线的入射状态就能大大的好转,轴外球差很快下降,此时厚透镜前表面产生的正像散减小。为了平衡ⅢS ,薄透镜应该向前弯曲,以使球面与光阑同心。这样一来,球差及其高级量就要增加。 以上分析表明:进一步提高双高斯物镜的光学性能指标,将受到一对矛盾的限制,即球差高级量和轴外球差高级量的矛盾。 解决这对矛盾的方法有三种: 第一,选用高折射率低色散的玻璃做正透镜,使它的球面半径加大。 第二,把薄透镜分成两个,使每一个透镜的负担减小,同时使薄透镜的半径加大。 第三,在两个半部系统之间引入无焦度的校正板,使它只产生ⅤS 和ⅢS ,

课程设计报告望远物镜设计(双胶合镜结构)

黑龙江科技大学课程设计报告 项目名称:望远物镜设计(双胶合镜结构) 所属课程:工程光学 设计日期: 班级测控11--1班 学号 姓名 指导教师 成绩 电气与控制工程学院

课程设计报告说明 一、写报告前,请认真阅读《课程设计报告说明》。 二、打印装订要求 1、一律用A4纸,双面打印,并左侧装订,一式1份,并同时上交电子版(电子版上传邮箱123244441@https://www.doczj.com/doc/c610597500.html,)。《课程设计报告说明》页也打印。 2、课程设计概述部分占一页;课程设计内容长度根据实际需要填写;结论和指导教师评语及成绩单独占一页。保证打印格式工整。 三、报告内容要求 1、课程设计目的结合实际自己写,不要雷同 2、课程设计要求按下发的设计题目写 3、课程设计原理简要说明所完成课程设计项目所涉及的理论 知识 4、课程设计内容这是课程设计报告极其重要的内容。概括 整个课程设计过程。(最好在上述内容基础上画出相应的流图、设计思路和设计方法,再配以相应的文字进行说明。)

先打开ZEMAX软件,根据设计要求修改系统设定,包括系统孔径,镜头单位,视场,和波长。 (1)修改系统设定。 首先,根据要求的设计参数计算物方孔径EPD。提供的有效焦距efl为100mm,像空间F/﹟=4 。 由公式,得物方孔径EPD约等于25。 在ZEMAX主菜单软件中,选择系统> 通用配置,在弹出的对话框中,光圈类型选择入瞳直径,光圈数值选择25,单位毫米。 (2)视场设定。 在ZEMAX主菜单软件中,选择系统> 视场,在弹出的对话框中,视场类型选择角度,并输入三组视场数据,(0, 0), (0, 3)和 (0, 5)。

木结构建筑规范汇总

中国木结构建筑相关规范和标准汇总 中国木结构建筑相关规范和标准汇总 1) 已颁布的木结构建筑规范、标准及配套技术资料: 《木结构设计规范》(GB 50005-2003)2005年版 《木结构工程施工规范》(GB/T50772-2012) 《木结构工程施工质量验收规范》(GB50206-2012) 《建筑设计防火规范》(GB 50016 – 2006) 《胶合木结构技术规范》(GB/T50708-2012) 《轻型木桁架技术规范》(JGJ/T265-2012) 《木骨架组合墙体技术规范》(GB/T 50361-2005) 《木材防腐剂》(LY/T 1635-2005) 《防腐木材的使用分类和要求》(LY/T 1636-2005) 《防腐木材标准》(GB/T 22102-2008) 《木结构试验方法标准》(GB/T 50329-2002) 《木结构设计手册》(第三版)(中国建筑工业出版社,2005年)《木结构住宅》(07SJ924建筑标准图集) 《轻型木结构建筑技术规程》(上海)(DG/TJ08-2059-2009) 《木桁架坡屋面改造标准图集》(2009沪J/T-223) 2) 正在编制的木结构建筑规范和标准: 《结构用集成材》(GB/T 26899-2011) 《机械分级锯材》(GB/T XXXX) 《结构用规格材特征值的测试方法》(GB/T XXXX) 3) 与木结构建筑相关的其它主要规范、标准: 《建筑结构荷载规范》(GB 50009-2001) 《建筑抗震设计规范》(GB50011-2010) 《高层民用建筑设计防火规范》(GB50045-95) 《民用建筑热工设计规范》(GB 50176-93) 《公共建筑节能设计标准》(GB50189-2005) 《严寒和寒冷地区居住建筑节能设计标准》(JGJ 26-2010) 《夏热冬暖地区居住建筑节能设计标准》(JGJ 75-2003) 《夏热冬冷地区居住建筑节能设计标准》(JGJ134-2010) 《民用建筑隔声设计规范》(GB50118-2010) 《建筑工程施工质量验收统一标准》(GB50300-2001)

光学计算机辅助设计报告

光学设计辅助报告 姓名:张雨辰 学号:1011100139

光学计算机辅助设计报告 内容一:已知参数双胶合望远物镜的像质评价 1)像质评价的意义: 任何一个光学系统不管用于何处,其作用都是把目标发出的光按仪器工作原理的要求改变它们的传播方向和位置,送入仪器的接收器,从而获得目标的各种信息,包括目标的几何形状、能量强弱等。因此,对光学系统成像性能的要求主要有两个方面:第一方面是光学特性,包括焦距、物距、像距、放大率、入瞳位置、入瞳距离等;第二方面是成像质量,光学系统所成的像应该足够清晰,并且物像相似,变形要小。第一方面的内容即满足光学特性方面的要求属于应用光学的讨论范畴,第二方面的内容即满足成像质量方面的要求,则属于光学设计的研究内容。 从物理光学或波动光学的角度出发,光是波长在400~760nm的电磁波,光的传播是一个波动问题。一个理想的光学系统应能使一个点物发出的球面波通过光学系统后仍然是一个球面波,从而理想地聚交于一点。但是实际上任何一个实际光学系统都不可能理想成像。所谓像差就是光学系统所成的实际像与理想像之间的差异。由于一个光学系统不可能理想成像,因此就存在一个光学系统成像质量优劣的评价问题,从不同的角度出发会得出不同的像质评价指标。从物理光学出发,推导出几何像差等像质评价指标。有了像质评价的方法和指标,设计人员在设计阶段,即在制造出实际的光学系统之前就能预先确定其成像质量的优劣,光学设计的任务就是根据对光学系统的光学特性和成像质量两方面的要求来确定系统的结构参数。 2)像质评价的方法与Zemax实现: 对于像质评价有两个阶段:1 设计完成后,加工前,对成像情况进行模拟仿真;2 加工装配后,批量生产前,要严格检测实际成像效果。当前我们所作的工作就是对第一阶段进行实际讨论。对于像质评价的方法有两种:1 不考虑衍射:光路追迹法(点列图,像差曲线); 2 考虑衍射:绘制成像波面,光学传递函数等;有: 瑞利判断:几何像差曲线进行图形积分得到波像差; 中心点亮度(斯托列尔准则):成像衍射斑的中心亮度和不存在像差时衍射斑的中心亮度之比S.D来表示成像质量; 分辨率:反映光学系统分辨物体细节的能力,可以评价成像质量; 点列图:由一点发出的许多光线经光学系统后,因像差使其与像面的交点不再集中于同

国家标准木结构设计规范

国家标准木结构设计规范 工程建设标准全文信息系统中华人民共和国国家标准木结构设计规范北京 工程建设标准全文信息系统 工程建设标准全文信息系统中华人民共和国国家标准木结构设计规范主编部门中华人民共和国原城乡建设环境保护部批准部门中华人民共和国建设部施行日期年月日北京工程建设标准全文信息系统 工程建设标准全文信息系统关于发布国家标准木结构设计规范的通知建标字第号根据原国家建委建发设字第号文的要求由中国建筑西南设计院四川省建筑科学研究院及哈尔滨建筑工程学院会同有关单位共同修订的木结构设计规范已经有关部门会审现批准修订后的木结构设计规范为国家标准自一九八九年七月一日起施行原木结构设计规范自一九九一年一月一日起废止本规范由建设部管理具体解释工作由中国建筑西南设计院负责出版发行由中国建筑工业出版社负责一九八八年十月十四日工程建设标准全文信息系统.. 工程建设标准全文信息系统修订说明本规范是根据原国家建委建发设字第号文的要求由中国建筑西南设计院四川省建筑科学研究院及哈尔滨建筑工程学院会同国内有关科研设计施工单位和高等院校对木结构设计规范修订而成本规范在修订过程中修订组组织了全国有关设计科研和高等院校按统一的计划要求进行了大量的调查研究和科学试验总结了近年来国内工程实践经验和科研成果参考了有关的国际标准和国外先进标准在广泛征求全国有关单位的意见后经反复修改最后由我部会同有关部门审查定稿本规范共分八章和十一个附录这次修订的主要内容有根据国家标准建筑结构设计统一标准的规定采用以概率理论为 基础的极限状态设计全面校准可靠度指标值改进材料强度分级方法轴心受压构件稳定系数改用两条曲线改进压弯构件承载能力的计算公式修正齿连接计算系数值

zemax设计 - 双胶合设计之令狐文艳创作

令狐文艳 双胶合设计 令狐文艳 设计一: 透镜参数: 1.焦距为100mm。 2.相对孔径为1/5。 3.全视场2ω为10度。 4.物距为无穷远。 5.双胶合透镜一个采用BK7玻璃,另一个采用F2玻璃。 1.Prescription Date 具体参数: 1.Lens Data Editor 2.系统二维图 3.系统三维图 4.点列图 从图中我们可以看到,系统的弥散斑并不太大,弥散斑随着视场的增加而增加。当ω=5度时,系统的弥散斑半径为60.847,保持在可接受的范围内。 将Show Airy Disk选中,并选择ω=2.5度时作为观察对象,可以得到上面的图形。虽然大部分光线并不集中在中心区域,但是这种效果对于双胶合设计来说也足够了。

5.MTF曲线 TS 5.0000 degree这条曲线在10(lp/mm)时大致为0.35,满足设计需求。其他的曲线也较接近最上面的黑线(衍射极限),且较为平滑。S曲线(弧矢曲线)与T曲线(子午曲线)也比较重合。 6.Ray Fan(光线扇面) 7.OPD Fan(光程差扇形图) 8.Field Curv/Dist(场曲) 设计二: 设计二的MTF曲线更高,但弥散斑也比设计一高,当ω=5度时,弥散斑半径为69.830。 透镜参数: 6.焦距为100mm。 7.相对孔径为1/5。 8.全视场2ω为10度。 9.物距为无穷远。 10.双胶合透镜一个采用BK7玻璃,另一个采用F2玻璃。 2.Prescription Date 具体参数: 3.Lens Data Editor 4.系统二维图 5.系统三维图 6.点列图

在上图中,当ω=5度时,弥散斑半径为69.830,比设计一中的要高。 7.MTF曲线 TS 5.0000 degree这条曲线在10(lp/mm)时大致为0.4,比设计一的效果要好。 8.Ray Fan(光线扇面) 9.OPD Fan(光程差扇形图) 10.Field Curv/Dist(场曲)

木结构设计规范 GBJ5—附录

附录一在承重结构中使用新 利用树种木材的设计要求 (一)木材的主要特性 1.槐木干燥困难,耐腐性强,易受虫蛀。 2.乌墨(密脉蒲桃)干燥较慢,耐腐性强。 3.木麻黄木材硬而重,干燥易,易受虫蛀,不耐腐。 4.隆缘桉、柠檬桉和云南蓝桉干燥困难,易翘裂,云南蓝桉能耐腐,隆缘桉和柠檬桉不耐腐。 5.檫木干燥较易,干燥后不易变色,耐腐性较强。 6.榆木干燥困难,易翘裂,收缩颇大,耐腐性中等,易受虫蛀。 7.臭椿干燥易,不耐腐,易呈蓝变色,木材轻软。 8.桤木干燥颇易,不耐腐。 9.杨木干燥易,不耐腐,易受虫蛀。 10.拟赤杨木材轻、质软、收缩小,强度低,易干燥,不耐腐。 注:木材的干燥难易系指板材而言,耐腐性系指心材部份在室外条件下而言,边材一般均不耐腐。在正常的温湿度条件下,用作室内不接触地面的构件,耐腐性并非是最重要的考虑条件。 (二)应用范围 1.宜先在木柱、搁栅、檩条和较小跨度的钢木桁架中使用,在取得成熟经验后,再逐步扩大其应用范围。 2.不耐腐的树种木材,若无可靠的防腐处理措施,不宜用作露天结构。 (三)设计指标 1.当材质和含水率符合本规范第2.1.2和第2.1.3条的要求时,木材的强度设计值及弹性模量可按附表1.1采用。 新利用树种木材的强度设计值和弹性模量(N/) 附表1.1

注:杨木和拟赤扬的顺强度设计值和弹性模量可按TB11级数值乘以0.9采用;横纹强度设计值可按TB11级数值乘以0.6采用。若当地有使用经验,也可在此基础上作适当调整。 2.当计算轴心受压和压弯木构件时,其稳定系数φ值应按公式4.1.4-3及4.1.4-4确定。 (四)构造要求 设计新利用树种木材的承重结构时,除应遵守本规范第六章有关设计和构造的规定外,尚应符合下列要求: 1.当以新利用树种木材作屋盖的承重结构时,宜采用外部排水和无天窗的构造方式。若用于桁架,宜采用钢木桁架。 2.应按本规范第八章的要求,注意做好防虫防腐处理。对于木麻黄等易虫蛀不耐腐的木材宜用于露明部位。若需置入墙内时,除做好构件本身的防虫防腐处理外,尚应对人墙部位加涂防腐油二次。 3.桁架上弦采用方木时,其截面宽度不宜小于120mm;采用原木时,其小头直径不宜小于110mm。木构件的净截面面积不宜小于5000。若有条件,宜直接使用原木。

双胶合望远镜头设计

XX大学 课程设计说明书 201X/201X 学年第 1 学期 } 学院:信息与通信工程学院 专业: XXXXXXXX 学生姓名: XXXXX 学号: XXXXX 课程设计题目:双胶合望远镜头设计 起迄日期:20XX年12月22日~20XX年01月02日 课程设计地点: XX大学5院楼513、606 指导教师: XXXX 职称: 教授 |

目录 摘要 (1) | 关键词 (1) 第一章课题要求 课题背景 (2) 设计目的 (2) 设计内容和要求 (2) 第二章方案分析 课题名称 (3) 主要数据 (3) 。 设计思路 (3) 实现原理 (3) 主要过程 (4) 第三章光学系统设计 光圈参数设定 (5) 视场参数设定 (5) 波长设定 (6) 玻璃厚度的设定 (6) … 像空间的设定 (7) 第四章光学系统分析 2D光路分布草图 (7) 标准点列图Spot Diagram (8) 光路图OPD FAN (9) 光线相差图RAY FAN (10) 波前分布图 (11) 第五章光学系统优化 > 光学系统调焦 (12) 设置可变参数 (13) 优化函数设定 (13) 最终优化 (14) 第六章系统优化前后比较 优化后的2D草图 (15) 优化后的标准点列 (15) 优化后光路图 (16)

$ 第七章心得体会 心得体会 (17) 摘要 ZEMAX是一款多功能的光学设计软件,可建立反射、折射、绕射等光学模型,可以用来模拟、分析和辅助设计光学系统,并对光学系统进行优化。双胶合透镜不仅有较好的横向分辨率,而且有较高的轴向分辨率,能够作为共焦3-D成像的一种理想光学元件,在光学领域得到了广泛的应用。本次课程设计,我们将利用ZEMAX软件设计一个双胶合望远镜头,展示利用ZEMAX设计、分析和优化一个简单光学系统的过程,进一步掌握该软件。 关键词:ZEMAX 双胶合望远镜头光学系统设计分析 ;

《多高层木结构建筑技术标准》的解读

《多高层木结构建筑技术标准》的解读为推动多高层木结构建筑的发展,完善多高层木结构的技术标准体系,住房城乡建设部启动了《多高层木结构建筑技术标准》(以下简称《本标准》)的编制工作,2016年年底编制完成并通过专家审查,2017年2月由住房城乡建设部发布第1483号公告,批准为国家标准,编号为GB/T51226—2017,自2017年10月1日起实施。本文将介绍本标准的主要技术要点。 1主要内容及技术要点 多高层木结构建筑涉及面较广,需要考虑和研究的问题较多,且我国在多高层木结构建筑领域的基础研究不多,缺乏工程实践经验。在编制过程中,研究并消化吸收国外在多高层木结构建筑方面的先进技术和成功经验,同时参考了高层混凝土结构、高层钢结构的国家现行相关标准。本标准共设10章,分别为: 1总则确定标准的使用范围和使用基本原则。本标准适用于多高层木结构居住建筑和办公建筑。 2术语和符号在我国惯用的木结构术语基础上,按编制内容,增加了多高层木结构建筑的相关新术语。 3作用规定多高层木结构建筑结构设计中荷载的确定方法,包括竖向荷载、风荷载以及地震荷载。

4材料规定用于多高层木结构建筑中使用的材料的基本性能要求,包括木材、钢材与金属连接件,以及建筑及装修材料。 5建筑设计规定多高层木结构建筑规划和建筑设计的要求,包括规划和建筑布局、室外环境设计、建筑性能设计和围护结构等。 6结构设计规定结构设计的要求和计算方法,包括结构体系和选型、结构体系分析、构件设计、连接设计和构造措施等。 7防火设计规定多高层木结构建筑中防火设计的要求,包括建筑防火的布局、构件的耐火性能、防火构造设计等。 8防护设计主要规定多高层木结构建筑在设计、施工及使用过程中应采取的防护措施等。 9制作、安装和验收主要规定木构件加工制作,施工安装以及施工检验和验收的相关要求,从而保证多高层木结构建筑的安全使用。 10使用和维护对多高层木结构建筑在使用过程中需要注意的问题作了规定,并提出维护的要求。 2本标准相比现行标准的创新之处 本标准相比现行的木结构建筑相关标准有了较大突破,主要有以下几点。 2.1本标准适用范围 本标准的适用范围是:多层木结构民用建筑和高层木结构住宅建筑和办公建筑的设计、制作、安装与维护的规定。按木结构建筑高度划分时,建筑高度大于27m的住宅、办公楼和建筑高度大于24m的

光学设计实验指导书2012

实验一光学设计软件ZEMAX的安装和基本操作 一.实验目的 学习ZEMAX软件的安装过程,熟悉ZEMAX软件界面的组成及基本使用方法。二.实验要求 a)掌握ZEMAX软件的安装、启动与退出的方法。 b)掌握ZEMAX软件的用户界面。 c)掌握ZEMAX软件的基本使用方法。 d)学会使用ZEMAX的帮助系统。 e)学会使用ZEMAX初步仿真光路图。 三.实验内容 (一)界面及基本操作 1.通过桌面快捷图标或“开始—程序”菜单运行ZEMAX,熟悉ZEMAX的初始用户界面,如下图所示: 图1.1ZEMAX用户界面 2.浏览各个菜单项的内容,熟悉各常用功能、操作所在菜单,了解各常用菜单的作用。 3. 熟悉使用各个常用的快捷按钮。

4.学会从主菜单的编辑菜单下调出各种常见编辑窗口(镜头数据编辑、优化函数、多重数据结构)。 5.调用ZEMAX 自带的例子(例如根目录下samples\tutorial\tutorial zoom2.zmx 文件),学会打开常用的分析功能项:草图(2D 草图、3D 草图、渲染模型等)、特性曲线(像差曲线、光程差曲线)、点列图、调制传递函数等,学会由这些图进行简单的成像质量分析。 6.从主菜单中调用优化工具,简单掌握优化工具界面中的参量。 7.掌握镜头数据编辑(LDE )窗口的作用以及窗口中各个行列代表的意思。 8.从主菜单-报告下形成各种形式的报告。 9.通过主菜单-帮助下的操作手册调用帮助文件,学会查找相关帮助信息。 (二) 仿真光路图 根据已拟好的设计草图,在ZEMAX 中实现光路仿真,包括光路系统整体设置、创建光学元件、透镜(组),元件间大致间距等。 1.光路系统的整体设置,包括此光学系统所适用的波长、入瞳直径、视场等,在主菜单-系统里有相应的各个设置。 2.创建光学元件、透镜(组),就是将设计草图中的各种光学元件用ZEMAX 的方式去仿真实现。ZEMAX 仿真的基本元素是面和面间距,仿真创建各种元件基本都以具体设置每个面和面间距的参数来实现。 (1)面:面的基本参数包括面型(Surf:type )、曲率半径(Radius)、厚度(Thickness)、材料(玻璃)(Glass),半口径(Semi-Diameter)等,每一个面对应于LDE 窗口里的一个行,每一个参数对应LDE 窗口里的一列,如下图: ZEMAX 的默认面型是透明标准(Standard )球面,曲率半径和半口径为无穷(Infinity )。面的厚度和材料的定义都是以指定面起向后算到下一个面之间的这一段的厚度和材料。 (2)面间距:指的是该面在光轴上的交点到下一个面在光轴上的交点之间的距离,向右为正,向左为负。常用于标识透镜厚度、元件与元件的间距等。 例如:一个透镜的厚度,可以用透镜的前表面的面厚度值Thickness 来完成仿真;前一个元件与后一个元件的间距,可以用前一个元件的后表面到后一个元件的前表面之间的面间距来完成仿真。 3.根据设计要求和设计草图,估算各个元件之间的大致间距,通过面间距的设置,实现整个光学系统的初步仿真。 4.仿真一个轴上点光源(m μλ587.0=)在物距为u=30mm 时,由焦距为20mm ,材料为BK7,口径为10mm 的单正透镜成像的光路。 四.报告要求: 1. 打开安装目录下的samples\tutorial\tutorial zoom 2.zmx 文件,生成其2D 图、渲染(转角)、像差特征曲线、OPD 曲线、曲面数据报告(第7面)和图解报告4。截屏后打印出来。 2. 试在打印出来的2D 图上标出各个面的位置以及相应面厚度值的具体指向(方向、

哈工大 光机系统设计 双胶合透镜 实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 实验报告 课程名称:光机系统设计 实验名称:双胶合消色差物镜设计院系:电气及自动化与控制系班级: 姓名: 学号: 哈尔滨工业大学

1, 实验目的 设计一个双胶合消色差透镜,并绘制图形,熟悉应用光学、机械学等相关知识,掌握光机系统设计的流程。 2. 结构特性分析 双胶合消色差物镜光学性能要求: 1) f / 6,焦距540mm ; 2) 视场角1.5°; 3) 镜片材料选择BAK1 和BK7; 4) 20 线对/mm 处MTF>0.4; 5) 工作波长:可见光 3. 初始结构设计 当物体处于无穷远时,P ∞=W ∞=0(孔径角消失),设计消色差系数C=0。 透镜的光焦度分配公式: )v 1 -v 1/(1-2 121)(v c =ψ 12-1ψ=ψ 通过应用光学相关知识,算的双胶合透镜的曲率半径依次为: R 1 =345.231 R 2 =-240.89 R 3 =-1003.25 两个透镜的初始厚度设计各为7mm ,透镜组到成像面的距离设计为近轴光线,由ZEMAX 计算出相应厚度调整值。 图1 双胶合透镜出结构设计

图 2 所示,视场90mm;如图 3 所示,视场角设定为1.5°,图 4 所示,入射光线为可见光;如所示为初始透镜结构图。 图2 设定视场 图3 设置光场 图4 设定入射光

4. 系统优化 设计焦距值为540mm,设定默认优化函数EFFL target 为540,权重为1,选择透镜的三个曲率半径以及相应的厚度作为优化参数,优化结果如图 5所示。 图5 优化结果参数 5. 像质分析 由图6所示,优化后最大的波像差大约为4个波长,尚未达到衍射极限,应为焦平面上的彗差影响所致;同时可见这个透镜相对与可见光的低阶色差比较小,满足设计要求。 图8优化后光线追迹曲线 如图 6所示,优化后存在彗差,由图中度数可得艾里斑半径为8.595μm,

双高斯物镜的设计

双高斯物镜的ZENAX优化设计 《光学课程设计》 " :

目录 一、介绍 .................................................... - 3 - 二、用初级像差理论确定初始结构.............................. - 4 - 三、用ZEMAX优化............................................ - 9 - 四、结论 .................................................. - 16 -! 五、心得体会 ............................................... - 16 -参考文献 ................................................... - 18 - 》 }

一、介绍 双高斯物镜是一种中等视场大孔径的摄影物镜。双高斯物镜是以厚透镜矫正匹兹万场曲的光学结构,半部系统是由一个弯月形的透镜和一个薄透镜组成,如图1所示。 ; 图 1 双高斯物镜 由于双高斯物镜是一个对称的系统,因此垂轴像差很容易校正。设计这种类型的系统时,只需要考虑球差、色差、场曲、像散的校正。在双高斯物镜中依靠厚透镜的结构变化可以校正场曲ⅣS ,利用薄透镜的弯曲可以校正球差ⅠS ,改变两块厚透镜之间的距离可以校正像散ⅢS ,在厚透镜中引入一个胶合面可以校正色差ⅠC 。双高斯物镜的半部系统可以看作是由厚透镜演变而来,一块校正了匹兹万场曲的厚透镜是弯月形的,两个球面的半径相等。在厚透镜的背后加上一块正、负透镜组成的无光焦度薄透镜组,对整个光焦度的分配和像差分布没有明显的影响,然后把靠近厚透镜的负透镜分离出来,且与厚透镜合为一体,这样就组成了一个两球面半径不等的厚透镜和一个正光焦度的薄透镜的双高斯物镜半部系统。这个半部系统回来了承受无限远物体的光线时,可用薄透镜的弯曲校正其球差。由于从厚透镜射出的轴上光线近似平行与光轴,因此薄透镜越向后弯曲,越接近与平凸透镜,其上产生的球差及高级量越小。但是,该透镜上的轴外光线的入射状态变坏,随着透镜向后弯曲,轴外光线的入射角增大,于是产生了较大的像散。为了平衡

木结构设计

5 木结构设计 5.1 一般规定 《木结构设计规范》GBJ5—88 2.1.1 承重结构用的木材,应从本规范表 3.2.1—1所列的树种中选用。重要的木制连接件应采用细密、直纹、无节和无其他缺陷的耐腐的硬质阔叶材。 2.1.2 承重结构用的木材,其材质分为三级。设计时,应根据构件的受力种类按表2.1.2—1的要求选用适当等级的木材。 承重结构木构件材质等级 表2.1.2—1 项次 构件类别 材质等级 1 2 3 受拉或拉弯构件 受弯或压弯构件 受压构件及次要受弯构件(如吊顶小龙骨等) Ⅰ Ⅱ Ⅲ 注:1.屋面板、挂瓦条等次要构件可根据各地习惯选材,本规范不统一规定其材质等级。 2.本表中木材材质等级系按承重结构的受力要求分级,其选材应符合本规范附录二材质标准的规定,不得用一般商品材的等级标准代替。 胶合木结构用的木材材质,亦分为三级。计时,应根据胶合木构件的受力种类和部位,按表2.1.2 —2的要求选用适当等级的木材。 胶合木构件的材质等级表 表2.1.2—2 项次 构件类别 材质 等级 木材等级配置图 1 受拉或拉弯构件 [s 2 受压构件(不包括拱和桁架的上弦) Ⅱs 3 拱或桁架的上弦以及高度不大于500mm 的胶合 梁 (1)构件上下边缘各0.1k 的区域且不少于两层板 (2)其余部分 Ⅰs Ⅱs 4 高度大于500mm 的胶合梁 (1)梁的受拉边缘0.1k 区域,且不少于两层板 (2)距梁的受边缘0.1k 至0.2k (3)梁的受压边缘0.1h 区域,且不少于两层板 (4)其余部份 [s Ⅰs Ⅱs Ⅲ s 5 侧立腹板工字梁 (1)受拉翼缘板 (2)受压翼缘板 (3)腹板 [s Ⅰs Ⅱs 注:1.h —截面高度。

木结构设计规范 GBJ5—88(下)

木结构设计规范GBJ5—88 第七章设计对施工的质量要求 第一节一般规定 第7.1.1条木结构的施工,除应遵守国家现行《木结构工程施工及验收规范》外,尚应符合本章规定的质量要求。 第7.1.2条制作承重结构的木材,应按设计要求的等级和树种采用。各等级木材的材质,应符合本规范承重结构木材的材质标准(附录二)的规定。 第7.1.3条制作承重结构的木材,宜提前备料,使木材有一段干燥时间,制作时应检测其含水率是否符合设计要求。现场检测木材含水率可采用电测法。但对截面较大的原木和方木,应要求其表层20mm深处含水率的电测值不超过18%。 第7.1.4条当需要对承重结构木材的强度进行检验时,应按本规范附录七的检验标准进行。 第7.1.5条用于承重结构的胶合木,其胶合工艺应符合本规范附录八的要求。 第7.1.6条承重木结构中使用的钢材,除应具有出厂质量合格证明和标牌外,还应按国家现行《钢结构工程施工及验收规范》的要求进行检验。 在任何情况下,均不得在承重构件及其连接中使用钢号不明的钢材。 第7.1.7条在木结构施工过程中,每一主要工序交接时(或隐蔽工程覆盖前),均应进行质量检查并做好施工记录,经认定合格后才能进行下一工序。木材加工厂成批生产的构配件,也应附有质量合格证明方可交付现场使用。 第二节构件制作 第7.2.1条木构件的制作,应保证制成构件的平直度符合下列要求:

一、沿受压和压弯构件长度的单向弯曲,对于方木,不应大于构件全长的1/500;对于原木,不应大于构件全长的1/300。 二、当木梁的跨度较大时,沿梁长的侧向弯曲不应大于梁长的1/200。 三、以锯材制成的构件,其截面的翘弯不得大于构件宽度的1.5%;其平面上的扭曲,每米长度内不得大于2mm。 第7.2.2条制成的木构件,其实际尺寸对设计尺寸的偏差不应超出表7.2.2规定的容许值。 木构件制作的容许偏差值表 注:原木截面如呈椭圆形,其直径可按长、短径的平均值确定。检查时,构件上若留有树皮应予剥去,不得计算在内。 第三节结构连接的制作和装配 第7.3.1条制作和装配齿连接时,应遵守下列规定: 一、压杆端面和齿槽承压面应加工平整,装配后的压杆轴线应与齿槽承压面保持垂直。 二、齿槽深度的偏差不应超过±2mm。 三、支座节点齿的受剪面长度的负偏差,不应超过10mm。 四、抵承面未贴紧的局部缝隙,其宽度不应大于1mm,任何情况下,均不容许有穿透构件宽度的缝隙,也不容许用楔或薄片填补缝隙。 第7.3.2条制作和装配螺栓连接时,应遵守下列规定:

双高斯物镜的设计

前言 双高斯物镜是一种中等视场大孔径的摄影物镜。双高斯物镜是以厚透镜矫正匹兹万场曲的光学结构,半部系统是由一个弯月形的透镜和一个薄透镜组成,如图1所示。 图 1 双高斯物镜 由于双高斯物镜是一个对称的系统,因此垂轴像差很容易校正。设计这种类型的系统时,只需要考虑球差、色差、场曲、像散的校正。在双高斯物镜中依靠厚透镜的结构变化可以校正场曲ⅣS ,利用薄透镜的弯曲可以校正球差ⅠS ,改变两块厚透镜之间的距离可以校正像散ⅢS ,在厚透镜中引入一个胶合面可以校正色差ⅠC 。双高斯物镜的半部系统可以看作是由厚透镜演变而来,一块校正了匹兹万场曲的厚透镜是弯月形的,两个球面的半径相等。在厚透镜的背后加上一块正、负透镜组成的无光焦度薄透镜组,对整个光焦度的分配和像差分布没有明显的影响,然后把靠近厚透镜的负透镜分离出来,且与厚透镜合为一体,这样就组成了一个两球面半径不等的厚透镜和一个正光焦度的薄透镜的双高斯物镜半部系统。 二、用初级像差理论确定初始结构 1、半部系统的规划 半部系统如图2所示,计算时把焦距规化为1,同时取规化条件 。,,101111==-=h u u z 2、以厚透镜校正ⅣS

考虑到对高级像散的平衡,取07.0-=ⅣS 。按相对孔径需要选15.0=d 。玻璃可取BaF7和ZK8的组合。由式子 ()() ??? ? ?? ? =-= =-=--b d nS n a n nS n c c c c c c 12212111ⅣⅣρρρρ 可得 549 .5729.5766026 .31184006.021-=-==-=c c b a ρρ,, 3、加无光焦度双薄透镜校正ⅠS 取3.1=-==b a ψψψ(实践表明取值在1.2到1.5之间为好)。 (1) 求c S u Ⅰ、2。 () ()()()[] 52.17311719.21 22223 22 1 21=---+=-=-= -u u n du u n S nr n u n c Ⅰ (2) 求个面曲率半径 由式子 ?? ???--==11221n b b b c b ψρρρρ,???==a a a a a a ψρρψρρ2211 及式子 ??? ?? ??????== ==2413221 11111a a b c r r r r ρ ρρρ

双胶合望远物镜 ZEMAX 设计

2.要求设计一个周视瞄准镜的双胶合望远物镜(加棱镜),技术要求如下: 设计过程: 1.求h ,h z ,J 1006 .14365.7148.01'''4365.7)tan(''0621.335/5tan 58.12'/'tan 148.0502/tan 8.147.34'/tan '/'tan =??===--==?==?===?==?=Γ=?=Γ==y u n J mm w f y mm h h mm h f h u D u mm D D D D u f h u z z o 入入出入

计算平行玻璃板的像差和数S 1、S 2、S 3 平行板入射光束的有关参数为: 5912.0, 0875.0)5tan(,148.0-=-=-==u u u u z z ο 根据已知条件,平行玻璃板本身参数为: 64.11.5163,n 31mm,d ===υ 则平行平板的初级像差为: 3.列出初级像差方程式求解双胶合物镜的C W P ,,∞∞ 根据整个系统物镜的像差要求: mm L SC mm L FC m m 05.0,001.0,1.0'' '=?-==δ 系统的像差和数为: 0010952 .000220.0)(2200438 .02S '2'''3''''''''2''''1-=?-==-=-=-=-=FC m s m L u n S y SC u n k u n S L u n δ 由于S 系统=S 物镜+S 棱镜,双胶合物镜的像差和数为: 0.0012848 0.00238-0.001095S -0.001075 0.003275-0.0022S 0.001160.00554-0.00438S =+====+=I ∏I C 列出初级像差方程,求P,W,C 00238.0n 1-n -d S 0.0032765/u)(u S S 00554 .0n 1 -S 2 2 3z 124321-====-=?-=u du n υ

木结构:从传统走向现代

木结构:从传统走向现代 说起木结构建筑,人们大概会立即联想到古代园林、佛教庙宇等古建筑,很难与现代化建筑沾边。然而,随着社会的发展进步和人们生活水平的提高,尤其是近年来随着大众和政府对于环境可持续发展以及绿色建筑的持续关注,木结构建筑重新回到人们的视野,并受到广泛关注。在日前召开的中国建筑学会建筑结构分会年会上,木结构建筑的发展成为与会者探讨的热点话题。 我国木结构建筑历史悠久 我国木结构建筑历史辉煌且悠久,是中华文明的重要组成部分,且对日本、朝鲜等国产生过重要影响。考古发现,早在旧石器时代晚期,已经有中国古人类“掘土为穴”(穴居)和“构木为巢”(巢居)的原始营造遗迹。而分别代表两河流域文明的浙江余姚河姆渡遗址和西安半坡遗址则表明,早在7000至5000年前,中国古代木结构建造技术已达到了相当高的水平。哈尔滨工业大学土木工程学院教授祝恩淳研究发现,中国古代木结构在上述原始雏形的基础上不断演化改进,逐渐形成了梁柱式构架和穿斗式构架两类主要体系。自战国以来,迟至清末甚或今日,这两种体系一直沿用。有记载的中国古代著名木结构建筑为数众多,但大都已经湮灭于历史的长河中。据统计,现存的木结构实物最早可追溯至唐朝中后期。自辽宋各代,遗留建筑实物渐多,而明清最多。如我国现存最古老、最高的木结构建筑——山西应县佛宫寺释迦塔,最早采用拼合构件的实物木结构——宁波保国寺大殿,现存规模最大、殿柱最巨之木结构——明长陵棱恩殿,构思最巧妙、最大胆之木结构——山西大同恒山悬空寺。 可以说,中国古代木结构从考古发现、典籍记载到实物存在,浩如烟海、数不胜数。值得一提的是,我国古代还有为数众多的少数民族木结构建筑以及木桥、木栈道等木结构工程,同样体现了劳动人民高超的聪明智慧和技术水平。 现代木结构建筑发展迅速 有关研究表明,我国建国初期,木结构曾在国民经济建设中发挥着重要作用。由于木材短缺,至上世纪70年代末,木结构在中国的研究应用陷于停滞。上世纪90年代末,我国引进北美轻型木结构,标志着木结构的研究与应用在我国逐步恢复。祝恩淳认为,发展具有中国特色的木结构,首先要深入学习了解国际木结构的先进技术,大力开展木结构科学研究,完善木结构的设计计算理论,加强木结构类技术标准的制订,促进适合于建筑结构用的标准化、工业化的木和竹产品的研发和生产。 祝恩淳分析认为,中国传统的梁柱体系跨度往往受限,且耗用木材较多。随着西方科学技术的传入,出现了桁架这一构件形式。木结构房屋逐渐转变为由承重砖墙支承的木桁架结构体系所替代,称砖木结构房屋。建国初期百废待兴,而钢材、水泥短缺,大多数民用建筑和部分工业建筑都采用了这种砖木结构形式(砖承重墙、木屋盖)。据1958年统计,这类房屋占总建筑的比例约为46%。上世纪五、六十年代所建的这类木屋盖,有的至今还在使用。在这一时期,木结构应用虽基本上被限制在木屋盖范围内,但仍处于兴旺时期,仍可与混凝土结构、砌体结构和钢结构并称四大结构之一,在国民经济建设中发挥着重要作用。与此同时,各高校、科研院所有众多专业人员从事木结构教学、科研工作,规范编制、科研、教学的内容也基本以砖木结构为中心。随着我国国民经济建设发展前三个五年计划的推进,基本建设的规模迅速扩大,木材需求量急剧增加,森林被大量砍伐,木材资源几近耗尽。上世纪70年代后,木结构在中国基本被停用,木结构工作者纷纷转行,高校木结构课程也逐渐停设,中国木结构被迫处于停滞状态,长达20余年。 反之,美国、日本以及欧洲等木结构技术先进的国家和地区,却从未停止前进的步伐。木结

CAD 实验讲义 南开大学光学实验

实验一、光学CAD实验 1、利用光学软件作CAD的初步训练 一、 实验目的 通过对OSLO软件的了解和使用,了解OSLO软件的基本功能并初步掌握模拟、分析和设计光学系统的基本方法,为较专门、高级的光学CAD实验打下基础。 二、 实验内容 1、熟悉OSLO光学软件。 2、建立光学系统的数据。 3、计算光学系统的像差,分析光学系统的性能[3-5]。 4、研究单透镜的光学和结构参数与像差的关系[3-5]。 5、对简单透镜做优化设计。 三、 实验方法与步骤 1 光学系统数据的输入 图1 1 帮助 9 成像分析 17 点扩散函数分析 2 表面数据表格 10 用缺省光线画平面透镜 3 总的操作条件表格 11 画立体透镜 4 高斯束表格 12 光线像差分析 5 表面容差数据表格 13 波前像差分析 6 表面数据 14 MTF分析 7 傍轴常数 15 MTF通过焦点分析 8 光线轨迹分析 16 点列图 首先运行《OSLO LT》进入它的主窗口,打开“File”,选“New”,则出现一个子窗口,如图2所示。选“Custom lens”,并填写表面数,然后“√”,便出现“重建透镜数据表格”。当发现表面数目不够或多余时,可用鼠标点按表面序号,以便编辑插入新表面或删除多余表面。字母串“OBJ”,“AST”,“IMS”分别表示物、光阑和像表面。利用此方法可在物面和像面之间建立你要研究的光学系统所需要的表面数目。但应注意,该软件所容许的系统最多不能超过10个表面。比如,要研究一个单透镜,它具有两个表面,所以在物像表面之间至少应包含两个表面。

图2 建起光学系统数据表格(如图3反示出物面和镜面)之后,即可按你所准备好的数据按位置填好。其中包括曲率半径(Radius)、厚度(Thickness)、界面之间的介质参数(Glass)、入射光束半孔径、视场和工作波长(以μ为单位)。对于某些特殊表面(比如非球面、衍射光栅面、全息图表面等)还应在special一列填写相应的参量数据。 图3 需要说明的是,物面到系统第一面的距离(即物面一行中的厚度)为物距l的绝对值,即d0=?l?,当其为无穷时(用数值1.0000e+20表示),入射光束孔径用“Entrance beam radius”表示,以mm为单位,而视场用半Field angle表示,以度为单位。当d0≠∞时,则入射光束孔径习惯用物空间数值孔径表示,而视场用物高(单位mm)表示。玻璃的填写可通过选项,比如从玻璃库中选玻璃牌号,或者用模拟光学玻璃数值(n,ν)。对于反射面,直接选reflect。 系统最后一面到像面之间的距离称为像距,有时它可表示系统的工作距离,该数据也必须正确填写,方法有二:一是在此厚度后面的方块处单击,然后在出现的托拉菜单中选“Solves”,“Axial ray height=0”;二是在主屏上选“display the paraxial constant”(见图1中由数字7标注的图标),从计算的数据中选取“Gaussian image distance”的值填入。在透镜数据子屏上,点按“Draw”后边的“on”,即出现目前系统的结构图。如图4所示为一双胶合透镜。 如果在开始的“File”,“New”之后,选“Catalog lens”,“ok”,则出现“Update surface data”和透镜库的两个子窗口。在透镜库子屏上(见图5),通过选取不同透镜种类“singlets”,

相关主题
文本预览
相关文档 最新文档