当前位置:文档之家› 望远镜设计计算指导和双胶合物镜设计

望远镜设计计算指导和双胶合物镜设计

望远镜设计计算指导和双胶合物镜设计
望远镜设计计算指导和双胶合物镜设计

《应用光学》课程设计—望远镜设计计算指

说明:

1、本指导将全面介绍带有普罗I型转像棱镜系统的望远镜设计过程以及计算,作为《应用光学》课程设计的实习范例。实验报告需在此基础上完善和修改,严禁全盘抄袭本指导,否则作0分处理!

2、本指导省略了理论分析部分,计算依据请参考有关资料。

题目:双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)

要求:

双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为:

1、望远镜的放大率Γ=6倍;

2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D =30mm);

3、望远镜的视场角2ω=8°;

4、仪器总长度在110mm左右,视场边缘允许50%的渐晕;

5、棱镜最后一面到分划板的距离 14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。

6、lz′=8~10mm

我们的工作将按照以下步骤进行:

1、系统外形尺寸的计算:根据需求确定像差,选型;

2、使用PW法进行初始结构的计算:确定系统的r、

d、n;

3、像差的校正:通过修改r、d、n,调整像差至容限之内;

4、进行像质评价,总结数据图表,完成设计。

第一部分:外形尺寸计算

一、各类尺寸计算 1、计算'f o

和'f e

由技术要求有:1

'4

o D f =

,又30D mm =,所以'120o f mm =。 又放大率Γ=6

倍,所以''206o e f f mm ==。

2、计算D 出

30

3056

D D D mm =∴=

=

物出物 3、计算D 视场

2'2120416.7824o o D f tg tg mm ω==??=视场

4、计算'ω(目镜视场)

''45o tg tg ωωωΓ?=?≈

5、计算棱镜通光口径D 棱

(将棱镜展开为平行平板,理论略) 问题:如何考虑渐晕?

我们还是采取50%渐晕,但是拦掉哪一部分光呢?

拦掉下半部分光对成像质量没有改善(对称结构,只能使光能减少),所以我们选择上下边缘各拦掉25%的光,保留中间的50%。即保留中间像质好的,去掉边缘像质不好的。

下半的25%由目镜拦掉,上半的25%由棱镜拦掉,只留下中间的50%。

如图:

移出梯形后计算:141202224D D D D ????

--

? ?????

棱物视视=,此处后截距取大于14mm 即可,我取14mm 。

30D mm

=物,

16.7824D mm

=视场,所以有

16.574D m m ≈棱,

8.2872

D mm =棱。

所以展开厚度

233.15L D mm

==棱,因为装配需要,取

33.5L mm =,空气平板的长度22.1L

d mm n

=

≈。即(n=1.5163)

物镜距棱镜第一面为59.8mm 。

验算:取59.8mm 会不会挡轴上点的光?

如图求得极限距离为53.7mm ,若小于此距离时候棱镜档光,取59.8是可以的。

意义:说明之前取后截距14mm ≥,但是不能取得太大,否则棱镜离物镜太近了会挡光!

6、求目镜口径D 目

D 目无渐晕时候,()'2''2o e D D f f tg ω?

?=++????

出目,现在有25%的渐晕,

所以()'2''22.084o e D D f f tg mm ω??

=++

=????

出目 7、结构

总尺寸59.821420101091.820111.8110L mm =-++++=+=≈

二、选型

望远镜:孔径大,视场小,所以轴外像差小,只需要校正轴上点像差。

两种轴上点像差:球差、位置色差。与孔径相关。 其余轴外像差:与视场相关,但慧差与孔径和视场都相关,所以也要考虑慧差。 所以:

对于物镜:校正球差、位置色差、慧差(用正弦差代替) 对目镜:大视场,小孔径。要校正:像散、场曲、畸变、慧差、倍率色差。

选择:物镜—双胶合;目镜—凯涅耳目镜。

第二部分:PW 法求初始结构参数(双胶合物镜

设计)

(PW 法理论略)

一、求解本设计的结构

已知'120,30,28o o f mm D mm ω===

1、求,,z

h h J

由设计条件,有()1520''' 1.4089('0.125,''8.3912,'1)

'z

o o D h mm h J n u y h u y f tg mm n f ω?==??

?=?==??

=====??

孔径光阑在物镜框上 注意:由于含有平板,平板会产生像差,所以要用物镜的像

差来平衡平板的像差。

2、平板像差

两个平板,厚度为2233.567L mm =?=,所以有

24

310.006906Ip n S du n -=-=-∑,

其中67, 1.5163(9),0.125,0.6096,64.06p d mm n K u u ν====-=;

(

)0.003404p IIp IIp u S S u

==∑∑;

2

2

(1)0.003670Ip

d n C

u n ν

--=

=-∑ 3、双胶合物镜像差

双胶合物镜像差应该与平行平板像差等值反号,据此提出物镜像差。(若不需平衡平板像差的话,取物镜像差都为0)

即双胶合像差0.0069060.0034040.003667I II I

S S C =??=-??=+?

进行规化后: 1)2,0.001958I

I C C C C h ?

→=

=

2)求

P 、W :0.00040640.0032453(,0)I II

II z z S P h S W J S h P JW h ?==??

?=-=?

?

=-=???

3)求P ∞、W ∞

: 320.20808()0.2077()P P P h W W W h ??∞∞

?

===??

?

?===??

4)求0P

若冕牌玻璃在前:200.85(0.1)0.1276P P W ∞

=-+= 若火石玻璃在前:200.85(0.2)0.20803P P W ∞

=-+=

查表,选玻璃对。

5)例如选取了K9-F5玻璃对 查

11

00

0.002

.4

1

6682

I C n n A K P W Q νν?===

===

==

=

=-

=-

所以1,2000.2138Q Q Q ==±; 0

3000.145365 4.732047W W Q Q Q K

-=+=-=-。

取“—”号时比较接近。

所以211121132

2 2.6222031.464266110.84417671Q n n ρ??ρρ?ρρ??

=+=-??

=+=?-??-=-=-?-?

注意,这是规化后的。

所以11

22

33

'

81.952'

45.763'

142.15o o o f r mm f r mm f r mm

ρρρ?==???=

=-???==-??

二、上机计算

根据之前的计算,已基本得到了双胶合物镜的初始结构参数。现在我们知道:

物距:∞,半视场角:4o ,入瞳直径:30mm ,折射面数:7个(双胶合3个,平板4个)。

因为入瞳在物镜上,所以第一面为STO 面,各面曲率半径已知,平面曲率为infinity 。 另外有

1234566,3,59.8,33.5,2,33.5

d d d d d d ===

===,

同时

有12345

61,9,5,1,

9,1,9

n n K n F n

n K n n K

===

====。

输入zemax 运行计算:

1)焦距119.5~120.5mm 为合格; 2)像差容限

i)球差:1H 孔径小于1倍焦深,1倍焦深=589.32

2

'sin m

n u λ=0.0377;

0.707H 带球差小于6倍焦深=0.226。 ii)色差:全孔径范围都小于0.1即可

iii)慧差:我们用慧差代替正弦差,即弧矢慧差

'''0.0025

8.39

K s S c

y =

?=?≈ 小于0.02即可。

修改

r、2r、3r达到以上要求!

1

请看范例物镜.zmx

(可以选取别的玻璃对作为双胶合物镜,有的容易校正像差,有的则稍微困难,即使玻璃对选取相同,最后调整的结果也不相同,所以不要抄袭!)

修改好像差后,按照《光学设计手册》上p356页的表面半径数值表,套用标准半径,选取影响最小的标准半径,套完半径后,保证焦距和像差在合格范围,则达到要求!

注意:后截距,即棱镜最后面到像面的距离要求大于等于14mm,修改完参数后可能改值只有8mm左右,怎么办?

改变前面的59.8mm那个厚度,从而使后截距达到要求!

至此,物镜设计完毕,可以保存数据,图表,整理设计报告。

第三部分:目镜的设计

由于目镜的设计比较复杂,且日常使用的目镜都已成型,我们采取直接选用的方式。

1、选型

已知'20,'10,2'45.5o

e z

f mm l mm ω===出瞳距视场,我们选择凯涅

耳目镜。

其中场镜的作用是“光瞳衔接”。

2、初始结构参数(三个透镜,五个面)

目镜是一个放大的光学系统,根据设计经验,我们采取“倒追”的方法,进行反向追迹!

首先要确定的是接眼镜的结构,因为场镜只是为了衔接光瞳的,对像差的要求在接眼镜上。

组合焦距

'20e f mm

=,接眼镜

'20f mm

≥眼,一般取

' 1.2'24e f f mm ==眼(经验公式!)

原来的出瞳距现在因为反追变成了入瞳距,并且符号要

反过来,10z l mm =-。

规化处理:10

0.415'24

z z l h f -=

==眼 3、校正像差

与视场有关的像差有:II S 慧差、III S 像散、IV S 场曲、V S 畸变,倍率色差。

所以令0,0,0,0II

III IV V S S S S ====。

0.415z h =

=,所以可求00.929P =,由0,C P 可以选玻璃对。 取0C =,因为不用考虑平板和场镜,直接用双胶合来校正,所以0C =。

同时还有: 2.5W

==

我们已经选好一对: 1)

ZF3-ZK3

其他还有 2)ZF5-ZK6

3)ZF6-ZK10 请自行查表计算。

接下来计算接眼镜的各表面曲率半径:

因为这次不知道P ∞

,所以不用求1,2Q 了,所以直接有:

00 2.50.196994 2.50.2

4.096345 4.1 2.71.67 1.67

W W Q Q K ∞

+--=-=-≈-=

所以接着计算:

21112

11

322 1.789

0.491511 2.78571Q n n ρ??ρρ?ρρ?

?

=+=??=+=?-?

?-=-

=-?-?,所以11

22

33

'

48.83'

13.415'

8.615f r mm f r mm f r mm

ρρρ?==????

==???==-???

眼眼眼,取121.5, 4.5d d ==

双胶合结构参数求完!

3、设计场镜

场镜在此处的作用是帮助光瞳衔接,改变出瞳的位置。 正的场镜能使后面光组的通光口径减小,使物镜出瞳更靠近目镜,负场镜则反之。 设计思路:

1)我们前提已知系统出瞳的位置'10z l mm =,现在采取反追方法,所以出瞳就变成了目镜的入瞳;

2)该入瞳通过接眼镜成的像与物镜框是共轭的,但此时还不重合;

3)在接眼镜后加上场镜,使之前的像再通过场镜成像到物

镜框上,实现光瞳衔接!

计算:

111110,'24111

,'17.2''

z z z z l mm f mm l mm

l l f =-=∴-

=∴=-眼眼,d 略小于20mm ,取d=18mm

对于场镜来说,

21'35.2z z l l d mm =-=-,这个数值未考虑透镜厚

度,还要加上6~7mm ,接眼镜厚度6mm ,场镜厚度0.8~1mm ,所以取242z l mm =-。

而像距2'120'1205125z F l l mm =+=+=(取后截距'5F l mm =)

再由

221

11'31.4''

z z f mm l l f -=?=场场

场镜为平凸透镜,材料选K9玻璃,根据45(1)()n ?ρρ=--计算:

454

45111(1)()(1.51631)()31.4

16.2n r r mm r ?ρρ=--=--=

=???

=∞

?,从而得到场镜的两个曲

率半径。

如此,算出了凯涅耳目镜的5个曲率半径都得到了!

22.75o ω=

,5D mm =入,入瞳位置'10z l mm =

计算得初始焦距大约为20.6mm 左右。

自己计算一下

子午慧差2倍焦深左右(尽量小于0.1);像散小于1.6;场曲小于1.6;畸变小于0.56;倍率色差小于0.03。 尽可能小些,不强制要求。

再看看现在的结构

修改目镜的入瞳距(8~10mm那个参数),可以调整使光瞳衔接。

目镜的出瞳距为12010mm

,都是允许的,说明满足光瞳衔接!总结一下目镜的要求:

1、焦距19.5~20.5mm;

2、像差任意;

3、光瞳要衔接;

之后保存数据、图表。

尝试画一个双胶合透镜中的正透镜,选做。

第四部分:设计报告的内容与要求

可以手写,可以打印,禁止复印(0分处理)。

1、封面:包括“应用光学课程设计”,班级、姓名、学号。

2、外形尺寸计算,光学系统选型;像差容限计算。(要求有详细的计算步骤和理论依据);

3、PW 法计算初始结构参数,要求详细过程

01012312,,,Q Q ,,,I P W P W P C r r r d d ?∞

?????????平板像差物镜像差(等值反号)查表选玻璃对,

04567

','0,Q ,,'I t ts K x P C r r r f r =??????场查表选玻璃对光瞳衔接场镜

4、像差校正;厚度取整;套标准半径(选做);光瞳衔接。 打印数据,像差曲线;

5、像质评价。自述,是否达到像差容限要求,什么原因。

6、零件图(选做)。

7、学习的心得体会。

双胶合物镜的设计

目录

一、前言 (7)

二、ZEMAX仿真 (9)

三、设计优化 (17)

四、数据比较和优化后参数 (21)

五、设计心得体会 (24)

六、参考文献 (25)

一前言

光学是研究光的行为和性质,以及光和物质相互作用的物理学科。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。光的本性也是光学研究的重要课题。微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。

我们通常把光学分成几何光学、物理光学和量子光学。

几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。

物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。

波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。

量子光学 1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。

光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。所以光学是一个相当有用的学科。

本次设计采用ZEMAX光学设计软件。ZEMAX是一个用来模拟、分析和辅助设计

望远镜系统结构设计

光学课程设计 望远镜结构系统设计 姓名:曾茂桃 班级:光通信082 学号:2008031126 指导老师:张翔

摘要 该报告运用应用光学知识,了解望远镜的历史,在工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。了解光学设计中的PW 法基本原理。并应用光学设计软件对系统误差、成像质量进行理论分析。初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。目镜设计的特点、常用目镜的型式和像差分析等都有了一个明确的简要的介绍。 关键字:望远镜物镜目镜放大率分辨率内调焦望远镜 PW法光栅

目录 一概述…………………………………………………………页二望远镜尺寸设计与分析…………………………………页2.1 望远镜的简述…………………………………………………………页2.2 望远镜的主要特性分析………………………………………………页三分物镜组与目镜组的选………………………………………………页 3.1望远镜物镜需要消除的像差类型及主要结构形式…………………页3.2双胶物镜和双分离物镜………………………………………………页 3.3内调焦望远镜…………………………………………………………页 四.目镜组的主要种类及其结构:………………………….. 页 4.1惠更斯目镜……………………………………………………………页4.2冉斯登目镜……………………………………………………………页 4.3Porro、Roof棱镜结构及其特点…………………………………页 五.望远镜像差设计PW法………………………………….. 页 5.2物体在有限距离时的P,W的规化……………………………………页5.5用C ,表示的初级像差系数………………………………………页 P, W 六.光学系统中的光栅分析……………………………………页

双高斯物镜的设计

双高斯物镜的ZENAX优化设计《光学课程设计》

目录 一、介绍 .................................................... - 2 - 二、用初级像差理论确定初始结构.............................. - 3 - 三、用ZEMAX优化............................................ - 8 - 四、结论 ....................................... 错误!未定义书签。 五、心得体会 ............................................... - 12 -参考文献 ................................................... - 13 -

一、介绍 双高斯物镜是一种中等视场大孔径的摄影物镜。双高斯物镜是以厚透镜矫正匹兹万场曲的光学结构,半部系统是由一个弯月形的透镜和一个薄透镜组成,如图1所示。 图 1 双高斯物镜 由于双高斯物镜是一个对称的系统,因此垂轴像差很容易校正。设计这种类型的系统时,只需要考虑球差、色差、场曲、像散的校正。在双高斯物镜中依靠厚透镜的结构变化可以校正场曲ⅣS ,利用薄透镜的弯曲可以校正球差ⅠS ,改变两块厚透镜之间的距离可以校正像散ⅢS ,在厚透镜中引入一个胶合面可以校正色差ⅠC 。双高斯物镜的半部系统可以看作是由厚透镜演变而来,一块校正了匹兹万场曲的厚透镜是弯月形的,两个球面的半径相等。在厚透镜的背后加上一块正、负透镜组成的无光焦度薄透镜组,对整个光焦度的分配和像差分布没有明显的影响,然后把靠近厚透镜的负透镜分离出来,且与厚透镜合为一体,这样就组成了一个两球面半径不等的厚透镜和一个正光焦度的薄透镜的双高斯物镜半部系统。这个半部系统回来了承受无限远物体的光线时,可用薄透镜的弯曲校正其球差。由于从厚透镜射出的轴上光线近似平行与光轴,因此薄透镜越向后弯曲,越接近与平凸透镜,其上产生的球差及高级量越小。但是,该透镜上的轴外光线的入射状态变坏,随着透镜向后弯曲,轴外光线的入射角增大,于是产生了较大的像散。为了平衡ⅢS ,需要把光阑尽量地靠近厚透镜,使光阑进一步偏离厚透镜前表面的球心,用该面上产生的正像散平衡ⅢS 。于此同时,轴外光线在前表面上的入射角急剧增大,产生的轴外球差及其高级量也在增大,从而引出了球差校正和高级量减小时,像散的高级量和轴外球差增大的后果。相反,若将光阑离开厚透镜,使之趋向厚透镜的前表面球心,则轴外光线的入射状态就能大大的好转,轴外球差很快下降,此时厚透镜前表面产生的正像散减小。为了平衡ⅢS ,薄透镜应该向前弯曲,以使球面与光阑同心。这样一来,球差及其高级量就要增加。 以上分析表明:进一步提高双高斯物镜的光学性能指标,将受到一对矛盾的限制,即球差高级量和轴外球差高级量的矛盾。 解决这对矛盾的方法有三种: 第一,选用高折射率低色散的玻璃做正透镜,使它的球面半径加大。 第二,把薄透镜分成两个,使每一个透镜的负担减小,同时使薄透镜的半径加大。 第三,在两个半部系统之间引入无焦度的校正板,使它只产生ⅤS 和ⅢS ,

光学课程设计——望远镜系统-精品

光学课程设计——望远镜系统-精品 2020-12-12 【关键字】情况、方法、条件、空间、领域、质量、传统、认识、问题、焦点、系统、有效、现代、良好、优良、透明、保持、了解、研究、特点、位置、关键、网络、理想、地位、基础、需要、环境、工程、负担、方式、作用、结构、关系、分析、调节、形成、满足、保证、维护、指导、强化、取决于、方向、适应、实现、减轻、中心、重要性 望远镜系统结构设计 指导教师:张翔 专业:光信息科学与技术 班级:光信息08级1班 姓名: 学号: 目录 第一部分设计背景 (1) 第二部分设计目的及意义 (1) 第三部分望远镜介绍 (1) 3.1望远镜定义 (1) 3.2望远镜分类及相应工作原理 (2) 第四部分望远镜系统设计 (3) 4.1开普勒望远镜 (3) 4.2望远镜系统常用参数 (4) 4.3外形尺寸计算 (6) 4.4伽利略望远镜 (8) 4.5物镜组的选取 (9) 4.6望远镜像差类型及主要结构 (10) 4.7双胶物镜与双分离物镜分析 (12) 4.8内调焦望远物镜分析 (14) 4.9目镜组的选取 (14) 4.10目镜主要像差及分析 (17)

4.11棱镜转像系统 (17) 4.12转折形式望远镜系统 (18) 4.13光学系统初始结构参数计算方法 (18) 4.14应用光学系统中的光栅 (20) 第五部分设计总结 (21) 第六部分参考文献 (21) 一.设计背景 在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部分的大口径光电系统的应用越来越广泛。如:天文、空间望远镜;地基空间目标探测与识别;激光大气传输、惯性约束聚变装置等等。 其中我国以高功率激光科研和激光核聚变研究为目的的光电系统——“神光二号”,颇具代表。“神光二号”对于未来的能源危机和我国的军事领域有着重要意义。 二.设计目的及意义 运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜外形尺寸、 物镜组、目镜组及转像系统的简易或远离设计。了解光学设计中的PW法基本原理。 三.望远镜介绍 3.1 望远镜定义 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。根据望远镜原理一般分为三种。一种通过收集电磁波来观察遥远物体的仪器。在日常生活中,望远镜主要指光学望远镜。但是在现代天文学中,天文望远镜包括了射电望远镜,红外望远镜,X射线和伽吗射线望远镜。近年来天文望远镜的概念又进一步地延伸到了引力波,宇宙射线和暗物质的领域。或者再经过一个放大目镜进行观察。日常生活中的光学望远镜又称“千里镜”。它主要包括业余天文望远镜,观剧望远镜和军用双筒望远镜。 【望远镜基本工作示意图】 3.2 望远镜分类及相应工作原理 1.折射式望远镜 是用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制

光学望远镜系统的设计

光学望远镜系统的设计 【摘要】运用光学知识,在了解望远镜工作原理的基础上,根据开普勒望远镜的主要参数,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易设计。 【关键词】望远镜设计;视放大率;凸透镜;焦距 1引言

上图中物镜框为孔径光阑,也是入射光瞳,出射光瞳目镜像方焦点外,观察者再次观察成像情况,望远镜系统的视场光阑设在物镜的像平面处。 下面介绍望远镜系统中的光学参数。 (1)望远镜系统的放大率分别为: 轴向放大率α= f2f1 2 垂轴放大率β=?f2f1 角放大率γ=?f1f2 且这三种放大率之间的关系为αγ=β,可见它们仅仅取决于望远镜系统的结构参数。 (2)望远镜系统的视放大率 对于目视光学仪器来说,更有意义的特性是它的视放大率。由于物体位于无限远。物体对人眼所成张角θ眼和对仪器的张角θ是相等的,即θ眼=θ,物体通过望远镜对人眼的张角θ眼‘ 等于仪器像方视场角θ′,即θ眼’ =θ‘。望眼镜的作用是把 视角从原来的θ放大到θ’。设视场光阑的孔径为D 0。则: tan θ=?D 02 f 1=?D 02f 1 tan θ′=?D 02 f 2=?D 02f 2 所以望远镜的视放大率为:Γ= tan θ′ tan θ=?f 1f 2 于此可见欲增大视放大率,必增大物镜的焦距或减小目镜的焦距。 (3)望远镜的极限分辨角 表示观测仪器精度的指标是极限分辨角。若以60''作为人眼的分辨极限,为使望远镜所能分辨的细节也能被人眼分辨,则望远镜的视放大率和它的极限分辨角Φ应满足 ΦΓ=60'' 所以,若要求分辨角减小,视放大率应该增大。或者说望远镜视放大率越大,它的分辨角即精度越高,人眼极限分辨角为 α=1.22λ/D (4)望远镜的结构尺寸 当光学间隔?=0时,目镜观察中间实像应是实像位于目镜的焦平面上,因此从物镜到目镜为望远镜的筒长L =f 1+f 2。 3设计内容 (1)望远镜外形尺寸设计 设计一个开普勒式望远镜,其主要要求如下:

望远镜光路设计

至今没有一个光学系统是完美的。为了平坦且清晰的成像,往往必须把光学系统设计的十分复杂。如此一来,不但透光度变差,还得付出很高的制造成本。因此简单的镜片组而且能保有高品质成像的光学系统是光学设计的努力目标。 一个好的光学系统都出自设计者的巧思。它能在最简单的镜片组合下产生最佳的成像品质。不过在许多设计中,往往会遇到球面像差与彗形像差难以取舍的窘境(天文望远镜光学与机械)。当你能同时处理这些像差的时候,系统却又发生严重的色差。最后好不容易解决了所有的色像差,却又发生成像的变形。因此光学系统的设计在在考验设计者的经验与智力。希望透过以下的天文望远镜的演进,让你了解前人的成果。 折射式望远镜系统 由于白光经过透镜会有色散的现象(Dipersion),因此使得光学系统除了球面像差与彗形像差之外又多了影像不清晰的光源。由上图可知,蓝光的折射率较大,其次为绿光,最后为红光,因此不同颜色的入射光产生,却有不同的聚焦点。好的光学系统除了成像品质之外,还必须考虑消色差的效果。 基本上,我们在处理可见光的光路分析时,是用蓝色的F line(486.13nm)、红色的C line(656.27nm)与绿色的e line(546.07nm) 作为分析的主要光源。要查看镜片的色差情形,可以用色散数值V( Dispersion Number or Abbe number)。V越大表示镜片的色散的情况越小。 V=(ne-1) / ( nF-nC) 对於一个D= 5公分,f=20公分的两片镜片组合,我们可以由下图的光路分析了解他们各自聚焦的一致性。其实这就是球面像差的检测工作! D=5公分f=20公分 第一片镜片R1=18公分R2=-19公分中心厚度=0.84公分 间隙0.1公分 第二片镜片R3=-19公分R4=-22公分中心厚度=0.98公分

应用光学课程设计-15倍双目望远镜

应用光学课程设计报告 ———15倍双目望远镜 姓名: 班级学号: 指导教师: 光电工程学院 2016年01月04日

一、望远镜系统的原理 (3) 二、课程设计的内容及要求 (3) 三、光学元件尺寸计算及数据处理总结 (4) (一)、目镜的计算 (4) (二)、物镜的结构形式及外形尺寸计算 (7) (三)、计算分划板 (7) (四)、计算棱镜 (8) (五)、像差计算 (9) (六)、建立数据文件 (15)

一、望远镜系统的原理 亥普勒望远镜的原理示意如下图1所示: 图 1 图中可见亥普勒望远镜是由正光焦度的物镜与正光焦度的目镜构成,与显微镜不同的是望远镜的光学间隔为0,平行光入射平行光射出。其系统的视觉放大倍率为: '//D D f f e o -=''-=Γ 式中,0f '为物镜的焦距;e f '为目镜的焦距;D 为入瞳直径;'D 为出瞳直径。在此成像过程中,有一个实像面位于分划面上,可以实现相应的瞄准或测量。 由于亥普勒望远镜成倒像不利于观察,故而需在系统中加入一个由透镜或棱镜构成的转像系统。军用望远镜的转像系统多是用两个互相垂直放置的 180-II D 棱镜(即保罗棱镜)组成。 伽利略望远镜是由正光焦度的物镜和负光焦度的目镜组成,其视觉放大率大于1,形成的是正立的像,无需加转像系统,也无法安装分划板,应用较少。 二、课程设计的内容及要求 1、根据已知的一些技术要求,进行外型尺寸计算; 1)目镜的选取及计算; 2)物镜的结构型式及外型尺寸计算; 3)分划板的外型尺寸计算; 4)棱镜的类型选取及外型尺寸计算; 2、像差计算 1)求取棱镜的初级像差; 2)求取物镜的初级像差; 3)根据物镜的像差求出双胶合物镜的结构参数。

Φ200道布森反射式望远镜的设计与制作

Φ200道布森反射式望远镜的设计与制作 20CM反射望远镜可以说是目视天文观测的一种标准配置,国内外很多知名的爱好者都拥有这种望远镜,他们用这种望远镜进行了许多卓有成效的观测。多年以前河南开封的张大庆先生就给我磨制了一块Φ200抛物面反射镜(焦距107CM),但由于种种原因我一直没能动手制作。 同好会的寇文也有同样口径和焦距的一面反射镜,他的望远镜已经快完工了。北京另一位天文同好何景阳先生还热情地帮我做了一个铝质镜筒,我想现在该是动手的时候了。 我计划99年上半年制作一个道布森式的反射望远镜,下半年逐步完善它,同时作为一种尝试,为它加装两个步进电机,实现计算机自动控制。 我将把我的每一个设想、每一步实践放在这个网页上,如果你有兴趣,可以与我分享制镜的快乐,如果你有更好的方法,欢迎与我联系。 现在我手头的主要配件如下:

?抛物面反射镜(主镜):焦距1075mm,直径198mm,厚20mm ?小平面反射镜(副镜):短边直径35mm,厚12mm ?铝质镜筒:内直径229mm,长度1000mm,壁厚1.5mm ?目镜:接口31.7mm 各种类型的牛顿式反射望远镜,其光学结构都是一样的(见上图),这里就不再罗嗦了。装配望远镜的镜身首先要解决三大问题: ?物镜的安装 ?目镜调焦座的安装 ?副镜的安装 在牛顿式反射望远镜中,镜筒的内径一般比物镜直径大20~30mm,以方便物镜的安装和调节;另外镜筒的长度一般至少应等于物镜的焦距长度,这样目镜开口离镜筒端面有一定距离,可以避免杂散光的干扰,而且主镜焦点伸出镜筒不会太长,否则除非副镜尺寸足够大,当用广角目镜观测时,视场边缘肯定会有光线损失。(然而我的物镜焦距和主镜筒长度并不能满足这个要求。改变物镜焦距显然是不可能的,而加长镜筒长度难度也很大,外观也不好看。所以设计时要着重考虑这个问题,必要时得在某方面作出牺牲。) 只有当主镜的光轴和目镜的光轴完全重合时,望远镜才能达到最好的成像效果。然而即使在家仔细调整好光轴,经过长时间使用或长途运输后,光轴仍可能会歪,所以装配镜身时,主镜的指向、副镜的位置和指向以及目镜的指最好都是可以调节的。这一点在整个望远镜的设计和制作过程中不能忘记。

光学课程设计 ——望远镜系统

望远镜系统结构设计 指导教师: 张 翔 专 业:光信息科学与技术 班 级:光信息08级1班 姓 名: 学 号: 20080320 光学课程设计

目录 第一部分设计背景 (1) 第二部分设计目的及意义 (1) 第三部分望远镜介绍 (1) 3.1望远镜定义 (1) 3.2望远镜分类及相应工作原理 (2) 第四部分望远镜系统设计 (3) 4.1开普勒望远镜 (3) 4.2望远镜系统常用参数 (4) 4.3外形尺寸计算 (6) 4.4伽利略望远镜 (8) 4.5物镜组的选取 (9) 4.6望远镜像差类型及主要结构 (10) 4.7双胶物镜与双分离物镜分析 (12) 4.8内调焦望远物镜分析 (14) 4.9目镜组的选取 (14) 4.10目镜主要像差及分析 (17) 4.11棱镜转像系统 (17) 4.12转折形式望远镜系统 (18) 4.13光学系统初始结构参数计算方法 (18) 4.14应用光学系统中的光栅 (20) 第五部分设计总结 (21) 第六部分参考文献 (21)

一.设计背景 在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部分的大口径光电系统的应用越来越广泛。如:天文、空间望远镜;地基空间目标探测与识别;激光大气传输、惯性约束聚变装置等等。 其中我国以高功率激光科研和激光核聚变研究为目的的光电系统——“神光二号”,颇具代表。“神光二号”对于未来的能源危机和我国的军事领域有着重要意义。 二.设计目的及意义 运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜外形尺寸、 物镜组、目镜组及转像系统的简易或远离设计。了解光学设计中的PW法基本原理。 三.望远镜介绍 3.1 望远镜定义 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。根据望远镜原理一般分为三种。一种通过收集电磁波来观察遥远物体的仪器。在日常生活中,望远镜主要指光学望远镜。但是在现代天文学中,天文望远镜包括了射电望远镜,红外望远镜,X射线和伽吗射线望远镜。近年来天文望远镜的概念又进一步地延伸到了引力波,宇宙射线和暗物质的领域。或者再经过一个放大目镜进行观察。日常生活中的光学望远镜又称“千里镜”。它主要包括业余天文望远镜,观剧望远镜和军用双筒望远镜。 【望远镜基本工作示意图】

光学课程设计望远镜系统结构设计

光学课程设计 ——望远镜系统结构设计 姓名: 学号: 班级: 指导老师:

一、设计题目:光学课程设计 二、设计目的: 运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。了解光学设计中的PW法基本原理。 三、设计原理: 光学望远镜是最常用的助视光学仪器,常被组合在其它光学仪器中。为了观察远处的物体,所用的光学仪器就是望远镜,望远镜的光学系统简称望远系统. 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统.其系统由物镜和目镜组成,当观察远处物体时,物镜的像方焦距和目镜的物方焦距重合,光学间距为零.在观察有限远的物体时,其光学间距是一个不为零的小数量,一般情况下,可以认为望远镜是由光学间距为零的物镜和目镜组成的无焦系统. 常见望远镜按结构可简单分为伽利略望远镜,开普勒望远镜,和牛顿式望远镜。常见的望远镜大多是开普勒结构,既目镜和物镜都是凸透镜(组),这种望远镜结构导致成像是倒立的,所以在中间还有正像系统。 物镜组(入瞳)目镜组 视场光阑出瞳 1 '1ω 2 '2'ω3 'f物—f目'l z '3 上图为开普勒式望远镜,折射式望远镜的一种。物镜组也为凸透镜形式,但目镜组是凸

透镜形式。为了成正立的像,采用这种设计的某些折射式望远镜,特别是多数双筒望远镜在光路中增加了转像稜镜系统。此外,几乎所有的折射式天文望远镜的光学系统为开普勒式。 伽利略望远镜是以会聚透镜作为物镜、发散透镜作为目镜的望远镜(会聚透镜的焦距要大于发散透镜的焦距),当远处的物体通远物镜(u>2f )在物镜后面成一个倒立缩小的实像,而这个象一个要让它成现在发散透镜(目镜)的后面即靠近眼睛这一边,当光线通过发散透镜时,人就能看到一个正立缩小的虚象。伽利略望远镜的优点是结构紧凑,筒长较短,较为轻便,光能损失少,并且使物体呈正立的像,这是作为普通观察仪器所必需的。其原理图如下: 物镜组 目镜组 出瞳 '1 F F 2 f 2 d '1 f 伽利略望远镜示意图 为了更好的了解望远镜,下面介绍放大镜的各种放大率: 望远镜垂轴放大率:代表共轭面像高和物高之比。计算公式如下 1 '2 'f f -=β 望远镜角放大率:望远镜共轭面的轴上点发出的光线通过系统后,与光轴夹角的正切之比。计算公式如下: 2 '1'f f -=γ 望远镜轴向放大率:当物平面沿着光轴移动微小距离dx 时,像平面相应地移动距离dx',

双高斯物镜的设计

双高斯物镜的ZENAX优化设计 《光学课程设计》 " :

目录 一、介绍 .................................................... - 3 - 二、用初级像差理论确定初始结构.............................. - 4 - 三、用ZEMAX优化............................................ - 9 - 四、结论 .................................................. - 16 -! 五、心得体会 ............................................... - 16 -参考文献 ................................................... - 18 - 》 }

一、介绍 双高斯物镜是一种中等视场大孔径的摄影物镜。双高斯物镜是以厚透镜矫正匹兹万场曲的光学结构,半部系统是由一个弯月形的透镜和一个薄透镜组成,如图1所示。 ; 图 1 双高斯物镜 由于双高斯物镜是一个对称的系统,因此垂轴像差很容易校正。设计这种类型的系统时,只需要考虑球差、色差、场曲、像散的校正。在双高斯物镜中依靠厚透镜的结构变化可以校正场曲ⅣS ,利用薄透镜的弯曲可以校正球差ⅠS ,改变两块厚透镜之间的距离可以校正像散ⅢS ,在厚透镜中引入一个胶合面可以校正色差ⅠC 。双高斯物镜的半部系统可以看作是由厚透镜演变而来,一块校正了匹兹万场曲的厚透镜是弯月形的,两个球面的半径相等。在厚透镜的背后加上一块正、负透镜组成的无光焦度薄透镜组,对整个光焦度的分配和像差分布没有明显的影响,然后把靠近厚透镜的负透镜分离出来,且与厚透镜合为一体,这样就组成了一个两球面半径不等的厚透镜和一个正光焦度的薄透镜的双高斯物镜半部系统。这个半部系统回来了承受无限远物体的光线时,可用薄透镜的弯曲校正其球差。由于从厚透镜射出的轴上光线近似平行与光轴,因此薄透镜越向后弯曲,越接近与平凸透镜,其上产生的球差及高级量越小。但是,该透镜上的轴外光线的入射状态变坏,随着透镜向后弯曲,轴外光线的入射角增大,于是产生了较大的像散。为了平衡

光学设计实验(一)望远镜系统设计实验

光学设计实验(一) 望远镜系统设计实验 1 实验目的 (1)通过设计实验,加深对已学几何光学、像差理论及光学设计基本知识、一般手段的理解,并能初步运用; (2)介绍光学设计ZEMAX 的基本使用方法,设计实验通过ZEMAX 来实现 2 设计要求 (1) 设计一个8倍开普勒望远镜的目镜,焦距f’=25mm ,出瞳直径D ’=4mm ,出瞳距>22mm ,视场角2ω’=25?;考虑与物镜的像差补偿,目镜承担轴外像差的校正,物镜承担轴上像差的校正。(总分:30分) (2)设计一个8倍开普勒望远镜的物镜,其焦距、相对孔径D/f ’、视场角、像差补偿要求根据设计(1)的要求来确定,要求给出计算过程。(总分:30分) (3)将上述物镜与目镜组合成开普勒望远镜,要求望远镜的出射光束角像差小约3’左右。如不符合要求,可结合ZEMAX 中paraxial 理想光学面,通过控制视觉放大倍率和组合焦距为无限大(如f ’>100000)等手段。(总分:30分) (4)回答和分析设计中的相关问题(总分:10分) 所有设计中采用可见光(F ,d ,C )波段。 问题1:望远光学系统和开普勒望远镜的特点 问题2:目镜的光学特性和像差特点 问题3:常用的目镜有哪些?常用的折射式望远物镜有哪些? 问题4:望远镜系统所需要校正的主要像差有那些? 提示:目镜采用反向光路设计,目镜包括视场光阑,注意目镜孔径光阑的设置。 判定出射光束角像差小约3’左右的方法:在像面前插入一个paraxial 类型的面,若该面焦距(即与像面之间的距离)为1000mm ,则Spot diagram 的Geo Radius 则应小1mm 。 m 91512.5 COS 343831000COS 34383 22'μω=??=??≤f R 3 设计流程

光学课程设计望远镜系统结构参数设计

光学课程设计 ——望远镜系统结构参数设计

一设计背景:在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部分的大口径光电系统的应用越来越广泛。如:天文、空间望远镜;地基空间目标探测及识别;激光大气传输、惯性约束聚变装置等等…… 二设计目的及意义 (1)、熟悉光学系统的设计原理及方法; (2)、综合应用所学的光学知识,对基本外形尺寸计算,主要考虑像质或相差;

(3)、了解和熟悉开普勒望远镜和伽利略望远镜的基本结构及原理,根据所学的光学知识(高斯公式、牛顿公式等)对望远镜的外型尺寸进行基本计算; (4)、通过本次光学课程设计,认识和学习各种光学仪器(显微镜、潜望镜等)的基本测试步骤; 三设计任务 在运用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。并介绍光学设计中的PW法基本原理。同时对光学系统中存在的像差进行分析。四望远镜的介绍 1.望远镜系统:望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。2.望远镜的一般特性 望远镜的光学系统简称望远系统,是由物镜和目镜组成。当用在观测无限远物体时, 物镜的像方焦点和目镜的物方焦点重合,光学间隔d=o。当月在观测有限距离的物体时, 两系统的光学问隔是一个不为零的小数量。作为一般的研究,可以认

双筒棱镜望远镜设计

汉口学院 《应用光学》 课程设计报告 报告题目:双筒棱镜望远镜设计学生姓名: 学号: 专业班级: 授课老师:

二O一四年十一月 双筒棱镜望远镜设计 设计任务与要求 双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为: 1、望远镜的放大率Γ=6倍; 2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D= 30mm); 3、望远镜的视场角2ω=8°; 4、仪器总长度在110mm左右,视场边缘允许50%的渐晕; 5、棱镜最后一面到分划板的距离>=14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。 6、lz ′>8~10mm 目录 一、外形尺寸计算 二、初始结构的选型 三、物镜初始结构参数的计算 四、物镜zemax的初始上机数据及像差图示

五、物镜zemax 的校正数据及像差图示 设计步骤 一、 外形尺寸计算 已知望远镜参数: Γ=6,入瞳直径30D mm =,相对孔径 ' 1:4D f =,2ω=8°,L=110mm ; 视场边缘允许50%的渐晕; 棱镜最后一面到分划板的距离>=14mm 1、求1'f ,2'f 物镜焦距'14120f D mm =?= 目镜焦距''12 120 206 f f mm == =Γ 2、求'D 出瞳直径'5D D mm = =Γ 3、求视场直径 16.7824mm =tan4f 2=D '1 ??视 4、求目镜视场 5.452tan =tan ''=?Γωωω 2ω

该望远系统采用普罗I型棱镜转像,普罗I型棱镜如下图: 将普罗I型棱镜展开,等效为两块平板,如下图: 无渐晕时候,,现在有25%的渐目镜口径D 目 晕,所以 由设计要求:视场边缘允许50%的渐晕,可利用分划板拦去透镜下部25%的光,利用平板拦去透镜上部的25%的光,这样仅有透镜中间的50%的光能通过望远系统,使像质较好。

双高斯物镜的设计

前言 双高斯物镜是一种中等视场大孔径的摄影物镜。双高斯物镜是以厚透镜矫正匹兹万场曲的光学结构,半部系统是由一个弯月形的透镜和一个薄透镜组成,如图1所示。 图 1 双高斯物镜 由于双高斯物镜是一个对称的系统,因此垂轴像差很容易校正。设计这种类型的系统时,只需要考虑球差、色差、场曲、像散的校正。在双高斯物镜中依靠厚透镜的结构变化可以校正场曲ⅣS ,利用薄透镜的弯曲可以校正球差ⅠS ,改变两块厚透镜之间的距离可以校正像散ⅢS ,在厚透镜中引入一个胶合面可以校正色差ⅠC 。双高斯物镜的半部系统可以看作是由厚透镜演变而来,一块校正了匹兹万场曲的厚透镜是弯月形的,两个球面的半径相等。在厚透镜的背后加上一块正、负透镜组成的无光焦度薄透镜组,对整个光焦度的分配和像差分布没有明显的影响,然后把靠近厚透镜的负透镜分离出来,且与厚透镜合为一体,这样就组成了一个两球面半径不等的厚透镜和一个正光焦度的薄透镜的双高斯物镜半部系统。 二、用初级像差理论确定初始结构 1、半部系统的规划 半部系统如图2所示,计算时把焦距规化为1,同时取规化条件 。,,101111==-=h u u z 2、以厚透镜校正ⅣS

考虑到对高级像散的平衡,取07.0-=ⅣS 。按相对孔径需要选15.0=d 。玻璃可取BaF7和ZK8的组合。由式子 ()() ??? ? ?? ? =-= =-=--b d nS n a n nS n c c c c c c 12212111ⅣⅣρρρρ 可得 549 .5729.5766026 .31184006.021-=-==-=c c b a ρρ,, 3、加无光焦度双薄透镜校正ⅠS 取3.1=-==b a ψψψ(实践表明取值在1.2到1.5之间为好)。 (1) 求c S u Ⅰ、2。 () ()()()[] 52.17311719.21 22223 22 1 21=---+=-=-= -u u n du u n S nr n u n c Ⅰ (2) 求个面曲率半径 由式子 ?? ???--==11221n b b b c b ψρρρρ,???==a a a a a a ψρρψρρ2211 及式子 ??? ?? ??????== ==2413221 11111a a b c r r r r ρ ρρρ

望远镜的光学系统分类及常见类型

望远镜的光学系统分类及常见类型 本篇来自云南北方光学网站 望远镜的光学系统,广义上基本上分为折射式,反射式,折反射式,运动望远镜几乎都是折射式,天文望远镜则各种系统都很常见。 在实际应用中,由于运动望远镜几乎都是折射式望远镜,并且为了有效降低系统长度和便于携带,大多数运动望远镜都有棱镜系统,按照国际流行的分类方法,运动望远镜的实际分类是按照棱镜系统划分,而天文望远镜,观察镜则按照广义的光学系统分类。 本站望远镜的光学系统沿用目前国际流行的分类方法,共分为六种典型结构: 折射式 普罗棱镜式 屋脊棱镜式 复合棱镜式 牛顿反射式 折反射式 以下是各种光学系统原理及特点的简单解释: 一、运动望远镜的光学系统 运动望远镜几乎都是折射式,除了某些特殊产品,为了有效降低系统长度和便于携带,大多数运动望远镜都有棱镜系统,较常见的有屋脊,普罗棱镜。 屋脊望远镜 采用屋脊棱镜,优点是体积紧凑,便于日常携带使用,缺点是棱镜形状复杂,成本较高。 屋脊望远镜优点: ●重量轻,体积紧凑,便于日常携带使用 ●外形美观

屋脊望远镜缺点 ●棱镜复杂,加工成本高,同等口径价格高 ●大口径规格体积优势不再明显 普罗望远镜 采用直角棱镜,优点是棱镜简单,较低成本即可达到较佳效果,缺点是体积相对比较大。 普罗望远镜优点: ●结构简单,成本低 ●同等价格一般光学性能较好 普罗望远镜缺点 ●同等口径产品体积重量相对屋脊大 ●体积不能做得很小 二、天文望远镜的光学系统 折射望远镜 折射望远镜采用透镜作为主镜,光线通过镜头和镜筒折射汇聚于一点,称为"焦平面"。 长期以来,折射望远镜的薄壁长管结构外观,和百年前伽利略时代无太大区别,但现代的优质光学玻璃、多层镀膜技术使您可以体会伽利略从未梦想过的精彩天空。 对于希望简便的机械设计、高可靠性、方便使用的人来说,折射式望远镜是很受欢迎的设计。 因为焦距由镜管的长度决定,通常超过4英寸口径的折射望远镜将变的非常笨重和昂贵,这在一定程度上限制了折射望远镜的经济口径,但对于更喜欢操作的易用性和通用性的初学者,折射望远镜仍然是是一个很好的选择。 因为具有宽广的视野,高对比度和良好的清晰度,折射望远镜同时也是受欢迎的热门选择。 折射望远镜优点: ●易于设置和使用 ●简单和可靠的设计 ●很少或不需要维护 ●观测月球、行星、双星表现出色,尤其是较大口径的产品 ●易于地面观景 ●不需要第二反射镜或中心遮挡,具有高对比度 ●具有较好的消色差设计,和极好的APO高消色差、萤石设计规格

款照相物镜设计

华侨大学厦门工学院光学软件设计课程设计报告 题目:一款照相物镜设计 专业、班级: 13级光电2班 学生姓名:周观后 学号: 130250202 指导教师:苏倩倩 分数 :

《课程设计》任务书 课程名称:光学软件课程设计 指导教师:苏倩倩

目录 一、照相物镜简介................................ 错误!未定义书签。

二、确定初始结构 (8) 三、用ZEMAX优化 (11) 四、结论....................................... 错误!未定义书签。 五、心得体会.................................... 错误!未定义书签。 六、参考文献.................................... 错误!未定义书签。

一、照相物镜简介 照相物镜的基本光学性能主要由三个参数表征。即焦距f ’、相对孔径D/f ’和视场角2w 。照相物镜的焦距决定所成像的大小 Ⅰ)当物体处于有限远时,像高为 y ’=(1-ωβtan ')f (1-1) 式中,β为垂轴放大率,l l y y ' '== β。对一般的照相机来说,物距l 都比较大,一般l >1米,f ’为几十毫米,因此像平面靠近焦面,''f l ≈,所以 l f '= β Ⅱ)当物体处于无限远时,β→∞像高为 ωtan 'f (1-2) 因此半视场角

ω=atan ' ' f y (1-3) 表1-1中列出了照相物镜的焦距标准: 表1-1 相对孔径决定其受衍射限制的最高分辨率和像面光照度,在此的分辨率亦即通常所说的截止频N λ λ u f D N == (1-4) 照相物镜中只有很少几种如微缩物镜和制版物镜追求高分辨率,多数照相物镜因其本身的分辨率不高,相对孔径的作用是为了提高像面光照度 E ’=1/4πL τ(D/f ’)2 (1-5) 照相物镜的视场角决定其在接受器上成清晰像的空间范围。按视场角的大小,照相物镜又分为 a )小视场物镜:视场角在30°以下; b )中视场物镜:视场角在30°~60°之间; c )广角物镜:视场角在60°~90°之间; d )超广角物镜:视场角在90°以上。 照相物镜按其相对孔径的大小,大致分为 a )弱光物镜:相对孔径小于1:9;

光学设计实验望远镜系统设计实验

光学设计实验报告——望远镜系统设计 姓名:任定伟 学号:B09010312 班级:B090103

目录 一、ZEMAX仿真 二、设计优化 三、数据比较和优化后参数 四、公差分析 五、光学系统图 六、设计心得体会

一ZEMAX仿真 一、本次设计要求如下: 1.焦距为100mm; 2.光源为无穷远处; 3.像空间F/﹟=4,相对孔径1/4 4.前一块玻璃为BAK1,后一块玻璃为F2 5.全视场角为8度 先打开ZEMAX软件,根据设计要求修改系统设定,包括系统孔径,镜头单位,视场,和波长。 望远镜物镜要求校正的像差主要是轴向色差、球差、慧差。 根据要求采用的是折射式望远双胶合型 (1)修改系统设定。 首先,根据要求的设计参数计算物方孔径EPD。提供的有效焦距efl为100mm,像空间F/﹟=4。 由公式,得物方孔径EPD约等于25。 在ZEMAX主菜单软件中,选择系统>通用配置,在弹出的对话框中,选择图象空间F/#,数值选择4。

(2)视场设定。 在ZEMAX主菜单软件中,选择系统>视场,在弹出的对话框中,视场类型选择角度,并输入三组视场数据,(0,8), (0, 2.8)和 (0,4)。 第三步,波长设定。 在ZEMAX主菜单软件中,选择系统>波长,在弹出的对话框中,单击选择完成配置,然后单击确定。

系统配置完毕,即可在LDE中输入数据。 选择分析>草图>2D草图,将出现2D草图LAYOUT。 第二部分设计优化 从2D草图可以看出,镜头的性能参数并非最优。 选择编辑——》优化函数,反复进行修改权重,直到mtf达到最优。

选择工具 > 优化 > 优化在弹出的窗口中执行最终优化 当优化开始时,ZEMAX 首先更新系统的评价函数。第四部分:数据比较与优化后参数 优化后2D草图:

望远镜的光学系统分类及常见类型

望远镜的光学系统分类及常见类型 望远镜的光学系统,广义上基本上分为折射式,反射式,折反射式,运动望远镜几乎都是折射式,天文望远镜则各种系统都很常见。 在实际应用中,由于运动望远镜几乎都是折射式望远镜,并且为了有效降低系统长度和便于携带,大多数运动望远镜都有棱镜系统,按照国际流行的分类方法,运动望远镜的实际分类是按照棱镜系统划分,而天文望远镜,观察镜则按照广义的光学系统分类。 本站望远镜的光学系统沿用目前国际流行的分类方法,共分为六种典型结构: 折射式 普罗棱镜式 屋脊棱镜式 复合棱镜式 牛顿反射式 折反射式 以下是各种光学系统原理及特点的简单解释: 一、运动望远镜的光学系统 运动望远镜几乎都是折射式,除了某些特殊产品,为了有效降低系统长度和便于携带,大多数运动望远镜都有棱镜系统,较常见的有屋脊,普罗棱镜。 屋脊望远镜

采用屋脊棱镜,优点是体积紧凑,便于日常携带使用,缺点是棱镜形状复杂,成本较高。屋脊望远镜优点: ●重量轻,体积紧凑,便于日常携带使用 ●外形美观 屋脊望远镜缺点 ●棱镜复杂,加工成本高,同等口径价格高 ●大口径规格体积优势不再明显 ----------------------------------------------------- 普罗望远镜 采用直角棱镜,优点是棱镜简单,较低成本即可达到较佳效果,缺点是体积相对比较大。普罗望远镜优点: ●结构简单,成本低 ●同等价格一般光学性能较好 普罗望远镜缺点 ●同等口径产品体积重量相对屋脊大 ●体积不能做得很小 二、天文望远镜的光学系统 折射望远镜

折射望远镜采用透镜作为主镜,光线通过镜头和镜筒折射汇聚于一点,称为"焦平面"。 长期以来,折射望远镜的薄壁长管结构外观,和百年前伽利略时代无太大区别,但现代的优质光学玻璃、多层镀膜技术使您可以体会伽利略从未梦想过的精彩天空。 对于希望简便的机械设计、高可靠性、方便使用的人来说,折射式望远镜是很受欢迎的设计。因为焦距由镜管的长度决定,通常超过4英寸口径的折射望远镜将变的非常笨重和昂贵,这在一定程度上限制了折射望远镜的经济口径,但对于更喜欢操作的易用性和通用性的初学者,折射望远镜仍然是是一个很好的选择。 因为具有宽广的视野,高对比度和良好的清晰度,折射望远镜同时也是受欢迎的热门选择。折射望远镜优点: ●易于设置和使用 ●简单和可靠的设计 ●很少或不需要维护 ●观测月球、行星、双星表现出色,尤其是较大口径的产品 ●易于地面观景 ●不需要第二反射镜或中心遮挡,具有高对比度 ●具有较好的消色差设计,和极好的APO高消色差、萤石设计规格 ●密封的镜筒避免了空气扰动图像并保护光学镜片 ●物镜永久固定式安装,无需校正 折射望远镜缺点 ●大口径规格比较昂贵 ●较重,长度和体积比同等口径和焦距的牛顿反射或折反望远镜更大 ●增大口径的成本因素限制了商业产品的最大尺寸,经济的设计大多为中小口径产品 ●存在一些色彩畸变(消色差双胶合透镜) ----------------------------------------------------- 牛顿反射望远镜

望远镜设计计算指导和双胶合物镜设计

《应用光学》课程设计—望远镜设计计算指 导 说明: 1、本指导将全面介绍带有普罗I型转像棱镜系统的望远镜设计过程以及计算,作为《应用光学》课程设计的实习范例。实验报告需在此基础上完善和修改,严禁全盘抄袭本指导,否则作0分处理! 2、本指导省略了理论分析部分,计算依据请参考有关资料。 题目:双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计) 要求: 双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为: 1、望远镜的放大率Γ=6倍; 2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D =30mm); 3、望远镜的视场角2ω=8°; 4、仪器总长度在110mm左右,视场边缘允许50%的渐晕;

5、棱镜最后一面到分划板的距离 14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。 6、lz′=8~10mm 我们的工作将按照以下步骤进行: 1、系统外形尺寸的计算:根据需求确定像差,选型; 2、使用PW法进行初始结构的计算:确定系统的r、 d、n; 3、像差的校正:通过修改r、d、n,调整像差至容限之内; 4、进行像质评价,总结数据图表,完成设计。

第一部分:外形尺寸计算 一、各类尺寸计算 1、计算'f o 和'f e 由技术要求有:1 '4 o D f = ,又30D mm =,所以'120o f mm =。 又放大率Γ=6 倍,所以''206o e f f mm ==。 2、计算D 出 30 3056 D D D mm =∴= = =Γ 物出物 3、计算D 视场 2'2120416.7824o o D f tg tg mm ω==??=视场 4、计算'ω(目镜视场) ''45o tg tg ωωωΓ?=?≈ 5、计算棱镜通光口径D 棱 (将棱镜展开为平行平板,理论略) 问题:如何考虑渐晕? 我们还是采取50%渐晕,但是拦掉哪一部分光呢? 拦掉下半部分光对成像质量没有改善(对称结构,只能使光能减少),所以我们选择上下边缘各拦掉25%的光,保留中间的50%。即保留中间像质好的,去掉边缘像质不好的。 下半的25%由目镜拦掉,上半的25%由棱镜拦掉,只留下中间的50%。 如图:

相关主题
文本预览
相关文档 最新文档