当前位置:文档之家› Dynamics of vortex and magnetic lines in ideal hydrodynamics and MHD

Dynamics of vortex and magnetic lines in ideal hydrodynamics and MHD

Dynamics of vortex and magnetic lines in ideal hydrodynamics and MHD
Dynamics of vortex and magnetic lines in ideal hydrodynamics and MHD

a r

X

i

v

:c h

a

o

-d

y

n

/9

9

4

1

5

v

1

8

A

p

r

1

9

9

9

Dynamics of vortex and magnetic lines in ideal hydrodynamics and MHD E.A.Kuznetsov ?and V.P.Ruban ?Landau Institute for Theoretical Physics 2Kosygin str.,117334Moscow,Russia Abstract Vortex line and magnetic line representations are introduced for description of ?ows in ideal hydrodynamics and MHD,respectively.For incompressible ?uids it is shown that the equations of motion for vorticity ?and magnetic ?eld with the help of this transformation follow from the variational principle.By means of this representation it is possible to integrate the system of hydrodynamic type with the Hamiltonian H = |?|d r .It is also demonstrated that these representations allow to remove from the noncanonical Poisson brackets,de?ned on the space of divergence-free vector ?elds,degeneracy connected with the vorticity frozenness for the Euler equation and with magnetic ?eld frozenness for ideal MHD.For MHD a new Weber type transformation is found.It is shown how this transformation can be obtained from the two-?uid model when electrons and ions can be considered as two independent ?uids.The Weber type transformation for ideal MHD gives the whole Lagrangian vector invariant.When this invariant is absent this transforma-tion coincides with the Clebsch representation analog introduced by Zakharov and Kuznetsov.

1Introduction

There are a large number of works devoted to the Hamiltonian description of the ideal hydrodynamics (see,for instance,the review [2]and the references therein).This

ques-tion

was ?rst studied by Clebsch (a citation can be found in Ref.[3]),who introduced for nonpotential ?ows of incompressible ?uids a pair of variables λand μ(which later were called as the Clebsch variables).A ?uid dynamics in these variables is such that vortex lines represent themselves intersection of surfaces λ=const and μ=const and these quantities,being canonical conjugated variables,remain constant by ?uid advection.However,these variables,as known (see,i.e.,[4])describe only partial type of ?ows.If λand μare single-valued functions of coordinates then the linking degree of vortex lines characterizing by the Hopf invariant [5]occurs to be equal to zero.For arbitrary ?ows the Hamiltonian formulation of the equation for incompressible ideal hydrodynamics was given by V.I.Arnold [6,7].The Euler equations for the velocity curl ?=curl v

??

?t

={?,H},(1.2)by means of the noncanonical Poisson brackets [4]

{F,G }=

? curl δF δ? d r (1.3)

where the Hamiltonian

H h =?14πρ

[curl h ×h ],(1.6)

h t=curl[v×h].(1.7) Hereρis a plasma density,w(ρ)plasma entalpy,v and h are velocity and magnetic?elds, respectively.As well known(see,for instance,[9]-[13]),the MHD equations possesses one important feature–frozenness of magnetic?eld into plasma which is destroyed only due to dissipation(by?nite conductivity).For ideal MHD combination of the continuity equation(1.5)and the induction equation(1.7)gives the analog of the Cauchy invariant for MHD.

The MHD equations of motion(1.5-1.7)can be also represented in the Hamiltonian form,

ρt={ρ,H}h t={h,H},v t={v,H},(1.8) by means of the noncanonical Poisson brackets[14]:

{F,G}= hδh×δGδh×δF

ρ

· δFδv d3r+ δGδv ?δFδv d3r. This bracket is also degenerated.For instance,the integral (v,h)d r,which characterizes mutual linkage knottiness of vortex and magnetic lines,is one of the Casimirs for this bracket.

The analog of the Clebsch representation in MHD serves a change of variables sug-gested in1970by Zakharov and Kuznetsov[1]:

v=?φ+

[h×curl S]

2+ρε(ρ)+

h

2

This approach allows also simply enough to consider the limit of narrow vortex(or magnetic)lines.For two-dimensional?ows in hydrodynamics this”new”description corresponds to the well-known fact,namely,to the canonical conjugation of x and y coordinates of vortices(see,for instance,[3]).

The Hamiltonian structure introduced makes it possible to integrate the three-dimen-sional Euler equation(1.2)with Hamiltonian H= |?|d r.In terms of the vortex lines the given Hamiltonian is decomposed into a set of Hamiltonians of noninteracting vortex lines.The dynamics of each vortex lines is,in turn,described by the equation of a vortex induction which can be reduced by the Hasimoto transformation[15]to the integrable one-dimensional nonlinear Schrodinger equation.

For ideal MHD a new representation-analog of the Weber transformation-is found. This representation contains the whole vector Lagrangian invariant.In the case of ideal hydrodynamics this invariant provides conservation of the Cauchy invariant and,as a sequence,all known conservation laws for vorticity(for details see the review[2]).It is important that all these conservation laws can be expressed in terms of observable variables.Unlike the Euler equation,these vector Lagrangian invariants for the MHD case can not be expressed in terms of density,velocity and magnetic?eld.It is necessary to tell that the analog of the Weber transformation for MHD includes the change of variables(1.10)as a partial case.The presence of these Lagrangian invariants in the transform provides topologically nontrivial MHD?ows.

The Weber transform and its analog for MHD play a key role in constructing the vortex line(or magnetic line)representation.This representation is based on the property of frozenness.Just therefore by means of such transform the noncanonical Poisson brackets become non-degenerated in these variables and,as a result,the variational principle may be formulated.Another peculiarity of this representation is its locality,establishing the correspondence between vortex(or magnetic)line and vorticity(or magnetic?eld).This is a speci?c mapping,mixed Lagrangian-Eulerian,for which Jacobian of the mapping can not be equal to unity for incompressible?uids as it is for pure Lagrangian description.

2General remarks

We start our consideration from some well known facts,namely,from the Lagrangian description of the ideal hydrodynamics.

In the Eulerian description for barotropic?uids,pressure p=p(ρ),we have coupled equations-discontinuity equation for densityρand the Euler equation for velocity:

ρt+divρv=0,(2.1)

v t+(v?)v=??w(ρ),dw(ρ)=dp/ρ.(2.2) In the Lagrangian description each?uid particle has its own label.This is three-dimen-sional vector a,so that particle position at time t is given by the function

x=x(a,t).(2.3) Usually initial position of particle serves the Lagrangian marker:a=x(a,0).

In the Lagrangian description the Euler equation(2.2)is nothing more than the New-ton equation:

¨x=??w.

In this equation the second derivative with respect to time t is taken for?xed a,but the r.h.s.of the equation is a function of t and x.Excluding from the latter the x-dependence, the Euler equation takes the form:

¨x i ?x i

?a k

,(2.4)

where now all quantities are functions of t and a.

In the Lagrangian description the continuity equation(2.1)is easily integrated and the density is given through the Jacobian of the mapping(2.3)J=det(?x i/?a k):

ρ=

ρ0(a)

?a k

v i,(2.6)

which has a meaning of velocity in a new curvilinear system of coordinates or it is possible to say that this formula de?nes the transformation law for velocity components.It is worth noting that(2.6)gives the transform for the velocity v as a co-vector.

The straightforward calculation gives that the vector u satis?es the equation

du k

?a k v2

dt curl a u=0,(2.8)

or

curl a u=I.(2.9) If Lagrangian markers a are initial positions of?uid particles then the Cauchy invari-ant coincides with the initial vorticity:I=?0(a).This invariant is expressed through instantaneous value of?(x,t)by the relation

?0(a)=J(?(x,t)?)a(x,t)(2.10)

where a=a(x,t)is inverse mapping to(2.3).Following from(2.10)relation for B=?/ρ,

B0i(a)=

?a i

By integrating the equation(2.7)over time t we arrive at the so-called Weber trans-formation

u(a,t)=u0(a)+?aΦ,(2.11) where the potentialΦobeys the Bernoulli equation:

2

?w(ρ)(2.12)

with the initial condition:Φ|t=0=0.For such choice ofΦa new function u0(a)is connected with the”transverse”part of u by the evident relation

curl a u0(a)=I.

The Cauchy invariant I characterizes the vorticity frozenness into?uid.It can be got by standard way considering two equations-the equation for the quantity B=?/ρ,

d B

dt

=(δx?)v,(2.14) The comparison of these two equations shows that if initially the vectorsδx are parallel to the vector B,then they will be parallel to each other all time.This is nothing more than the statement of the vorticity frozenness into?uid.Each?uid particle remains all the time at its own vortex line.The combination of Eqs.(2.13)and(2.14)leads to the Cauchy invariant.To establish this fact it is enough to write down the equation for the Jacoby matrix J ij=?x i/?a j which directly follows from(2.14):

d

?x k =?

?a i

?x k

,

that in combination with Eq.(2.13)gives conservation of the Cauchy invariant(2.9).

If now one comes back to the velocity?eld v then by use of Eqs.(2.6)and(2.11)one can get that

v=u0k?a k+?Φ(2.15) where gradient is taken with respect to x.Here the equation for potentialΦhas the standard form of the Bernoulli equation:

Φt+(v?)Φ?

v2

is the potentialΦ.For incompressible?uids the latter is determined from the condition div v=0.In this case the Bernoulli equation serves for determination of the pressure.

Another important moment connected with the Cauchy invariant is that it follows from the variational principle(written in terms of Lagrangian variables)as a sequence of relabelling symmetry remaining invariant the action(for details,see the reviews[8,2]). Passing from Lagrangian to Hamiltonian in this description we have no any problems with the Poisson bracket.It is given by standard way and does not contain any degeneracy that the noncanonical Poisson brackets(1.3)and(1.9)have.One of the main purposes of this paper is to construct such new description of the Euler equation(as well as the ideal MHD)which,from one side,would allow to retain the Eulerian description,as maximally as possible,but,from another side,would exclude from the very beginning all remains from the gauge invariance of the complete Euler description connected with the relabeling symmetry.

As for MHD,this system in one point has some common feature with the Euler equation:it also possesses the frozenness property.The equation for h/ρcoincides with (2.13)and therefore dynamics of magnetic lines is very familiar to that for vortex lines of the Euler equation.However,this analogy cannot be continued so far because the equation of motion for velocity di?ers from the Euler equation by the presence of pondermotive force.This di?erence remains also for incompressible case.

3Vortex line representation

Consider the Hamiltonian dynamics of the divergence-free vector?eld?(r,t),given by the Poisson bracket(1.3)with some Hamiltonian H1:

??

δ?

×? .(3.1)

As we have said,the bracket(1.3)is degenerate,as a result of which it is impossible to formulate the variational principle on the entire space S of solenoidal vector?elds. It is known[2]that Casimirs f,annulling Poisson brackets,distinguish in S invariant manifolds M f(symplectic leaves)on each of which it is possible to introduce the standard Hamiltonian mechanics and accordingly to write down a variational principle.We shall show that solution of this problem for the equations(3.1)is possible on the base of the property of frozenness of the?eld?(r,t),which allows to resolve all constrains,stipulated by the Casimirs,and gives the necessary formulation of the variational principle.

To each Hamiltonian H-functional of?(r,t)-we associate the generalized velocity

v(r)=curl

δH

δ?→curl

δH

1The Hamiltonian(1.4)corresponds to ideal incompressible hydrodynamics.

that in no way does change the equation for?.Under the condition(?·?α)=0a new

generalized velocity will have zero divergence and the frozenness equation(3.1)can be

written already for the new v(r).A gauge changing of the generalized velocity corresponds to some addition of a Casimir to the Hamiltonian:

H→H+f;{f,..}=0.

Hence becomes clear that the transformation

x=x(a,t)

of the initial positions of?uid particles x(a,0)=a by the generalized velocity?eld v(r)

through solution of the equation

˙x=v(x,t)(3.3) is de?ned ambiguously due to the ambiguous de?nition of v(r)by means of(3.2).There-fore using full Lagrangian description to the systems(3.1)becomes ine?ective.

Now we introduce the following general expression for?(r),which is gauge invariant

and?xes all topological properties of the system that are determined by the initial?eld ?0(a)[16]:

?(r,t)= δ(r?R(a,t))(?0(a)?a)R(a,t)d3a.(3.4) Here now

r=R(a,t)(3.5) does not satisfy any more the equation(3.3)and,consequently,the mapping Jacobian

J=det||?R/?a||is not assumed to equal1,as it was for full Lagrangian description of

incompressible?uids.

It is easily to check that from condition(?a?0(a))=0it follows that divergence of

(3.4)is identically equal to zero.

The gauge transformation

R(a)→R(?a?

(a))(3.6)

is arisen from a by means of arbitrary nonuniform leaves this integral unchanged if?a?

translations along the?eld line of?0(a).Therefore the invariant manifold M?

of the

space S,on which the variational principle holds,is obtained from the space R:a→R of

arbitrary continuous one-to-one three-dimensional mappings identifying R elements that are obtained from one another with the help of the gauge transformation(3.6)with a ?xed solenoidal?eld?0(a).

The integral representation for?(3.4)is another formulation of the frozenness con-

dition-after integration of the relation(3.4)over areaσ,transverse to the lines of?,

follows that the?ux of this vector remains constant in time:

σ(t)(?,d S r)= σ(0)(?0,d S a).

Hereσ(t)is the image ofσ(0)under the transformation(3.5).

It is important also that?0(a)can be expressed explicitly in terms of the instantaneous value of the vorticity and the mapping a=a(r,t),inverse to(3.5).By integrating over the variables a in the relation(3.4),

(?0(a)?a)R(a)

?(R)=

where?0(a)can be represented in the form:

?0(a)=det||?R/?a||(?(r)?)a.(3.8) This formula is nothing more than the Cauchy invariant(2.9).We note that according to

Eq.(3.7)the vector b=(?

0(a)?a)R(a)is tangent to?(R).It is natural to introduce

parameter s as an arc length of the initial vortex lines?0(a)so that

b=?0(ν)

?R

?s

ds,(3.9)

whence the meaning of the new variables becomes clearer:To each vortex line with index νthere is associated the closed curve

r=R(s,ν,t),

and the integral(3.9)itself is a sum over vortex lines.We notice that the parametrization by introduction of s andνis local.Therefore as global the representation(3.9)can be used only for distributions with closed vortex lines.

To get the equation of motion for R(ν,s,t)the representation(3.9)(in the general case-(3.4))must be substituted in the Euler equation(3.1)and then a Fourier transform with respect to spatial coordinates performed.As a result of simple integration one can obtain: k× ?0(ν)d2ν dse?i kR[R s×{R t(ν,s,t)?v(R,t)}] =0.

This equation can be resolved by putting integrand equal identically to zero:

[R s×R t(ν,s,t)]=[R s×v(R,t)].(3.10) With this choice there remains the freedom in both changing the parameter s and re-labelling the transverse coordinatesν.In the general case of arbitrary topology of the?eld?0(a)the vector R s in the equation(3.10)must be replaced by the vector b=(?0(a)?a)R(a,t).Notice that,as it follows from(3.10)and(3.7),a motion of a

point on the manifold M?

is determined only by the transverse to?(r)component of the generalized velocity.

The obtained equation(3.10)is the equation of motion for vortex lines.In accordance with(3.10)the evolution of each vector R is principally transverse to the vortex line.The longitudinal component of velocity does not e?ect on the line dynamics.

The description of vortex lines with the help of equations(3.9)and(3.10)is a mixed Lagrangian-Eulerian one:The parameterνhas a clear Lagrangian origin whereas the coordinate s remains Eulerian.

4Variational principle

The key observation for formulation of the variational principle is that the following general equality holds for functionals that depend only on?:

b×curl δFδR(a) ?0.(4.1)

For this reason,the right-hand-side of(3.10)

equals the variational derivativeδ

H/δR:

[(?0(a)?a)R(a)×R t(a)]=

δH{?{R}}

3 d3a([R t(a)×R(a)]·(?0(a)?a)R(a))?H({?{R}}).(4.3)

Thus,we have introduced the variational principle for the Hamiltonian dynamics of the divergence-free vector?eld topologically equivalent to?0(a).

Let us discuss some properties of the equations of motion(4.2),which are associated with excess parametrization of elements of M?

by objects from R.We want to pay attention to the fact that From Eq.(4.1)follows the property that the vector b and δF/δR(a)are orthogonal for all functionals de?ned on M?

.In other words the varia-tional derivative of the gauge-invariant functionals should be understood(speci?cally,in (4.1))as

?PδF

|b|2 b· ?PδFδR(a) .(4.4)

The new bracket(4.4)does not contain variational derivatives with respect to?0(a). Therefore,with respect to the initial bracket the Cauchy invariant?0(a)is a Casimir ?xing the invariant manifolds M?

on which it is possible to introduce the variational principle(4.3).

In the case of the hydrodynamics of a super?uid liquid a Lagrangian of the form (4.3)was apparently?rst used by Rasetti and Regge[17]to derive an equation of motion, identical to Eq.(3.10),but for a separate vortex?https://www.doczj.com/doc/ca7115409.html,ter,on the base of the results [17],Volovik and Dotsenko Jr.[18]obtained the Poisson bracket between the coordinates of the vortices and the velocity components for a continuous distribution of vortices.The expression for these brackets can be extracted without di?culty from the general form for the Poisson brackets(4.4).However,the noncanonical Poisson brackets obtained in

[17,18]must be used with care.Their direct application gives for the equation of motion of the coordinate of a vortex?lament an answer that is not gauge-invariant.For a general variation,which depends on time,additional terms describing?ow along a vortex appear in the equation of motion.For this reason,the dynamics of curves(including vortex lines) is in principle”transverse”with respect to the curve itself.

We note that for two-dimensional(in the x?y plane)?ows the variational principle for action with the Lagrangian(4.3)leads to the well-known fact that X(ν,t)-and Y(ν,t)-coordinates of each vortex are canonically conjugated quantities(see[3]).

5Integrable hydrodynamics

Now we present an example of the equations of the hydrodynamic type(3.1),for which transition to the representation of vortex lines permits to establish of the fact of their integrability[16].

Consider the Hamiltonian

H{?(r)}= |?|d r(5.1) and the corresponding equation of frozenness(3.1)with the generalized velocity

v=curl(?/?).

We assume that vortex lines are closed and apply the representation(3.9).Then due to (3.7)the Hamiltonian in terms of vortex lines is decomposed as a sum of Hamiltonians of vortex lines:

H{R}= |?0(ν)|d2ν ?R

= τ×?2τ

?t

This equation is gauge-equivalent to the1D nonlinear Schr¨o dinger equation[19]and, for instance,can be reduced to the NLSE by means of the Hasimoto transformation[15]:

ψ(l,t)=κ(l,t)·exp(i lχ(?l,t)d?l),

whereκ(l,t)is a curvature andχ(l,t)the line torsion.

The considered system with the Hamiltonian(5.1)has direct relation to hydrodynam-ics.As known(see the paper[15]and references therein),the local approximation for thin vortex?lament(under assumption of smallness of the?lament width to the characteristic longitudinal scale)leads to the Hamiltonian(5.2)but only for one separate line.Respec-tively,the equation(3.1)with the Hamiltonian(5.1)can be used for description of motion of a few number of vortex?laments,thickness of which is small compared with a distance between them.In this case(nonlinear)dynamics of each?lament is independent upon neighbor behavior.In the framework of this model singularity appearance(intersection of vortices)is of an inertial character very similar to the wave breaking in gas-dynamics. Of course,this approximation does not work on distances between?laments comparable with?lament thickness.

It should be noted also that for the given approximation the Hamiltonian of vortex line is proportional to the?lament line whence its conservation follows that,however, in no cases is adequate to behavior of vortex?laments in turbulent?ows where usually process of vortex?lament stretching takes place.It is desirable to have the better model free from this lack.A new model must necessarily describe nonlocal e?ects.

In addition we would like to say that the list of equations(3.1)which can be integrated with the help of representation(3.9)is not exhausted by(5.1).So,the system with the Hamiltonian

Hχ{?(r)}= |?|χd r(5.5) is gauge equivalent to the modi?ed KdV equation

3

ψt+ψlll+

matrix by means of Eq.(2.5)and by the equation

B i(x,t)=

?x i

?a k ¨x i=?

?w(ρ)

4πρ0(a)

[curl h×h]i

?x i

dt

=? v24π[B0(a)×curl a H].(6.3) Here vector B0(a)=h0(a)/ρ0(a)is a Lagrangian invariant and H represents the co-adjoint transformation of the magnetic?eld,analogous to(2.6):

H i(a,t)=

?x m

dt =

v2

dt =?

H

ρ

×curl S (6.5)

where S is the vector?S transformed by means of the rule(2.6):

S i(x,t)=

?a k

?t +(v?)Φ?

v2

and equation of motion for S is of the form:

?S

?[v×curl S]+?ψ1=0.(6.7)

For u0=0the transformation(6.5)was introduced for ideal MHD by Zakharov and Kuznetsov in1970[1].In this case magnetic?eld h and vector S as well asΦandρare two pairs of canonically conjugated variables.It is interesting to note that in the canonical case the equations of motion for S andΦobtained in[1]coincide with(6.6) and(6.7).However,the canonical parametrization describes partial type of?ows,in particular,it does not describe topological nontrivial?ows for which mutual knottiness between magnetic and vortex lines is not equal to zero.This topological characteristics is given by the integral (v,h)d x.Only when u0=0this integral takes non-zero values.

7Frozen-in MHD?elds

To clarify meaning of new Lagrangian invariant u0(a)we remind that the MHD equations (1.5-1.7)can be obtained from two-?uid system where electrons and ions are considered as two separate?uids interacting each other by means of self-consistent electromagnetic ?eld.The MHD equations follow from two-?uid equations in the low-frequency limit when characteristic frequencies are less than ion gyro-frequency.The latter assumes i) neglecting by electron inertia,ii)smallness of electric?eld with respect to magnetic?eld, and iii)charge quasi-neutrality.We write down at?rst some intermediate system called often as MHD with dispersion[20]:

curl curl A=

4πe

c (?A t+[v1×curl A])??

c (?A t+[v2×curl A])??

c A t.This system is close

d by two continuity equations for ion density

n1and electron density n2:

n1,t+?(n1v1)=0,n2,t+?(n2v2)=0.(7.4)

In this system v1,2are velocities of ion and electron?uids,respectively.The?rst equation of this system is a Maxwell equation for magnetic?eld in static limit.The second equation is equation of motion for ions.The next one is equation of motion for electrons in which we neglect by electron inertia.By means of the latter equation one can obtain the equation of frozenness of magnetic?eld into electron?uid(this is another Maxwell equation):

h t=curl[v2×h].

Applying the operator div to (7.1)gives

with account of

continuity

equations

the quasi-neutrality condition:n 1=n 2=n .Next,by excluding n 2and v 2we have ?nally the MHD equations with dispersion in its standard form [20]:

(?t +v ?)m v =??w (n )+

1?n

ε(n,n ),n t +?(n v )=0,h t =curl v ?

c 4πne 2/m is ion plasma frequency.

Unlike MHD equations (1.5-1.7),the given system has two frozen-in ?elds.These are the ?eld ?2=?e

mc

A )=???2

frozen into ion component:

?1t =curl [v ×?1],

?2t =curl [v 2×?2]

where

v 2=v ?c c A (7.8)

p 2=?e ?a 1i

dp 1k

?a 1i +??n 1+e 2 (7.10)?x k

dt =?p 2k ?v 2k ?a 2i

??εc

(v 2·A ) .(7.11)

By introducing the vector?p for each type of?uids,by the same rule as(2.6),

?p i=

?x k

m

(?p1(a)+?p2(a)),

d=?

mc

2?ρ?ε(ρ)?

h2

where we neglect by contribution from electric?eld in comparison with that from magnetic ?eld.Here?ε(ρ)is speci?c internal energy.

In terms of mapping x(a,t)the Lagrangian L?is rewritten as follows[22]: L?= ˙x28π (h0(a)?a)x

Hence conservation of

(8.3)

also

follows.

Note that if one would not suppose an indepen-dence of u 0on t then,due to arbitrariness of g (a ),this could be considered as independent veri?cation of conservation of solenoidal ?eld u 0:

d

ρ· curl δF

δ?

? curl

δG

δ?

d 3r (8.4)+ ? curl δF

δ?

d 3r .This bracket remains also degenerated.

9Variational principle for incompressible MHD

By analogy with incompressible hydrodynamics,one can introduce magnetic line repre-sentation:h (r ,t )= δ(r ?R (a ,t ))(h 0(a )?a )R (a ,t )d 3a .(9.1)For vorticity the analog of vortex line parametrization (3.4)can be obtained,for instance,as a limit ?→0of the corresponding representations for the two-?uid system.Calculations give [21]:

?(r ,t )= δ(r ?R (a ,t ))((?0(a )+curl a [h 0(a )×U (a ,t )])?a )R (a ,t )d 3a ,(9.2)Here the ?eld U (a ,t )is not assumed solenoidal,as well as the Jacobian of mapping r =R (a ,t )is not equal to unity.

From the corresponding limit of the two-?uid system to incompressible MHD it is possible also to get the expression for Lagrangian

L = d 3a ([(h 0?a )R ×(U ?a )R ]·R t )+

(9.3)

+1/3 d3a([R t×R]·(?0?a)R)?H{?{R,U},h{R}}.

The Hamiltonian of the incompressible MHD H MHD in terms of U(a,t)and R(a,t)takes

the form

H MHD=1

det||?R/?a||

d3a+

+1

|R(a1)?R(a2)|

d3a1d3a2,(9.4)

where we introduce the notation

?(a,t)=?0(a)+curl a[h0(a)×U(a,t)].

Equations of motion for U and R follow from the variational principle for action with Lagrangian(9.3):

[(h0?a)R×R t]·(?R/?aλ)=?δH/δUλ,(9.5) [(?(a,t)?a)R×R t]?[(h0?a)R×(U t?a)R]=δH/δR.(9.6) These equations can be obtained also directly from the MHD system(1.5-1.7)by the same scheme as it was done for ideal hydrodynamics.

Thus,we have variational principle for the MHD-type equations for two solenoidal vector?elds.Their topological properties are?xed by?0(a)and h0(a).These quanti-ties represent Casimirs for the initial Poisson bracket(8.4).It is worth noting that the obtained equations of motion have the gauge invariant form.This gauge invariance is a remaining symmetry connected with relabeling of Lagrangian markers of magnetic lines in two-dimensional manifold which can be speci?ed always locally.Coordinates of this manifold enumerate magnetic lines.This symmetry leads to conservation of volume of magnetic tubes including in?nitesimally small magnetic tubes,namely,magnetic lines. This property explains why the Jacobian of the mapping r=R(a,t)can be not equal identically to unity.

Acknowledgments

Authors thank A.B.Shabat for useful discussion of the connection between NLSE and equations(3.1),that resulted in integrability declaration for(5.5).This work was sup-ported by the Russian Foundation of Basic Research under Grant no.97-01-00093and by the Russian Program for Leading Scienti?c Schools(grant no.96-15-96093).Partially the work of E.K.was supported by the Grant INTAS96-0413,and the work of V.R.by the Grant of Landau Scholarship.

References

[1]V.E.Zakharov and E.A.Kuznetsov,Doklady USSR Ac.Nauk.(Soviet Doklady),194,

1288(1970).

[2]V.E.Zakharov and E.A.Kuznetsov,Uspekhi?zicheskikh nauk(Physics Uspekhi),167,

1137(1997).

[3]https://www.doczj.com/doc/ca7115409.html,mb,Hydrodynamics,Cambridge Univ.Press,1932.

[4]E.A.Kuznetsov,A.V.Mikhailov,Phys.Lett.,77A,37(1980).

[5]J.J.Moreau,C.R.Acad.Sc.Paris,252,2810(1961);H.K.Mo?att,J.Fluid Mech.35,

117(1969).

[6]V.I.Arnold,Doklady Ac.Nauk SSSR,162,773-777(1965)(in Russian).

[7]V.I.Arnold,Uspekhi matematicheskikh nauk,24,N3,225(1969);Mathematical

methods of classical mechanics,Moscow,Nauka,1974(in Russian).

[8]R.Salmon,Ann.Rev.Fluid Mech.,20,225(1988).

[9]https://www.doczj.com/doc/ca7115409.html,ndau and E.M.Lifshits,Electrodynamics of continuous media,Moscow,Nauka

(1982).

[10]M.I.Monastyrskii and P.V.Sasorov,ZhETF(JETP),93,1210,(1987).

[11]V.V.Yan’kov,ZhETF(JETP),107,414,(1995).

[12]S.S.Moiseev,R.Z.Sagdeev,A,V.Tur,and V.V.Yanovskii,ZhETF(JETP),83,215,

(1982).

[13]B.N.Kuvshinov,FIzika Plazmy(Russian Plasma Phys.),22,971,(1996).

[14]P.J.Morrison and J.M.Greene,Phys.Rev.Lett.,45,790(1980)

[15]R.Hasimoto,J.Fluid Mech.,51,477(1972).

[16]E.A.Kuznetsov and V.P.Ruban,Pis’ma v ZhETF,67,1012(1998)[JETP Letters,

67,1076(1998)].

[17]M.Rasetti and T.Regge,Physica80A,217(1975).

[18]G.E.Volovik,V.S.Dotsenko(jun.),Pis’ma ZhETF(JETP Letters),29,630(1979).

[19]V.E.Zakharov and L.A.Takhtajan,Teor.Mat.Fiz.,38,26(1979)(in Russian).

[20]V.I.Karpman,Nonlinear waves in dispersive media,Moscow,Nauka,(1973)(in Rus-

sian).

[21]V.P.Ruban,Magnetic line motion in MHD,Preprint of Landau Institute,JETP,

submitted(1999).

[22]V.I.Il’gisonis and V.P.Pastukhov,Fizika Plazmy(Russian Plasma Phys.),22,228

(1996).

电源磁芯尺寸功率参数.doc

电源磁芯尺寸功率参数

常用电源磁芯参数 MnZn 功率铁氧体 EPC 功率磁芯 特点:具有热阻小、衰耗小、功率大、工作频率宽、重量 轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热 性能稍差。 用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要 求的变压器,如精密仪器、程控交换机模块电源、导航设 备等。 EPC型功率磁芯尺寸规格 磁芯型号Type 尺寸Dimensions(mm) A B C D Emin F G Hmin EPC10/8 10.20±0.20 4.05±0.30 3.40±0.20 5.00±0.20 7.60 2.65±0.20 1.90±0.20 5.30 EPC13/13 13.30±0.30 6.60±0.30 4.60±0.20 5.60±0.20 10.50 4.50±0.30 2.05±0.20 8.30 EPC17/17 17.60±0.50 8.55±0.30 6.00±0.30 7.70±0.30 14.30 6.05±0.30 2.80±0.20 11.50 EPC19/20 19.60±0.50 9.75±0.30 6.00±0.30 8.50±0.30 15.80 7.25±0.30 2.50±0.20 13.10 EPC25/25 25.10±0.50 12.50±0.30 8.00±0.30 11.50±0.30 20.65 9.00±0.30 4.00±0.20 17.00 EPC27/32 27.10±0.50 16.00±0.30 8.00±0.30 13.00±0.30 21.60 12.00±0.30 4.00±0.20 18.50 EPC30/35 30.10±0.50 17.50±0.30 8.00±0.30 15.00±0.30 23.60 13.00±0.30 4.00±0.20 19.50 EPC39/39 39.00±0.50 19.60±0.30 15.60±0.30 18.00±0.30 30.70 14.00±0.30 10.00±0.30 24.50 EPC42/44 42.40±1.00 22.00±0.30 15.00±0.40 17.00±0.30 33.50 16.00±0.30 7.40±0.30 26.50

公路电动栏杆机控制模块维修简述

公路电动栏杆机控制模块维修简述 目前,公路自动栏杆机控制模块主要是Magnetic的自动栏杆机控制模块,这种控制模块采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足公路环境下的应用。 下面简单介绍栏杆机控制模块面板的功能与接线,栏杆机控制模块中的数字代表意义和接法如下: “1”表示接电源L(火线)220V AC; “2”表示接电源N(零线); “3”表示电源线地线; “4”表示电机接地线PE; “5”表示电机公共绕组U,接电机公共绕组U; “6”表示电机落杆绕组V,接电机绕组V; “7”表示电机升杆绕组W,接电机绕组W; “8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联); “10、11”表示电机运行电容(4uF/AC450V); “17”表示电源输出24VDC接地线; “18”表示电源输出 24VDC正极; “19”表示控制信号共用线(+24VDC); “20”表示开脉冲,和控制信号共用线(+24VDC)短接有效; “21”表示环路感应器2输入(用于车辆到时自动抬杆,用于6、8模式); “22”表示关脉冲,和控制信号共用线(+24VDC)短接有效; “23”表示抬杆、落杆限位开关输入信号; “24”表示安全开关,接常闭触点;断开时,系统不会执行落杆动作; “25”表示控制信号共用线(+24VDC),同“19”功能一样; “26”表示档杆状态输出公共触点; “27、28”完全等同于“20、22”,常开触点(300ms); “29”表示抬杆状态输出触点; “30”表示落杆状态输出触点; “31、32”表示报警输出,为常开触点。 栏杆机控制模块长期处于工作状态,每天控制栏杆上下达几千次以上,是栏杆机易损元件之一,下面简单介绍几点常见的故障和维修方法,供大家参考: 首先,在维修栏杆机控制模块之前,务必将故障设备的灰尘清除干净,养成这个习惯可以让你检查和维修故障更快速、准确。 故障一控制模块无电现象 控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件(如变压器、电容、电阻等)有无出现变形、断裂、松动、磨损、冒烟、腐蚀等情况。 其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动,以确定设备运行状况以及发生故障的性质和程度。 如某站01#车道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。在更换前

各种开关电源变压器各种高频变压器参数EEEEEEEIEI等等的参数

功率铁氧体磁芯 常用功率铁氧体材料牌号技术参数 EI型磁芯规格及参数

PQ型磁芯规格及参数 EE型磁芯规格及参数 EC、EER型磁芯规格及参数

1,磁芯向有效截面积:Ae 2,磁芯向有效磁路长度:le 3,相对幅值磁导率:μa 4,饱和磁通密度:Bs 1磁芯损耗:正弦波与矩形波比较 一般情况下,磁芯损耗曲线是按正弦波+/-交流(AC)激励绘制的,在标准的和正常的时候,是不提供极大值曲线的。涉及到开关电源电路设计的一个共同问题是正弦波和矩形波激励的磁芯损耗的关系。对于高电阻率的磁性材料如类似铁氧体,正弦波和矩形波产生的损耗几乎是相等的,但矩形波的损耗稍微小一些。材料中存在高的涡流损耗(如大 一般情况下,具有矩形波的磁芯损耗比具有正弦波的磁芯损耗低一些。但在元件存在铜损的情况下,这是不正确的。在变压器中,用矩形波激励时的铜损远远大于用正弦波激励时的铜损。高频元件的损耗在铜损方面显得更多,集肤效应损耗比矩形波激励磁芯的损耗给人们的印象更深刻。举个例子,在 20kHz、用17#美国线规导线的绕组时,矩形波激励的磁芯损耗几乎是正弦波激

励磁芯损耗的两倍。例如,对于许多开关电源来说,具有矩形波激励磁芯的 5V、20A和30A输出的电源,必须采用多股绞线或利兹(Litz)线绕制线圈,不能使用粗的单股导线。 2Q值曲线 所有磁性材料制造厂商公布的Q值曲线都是低损耗滤波器用材料的典型曲线。这些测试参数通常是用置于磁芯上的最适用的绕组完成的。对于罐形磁芯,Q值曲线指出了用作生成曲线时的绕组匝数和导线尺寸,导线是常用的利兹线,并且绕满在线圈骨架上。 对于钼坡莫合金磁粉芯同样是正确的。用最适合的绕组,并且导线绕满了磁芯窗口时测试,则Q值曲线是标准的。Q值曲线是在典型值为5高斯或更低的低交流(AC)激励电平下测量得出的。由于在磁通密度越高时磁芯的损耗越大,故人们警告,在滤波电感器工作在高磁通密度时,磁芯的Q值是较低的。3电感量、AL系数和磁导率 在正常情况下,磁芯制造厂商会发布电感器和滤波器磁芯的AL系数、电感量和磁导率等参数。这些AL的极限值建立在初始磁导率范围或者低磁通密度的基础上。对于测试AL系数,这是很重要的,测试AL系数是在低磁通密度下实施的。 某些质量管理引入检验部门,希望由他们用几匝绕组检查磁芯,并用不能控制频率或激励电压的数字电桥测试磁芯。几乎毫不例外,以几百高斯、若干

磁芯参数参看

z变压器基础知识 1、变压器组成: 原边(初级primary side ) 绕组 副边绕组(次级secondary side ) 原边电感(励磁电感)‐‐magnetizing inductance 漏感‐‐‐leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2 2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流 ●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核 1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。 其优点是电阻率高、交流涡流损耗小,价格便宜,易加 工成各种形状的磁芯。缺点是工作磁通密度低,磁导率 不高,磁致伸缩大,对温度变化比较敏感。选择哪一类 软磁铁氧体材料更能全面满足高频变压器的设计要求, 进行认真考虑,才可以使设计出来的变压器达到比较理 想的性能价格比。 2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感, 增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。 漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。 3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工作方式有关。 磁通单方向变化时:ΔB=Bs‐Br,既受饱和磁通密度限制,又更主要是受损耗限制,(损耗引起温升,温升又会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙,或者在电路设计时加隔直流电容。 4.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式,绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取J为2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如必要,还要经过变压器温升校核后进行必要的调整。 4.线圈参数: 一般用的绕组排列方式:原绕组靠近磁芯,副绕组反馈绕组逐渐向外排列。下面推荐两种绕组排列形式: 1)如果原绕组电压高(例如220V),副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排; 2)如果要增加原副绕组之间的耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的排列形式,这样有利于减小漏感。 5.组装结构:

栏杆机说明书

MAGSTOP MIB 2O/3O/40 栏杆机 及MAGTRONIC MLC 控制器 操作指导 @1999年马格内梯克控制系统(上海)有限公司 地址:上海浦东新区宁桥路999号二幢底西层邮编:201206 电话:(21)58341717 传真:(21)58991233

目录 1. 系统概述 2 1.1 停车场系统的布局 2 1. 2 系统组件概述 2 2 安全 3 2.1一般安全信息3 2.2 建议用途 3 2.3 本手册中使用的安全标志3 2.4 操作安全 4 2.5 技术发展 4 2.6 质量保证 4 3. 装配及安装 5 3.1 构筑安装地基 5 3.2 安装感应线圈 6 3.3 安装机箱 8 3.4 安装栏杆机臂 8 3.5 基本机械结构 9 3.6 设置及校准弹簧 9 3.7 校准栏杆机臂位置 10 4. 电源连接 10 5. MLC控制器 11 5.1 命令发生器:在不同操作模式下的连接及功能 12 5.2 MLC控制器的操作 14 5.3 MLC控制器显示信息的解释 14 5.4 MLC控制器的复位 14 5.5 栏杆机的操作 15 5.6 编制及读取操作数据 16 5.7 校准感应线圈 18 6. 初始化操作 19 6.1 委托程序 19 6.2 在启动过程中显示的信息 19 7. 技术数据 21 7.1 栏杆机 21 7.2 控制器 21 8. 附录 22 8.1校准角度传感器及优化栏杆机的动作22 8.2 校准安全设备的角度 24 8.3 读取时间计数器 25 8.4 读取操作循环计数器 25 8.5 读取制动设置 25 8.6 复位情况的说明 26 8.7 测试模式 27 8.8 校准传感器 28 9. 技术支持 28 10. 备用零部件 29

单端反激式开关电源磁芯尺寸和类型的选择

单端反激式开关电源磁芯尺寸和类型的选择字体大小:大|中|小2008-08-28 12:53 - 阅读:1655 - 评论:1 单端反激式开关电源磁芯尺寸和类型的选择徐丽红王佰营wbymcs51.blog.bokee .net A、InternationalRectifier 公司--56KHz 输出功率推荐磁芯型号 0---10WEFD15 SEF16 EF16 EPC17 EE19 EF(D)20 EPC25 EF(D)25 10-20WEE19 EPC19 EF(D)20 EE,EI22 EF(D)25 EPC25 20-30WEI25 EF(D)25

EPC25 EPC30 EF(D)30 ETD29 EER28(L) 30-50WEI28 EER28(L) ETD29 EF(D)30 EER35 50-70WEER28L ETD34 EER35 ETD39 70-100WETD34 EER35 ETD39 EER40 E21 摘自 InternationalRectifier,AN1018- “应用 IRIS40xx 系列单片集成开关 IC 开关电源的反激式变压器设计” B、ELYTON公司https://www.doczj.com/doc/ca7115409.html, 型号输出功率( W) <5 5-10 10-20 20-50 50-100 100-200 200-500 500-1K

EI EI12.5 EI16 EI19 EI25 EI40 -- EI50 EI60 EE EE13 EE16 EE19 EE25 EE40 EE42 EE55 EE65 EF EF12.6 EF16 EF20 EF25 EF30 EF32 EFD -- EFD12 EFD15 EFD20 EFD25 EFD30 EPC -- EPC13 EPC17 EPC19 EPC25 EPC30 EER EER9.5 EER11 EER14.5 EER28 EER35 EER42 EER49 -- ETD ETD29 ETD34 ETD44 ETD49 ETD54 -- EP EP10 EP13 EP17 EP20 -- RM RM4 RM5 RM6 RM10 RM12 POT POT1107 POT1408 POT1811 POT2213POT3019 POT3622 POT4229 -- PQ -- -- -- PQ2016 PQ2625 PQ3230 PQ3535 PQ4040 EC ---------------------------- -- EC35 EC41 EC70 摘自 PowerTransformers OFF-LINE Switch Mode APPLICATION NOTES

高速公路自动栏杆机控制模块维修

高速公路自动栏杆机控制模块维修实例【转贴】 本人在成绵高速公路长期的维护工作中收集、总结的一些关于自动栏杆机控制模块的维护心得,供大家参考。成绵高速公路自动栏杆机控制模块主要是恒富威和magnetic专业设计的自动栏杆机控制模块,主要用于栏杆机的控制。采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足高速公路环境下的应用。下面我介绍下栏杆机控制模块面板的功能与接线栏杆机控制模块中的数字代表意义货接法如 下:“1”表示接电源L(火线)220V。“2”表示接电源N (零线)。“3”表示电源线地线。“4”表示电机接地线PE。“5”表示电机公共绕组U;接电机公共绕组U。“6”表示电机落杆绕组V;接电机绕组V。“7”表示电机升杆绕组W;接电机绕组W。“8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联)。“10、11”表示电机运行电容 (4uF/AC450V)。“17”表示24V接地线。“18”表示表示电源+24V。“19”表示控制信号共用线(+24V)。“20”表示开脉冲,和控制信号共用线(+24V)短接有效。“21”表示环路感应器2输入(用于车辆到时自动提杆,用于6、8模式)。“22”表示关脉冲,和控制信号共用线(+24V)短接有效。“23”表示抬杆、落杆限位开关输入信号。“24”示安全开关,接常闭触点;断开时,系统不会执行落杆动作。“25”表示控制信号共用线(+24V),同“19”功能一样。“26”表示档杆状态输出公共触点。“27、28”完全等同于“20、22”表示计数输出,常开触点 (300ms)。“29”表示抬杆状态输出触点。“30”表示落杆状态输出触点。“30、31”表示报警输出,常开触点。栏杆机控制模块长期处于工作状态,每天控制栏杆上下达千次以上;是栏杆机易坏元件之一,下面我介绍常见几点常见的故障和实用的维修方法,供大家参 考。首先,维修设备之前,务必将故障设备的灰尘清除掉,养成这个习惯可以让你维修和检查故障起来轻松、准确许多。 故障一控制模块无电现象控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件,如变压器,电容,电阻等有无出现变形,断裂,松动,磨损,冒烟,腐蚀等情况。其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动;以确定设备运行状况以及发生故障的性质和程度。如某站一道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。我在更换前观察其他元件外表是否变形断裂,用手触摸电容、电感等接头有无松动。其次我就用万用表跑线,看是否有短路现象。经我检查后初步判定为保险丝被击穿,准备替换。替换前应认清被替换元器件的型号和规格。(同时替换某些元件时还应该注意方向。)最后我将同一型号的保险丝替换上并加电,控制模块工作灯亮起,用外用表测试控制模块,修复。有时,无电现象还由变压器(PIN9 0-115V PIN16 115V-0)损坏造成的。控制模块

Magnetic TOLL栏杆机中文说明书

9 电气连接 9.1 安全 请参照18页,第2.6节“专业安全和特殊危险”中的安全注意事项。 电压 危险 一般 警告

热的表面 小心 电磁干扰 个人保护装备

在施工过程中,必须穿戴以下几种保护装备: ■工作服 ■保护手套 ■安全鞋 ■保护头盔。 9.2安装电保护设备 根据地区或当地的规定,安全设备需要提供给客户。通常有以下几种:■漏电保护器 ■断路器 ■ EN 60947-3的可锁定的2极开关。 9.3连接电源线 电压 危险 注意! 电源线的导线截面在1.5到4mm2 之间。要遵守国家关于 导线长度和相关电缆截面积的规定.

危险! 电压有致命的危险! 1.断开栏杆机系统电源。确保系统断电。确保机器不会再启动。 接线的准备—剥电缆外皮和铁芯绝缘 2.照下图剥开电源线和磁芯 图37:剥电源供应线。 1 电位 2 零线 3 地线 安置电源线 3.照下图,把电源线正确安装在相应的终端线夹上。也可参照,163页,第17.1节的“接线图”。 ■在机箱中正确安装电源线。此电源线不可连接移动部件。 ■用两个束线带固定电源线。 图38 安置电源线 1 电源线

2 束线带 3 束线带的金属突出物 连接电源线 图39:连接电源线 1 电源线的终端线夹 2 电位L 3 零线 N 4 地线 PE 9.4连接控制线路(信号设备) 以下连接对控制和反馈端有效: ■控制栏杆机的8个数码输入 ■反馈信息的4个数码输出 ■反馈信息的6个继电器输出。3个常开,3个转换触点。 危险! 电压有致命危险! 1.断开栏杆机系统电源。确保系统断电并不会重启。 连接控制线 2.将控制线穿过穿线孔。 ■在机箱中合理的放置控制线。控制线不可进入可移动部件。 ■安装控制线夹和绑线。通过轻微按压或移动,线夹可以在轨道上移动到预期的位置。绑线可以绑扎在金属突出物上。 3. 根据接线图连接控制线。请参照163页,第17.1节的“接线图”。

磁芯参数表

常用磁芯参数表 【EER磁芯】 ■ 用途:高频开关电源变压器、匹配变压器、扼流变压器等。 【EE磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器、电感器及扼流圈、脉冲变压器等。

【ETD磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器。 【EI 磁芯】 ■ 用途:高频开关电源变压器、功率变压器、整流变压器、电压互感器等。 【ET 磁芯】 ■ 用途:滤波变压器 【EFD 磁芯】 ■ 用途:高频开关电源变压器器、整流变压器、开关变压器等。

【UF 磁芯】 ■ 用途:整流变压器、脉冲变压器、扼流变压器、电源变压器等。 【PQ 磁芯】 ■ 用途高频开关电源变压器、整流变压器等。 【RM 磁芯】 ■ 用途:高频开关电源变压器、整流变压器、屏蔽变压器、脉冲变压器、脉冲功率变压器、扼流变压器、滤波变压器。 【EP 磁芯】 ■ 用途:功率变压器、宽频变压器、屏蔽变压器、脉冲变压器等。

【H 磁芯】 ■ 用途:宽带变压器、脉冲变压器、脉冲功率变压器、隔离变压器、滤波变压器、扼流变压器、匹配变压器等。 软磁铁氧体磁芯形状与尺寸标准(一) 软磁铁氧体磁芯形状 软磁铁氧体是软磁铁氧体材料和软磁铁氧体磁芯的总称。软磁铁氧体磁芯是用软磁铁氧体材料制成的元件或零件,或是由软磁铁氧体材料根据不同形式组成的磁路。磁芯的形状基本上由成型(形)模具决定,而成型(形)模具又根据磁芯的形状进行设计与制造。 磁芯按磁力线的路径大致可分两大类;磁芯按具体形状分,有各种各样: 磁芯按磁力线路径分类 磁芯按使用时磁化过程所产生磁力线的路径可分为开路磁芯和闭路磁芯两类。 第一类为开路磁芯。这类磁芯的磁路是开启的(open magnetic circuits),通过磁芯的磁通同时要通过周围空间(气隙)才能形成闭合磁路。开路磁芯的气隙占磁路总长度的相当部分,磁阻很大,磁路中的部分磁通在达到气隙以前就已离开磁芯形成漏磁通。因而,开路磁芯在磁路各个截面上的磁通不相等,这是开路磁芯的特点。由于开路磁芯存在大的气隙,磁路受到退磁场作用,使磁芯的有效磁导率μe比材料的磁导率μi有所降低,降低的程度决定于磁芯的几何形状及尺寸。 开路磁芯有棒形、螺纹形、管形、片形、轴向引线磁芯等等。IEC 1332《软磁铁氧体材料分类》标准中称开路磁芯为OP类磁芯。 第二类磁芯为闭路磁芯。这类磁芯的磁路是闭合的(closed magnetic circuits),或基本上是闭合的。IEC 1332称闭路磁芯为CL类磁芯。磁路完全闭合的磁芯最典型的是环形磁芯。此外,还有双孔磁芯、多孔磁芯等等。

栏杆机控制器

MLC 580C N ,5131/04.02Phone:+49 7622/695-5Fax:+49 7622/695-602 e-mail:info@ac-magnetic.de https://www.doczj.com/doc/ca7115409.html,

Magnetic Control Systems Sdn.Bhd.No.16, Jalan Kartunis U1/47Temasya Ind.Park, Section U140150 Shah Alam, Selangor Darul Ehsan, Malaysia Phone:(+60) 3 / 55691718eMail: info@https://www.doczj.com/doc/ca7115409.html,.my Magnetic Control Systems (Shanghai) Co. Ltd.999 Ning-qiao Road, Bldg. 2W/1F Pudong New Area Shanghai 201206, China Phone:(+86) 21/ 58 341717eMail: magnetic@https://www.doczj.com/doc/ca7115409.html, Magnetic Automation Pty. Ltd.19 Beverage Drive Tullamarine, Victoria 3043, Australia Phone:(+61) 3 / 93 30 10 33eMail: info@https://www.doczj.com/doc/ca7115409.html, Magnetic Automation Corp.3160 Murrell Road Rockledge, FL 32955, USA Phone:(+1) 321/ 635 85 85eMail: info@https://www.doczj.com/doc/ca7115409.html, Magnetic Autocontrol Pvt.Ltd.Calve Chateau, 2B, IInd Floor Kilpauk 322 Poonamallee High Road IND Chennai, 600010 / India Phone:(+91) 44 6400 443eMail: magneticsales@https://www.doczj.com/doc/ca7115409.html,

德国magnetic栏杆机常见故障分析

德国Magnetic栏杆机的常见故障分析德国Magnetic自动栏杆机的核心部分是MLC控制器,控制器设置的正确与否直接影响栏杆机的正常工作。当栏杆机工作不正常时,请先确认是否是栏杆机的问题,是栏杆机哪个部分出现问题(如机械部分或控制部分),建议先将其他车道工作正常栏杆机控制器换到本车道,以确认是否是控制器出现问题;如果互换控制器后栏杆机工作正常,那么就确认本车道控制器有问题,请参照工作正常的控制器设置即可;如控制器重新设置后仍不能解决问题,请将控制器返回厂家维修。 以下是德国Magnetic自动栏杆机控制器的几种常见设置,可供参考。 1、控制器黑色按键和白色按键的作用: ?黑键:1)、手动控制抬杆; 2)、控制器编程时改变数值; 3)、控制器编程完毕后保存 ?白键:1)、手动控制落杆; 2)、控制器编程时确认数值; 3)、控制器编程完毕后不保存。 ?编程时,同时按下黑键和白键后数值下边出现光标。 ?同时按下黑键和白键持续四秒钟,控制器重启。 2、MLC控制器复位: ?同时按下黑键和白键持续四秒钟; ?将圆盘转至F,确认后可恢复到出厂设置; ?详见中文说明书第14页。 3、控制器圆盘开关各位置的功能 位置0:普通操作模式 位置1:程序代码 1—8

位置2:转矩时间 1—30秒 位置3:栏杆机开启时间 1—255秒 位置4:感应线圈A灵敏度 O一9 (0最小,9最大) 位置5:感应线圈B灵敏度 0—9(0最小,9最大) 位置6:检测器模式A0—8(见功能说明表) 位置7:检测器模式B0—8(见功能说明表) 位置8:感应线圈A/B频率 1 0,000Hz一90,000Hz 位置9:备用 位置A:计数模式 位置B:备用 位置C:备用 位置D:硬件错误控制器 16进制错误代码 位置E:语种选择德、英、法、西 位置F:出厂设置重设所有操作数据 4、模式设置: 将圆盘转至1,控制器有8种操作模式可供选择;详见中文说明书第16页。 5、控制器编程过程: (1)将圆盘开关转到所需位置; (2)同时按下黑色按键和白色按键; (3)使用黑色按键将数字滚动显示为所需的数值(光标位于正在变化的数字下方); (4)按下白色按键存储选中的数值或者将光标移到右边的一格; (5)按下黑色按键确认最终的数值或者按下白色按键取消输入的数值。 注意:完成编程后,请将圆盘开关转回到“0”位置(即普通操作模式) 6、感应线圈灵敏度设置: 将圆盘转至4或5(设置线圈A转至4,线圈B转至5);一般情况下灵敏度选择4-6,不宜太高或太低。详见中文说明书第16页。 7、检测器A、B的开启和关闭 将圆盘开关转至6和7分别设置检测器A、B的状态,如果A、B线圈都没有使用或只使用了一个检测器,那么就要关闭没有使用的检测器(将检测器A、B的数值设置为0,是关闭状态;检测器开启时数值是应该是1或2,一般用2。) 8、校准传感器/优化栏杆机动作

开关电源参数计算

(1)输入电压:185V AC~240V AC (2)输出电压1:+5VDC ,额定电流1A ,最小电流750mA ; (3)输出电压2:+12VDC ,额定电流1A ,最小电流100mA ; (4)输出电压3:-12VDC ,额定电流1A ,最小电流100mA ; (5)输出电压4:+24VDC ,额定电流1.5A ,最小电流250mA ; (6)输出电压纹波:+5V ,±12V :最大100mV (峰峰值);+24V :最大250mV (峰峰值) (7)输出精度:+5V ,±12V :最大± 5%;+24V :最大± 10%; (8)效率:大于80% 3. 参数计算 (1)输出功率: 5V 112V 1224V 1.565 out P A A A W =?+??+?= (3-1) (2)输入功率: 6581.2580%0.8 out in P W P W = == (3-2) (3)直流输入电压: 采用单相桥式不可控整流电路 (max)240VAC 1.414=340VDC in V =? (3-3) (min)185VAC 1.414=262VDC in V =? (3-4) (4)最大平均电流: (m a x ) (m i n )81.25 0.31262in in in P W I A V V == = (3-5) (5)最小平均电流: (min)(max) 81.250.24340 in in in P W I A V = = = (3-6) (6)峰值电流: 可以采用下面两种方法计算,本文采用式(3-8)的方法。

(min)max (min)(min)225581.25 1.550.4262out out out Pk C in in in P P P W I I A V D V V V ?== ====? (3-7) min 5.5 5.581.25 1.71262out Pk C in P W I I A V V ?== == (3-8) (7)散热: 基于MOSFET 的反激式开关电源的经验方法:损耗的35%是由MOSFET 产生,60%是由整流部分产生的。 开关电源的损耗为: (180%)81.25 20%16.25D in P P W W =?-=?= (3-9) MOSFET 损耗为: 35%16.2535% 5.69D MOSFET D P P W W -=?=?= (3-10) 整流部分损耗: (5)55( )60%()16.2560%0.756565D V D W W P P W W W W +=??=??= (3-11) (12)12122()60%2()16.2560% 3.66565D V D W W P P W W W W ±=???=???= (3-12) (242)3636()60%()16.2560% 5.46565D V D W W P P W W W W +=??=??= (3-13) (8)变压器磁芯: 采用天通的EER40/45,饱和磁通密度Bs 在25℃时大于500mT ,在100℃时大于390mT 。窗口有效截面积Ae=152.42mm 2。 所以,取 max 11 0.390.222 s B B T T = =?≈ (3-14) Ae=152.42mm 2 (3-15) (9)开关电源频率: 40f khz = (3-16) (10)开关电源最大占空比: max 0.4D = (3-17)

磁芯各参数详解

一、磁芯初始磁导率 磁感应强度与磁场强度的比值称为磁导率。 初始磁导率高:相同圈数感值大,反之亦然; 初始磁导率高:相同电流下容易饱和,反之亦然; 初始磁导率高:低频特性好,高频差,反之亦然; 初始磁导率高:相同产品价格高,反之亦然; 1、磁导率的测试仪器功能 磁导率的测量是间接测量,测出磁心上绕组线圈的电感量,再用公式计算出磁心材料的磁导率。所以,磁导率的测试仪器就是电感测试仪。在此强调指出,有些简易的电感测试仪器,测试频率不能调,而且测试电压也不能调。例如某些电桥,测试频率为100Hz 或1kHz,测试电压为0.3V,给出的这个0.3V并不是电感线圈两端的电压,而是信号发生器产生的电压。至于被测线圈两端的电压是个未知数。如果用高档的仪器测量电感,例如Agilent 4284A精密LCR测试仪,不但测试频率可调,而且被测电感线圈两端的电压及磁化电流都是可调的。了解测试仪器的这些功能,对磁导率的正确测量是大有帮助的。 2、材料磁导率的测量方法和原理 说起磁导率μ的测量,似乎非常简单,在材料样环上随便绕几匝线圈,测其电感,

找个公式一算就完了。其实不然,对同一只样环,用不同仪器,绕不同匝数,加不同电压或者用不同频率都可能测出差别甚远的磁导率来。造成测试结果差别极大的原因,并非每个测试人员都有精力搞得清楚。本文主要讨论测试匝数及计算公式不同对磁导率测量的影响。 2.1 计算公式的影响 大家知道,测量磁导率μ的方法一般是在样环上绕N匝线圈测其电感L,因为可推得L的表达式为: L=μ0 μN 2A/l (1) 所以,由(1)式导出磁导率的计算公式为: μ=Ll/μ0N 2A(2)式中:l为磁心的磁路长度,A为磁心的横截面积。 对于具有矩形截面的环型磁芯,如果把它的平均磁路长度l=π(D+d)/2就当作磁心的磁路长度l,把截面积A=h(D-d)/2,μ0=4π×10-7都代入(2)式得 二、饱和磁通密度 1.什么是磁通:磁场中垂直通过某一截面的磁感应线总数,称为磁通量(简称磁通) 2.什么是磁通密度:单位面积垂直通过的磁感应线的总数(磁通量)称为磁通密度,磁通密度即磁感应强度。

电源磁芯尺寸功率参数

常用电源磁芯参数 MnZn 功率铁氧体 EPC功率磁芯 特点:具有热阻小、衰耗小、功率大、工作频率宽、重量 轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热 性能稍差。 用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要 求的变压器,如精密仪器、程控交换机模块电源、导航设 备等。 EPC型功率磁芯尺寸规格 磁芯型号Type 尺寸Dimensions(mm) A B C D Emin F G Hmin EPC10/8 10.20±0.2 4.05±0.303.40±0.20 5.00±0.207.60 2.65±0.201.90±0.20 5.30 EPC13/13 13.30±0.3 6.60±0.304.60±0.205.60±0.2010.50 4.50±0.302.05±0.208.30 EPC17/17 17.60±0.5 8.55±0.306.00±0.307.70±0.3014.30 6.05±0.302.80±0.2011.50 EPC19/20 19.60±0.5 9.75±0.306.00±0.308.50±0.3015.80 7.25±0.302.50±0.2013.10 EPC25/25 25.10±0.512.50±0.38.00±0.3011.50±0.320.65 9.00±0.304.00±0.2017.00

EPC功率磁芯电气特性及有效参数

注:AL值测试条件为1KHz,0.25v,100Ts,25±3℃ Pc值测试条件为100KHz,200mT,100℃ EE、EEL、EF型功率磁芯

特点:引线空间大,绕制接线方便。适用围广、工作频 率高、工作电压围宽、输出功率大、热稳定性能好 用途:广泛应用于程控交换机电源、液晶显示屏电源、 大功率UPS逆变器电源、计算机电源、节能灯等领域。 EE、EEL、EF型功率磁芯尺寸规格 Dimensions(mm)尺寸 磁芯型号TYP A B C D Emin F EE5/5.3/2 5.25±0.15 2.65±0.15 1.95±0.15 1.35±0.15 3.80 2.00±0.15 EE8.3/8.2/3.6 8.30±0.30 4.00±0.25 3.60±0.20 1.85±0.20 6.00 3.00±0.15 EE10/11/4.8 10.20±0.30 5.60±0.30 4.80±0.25 2.50±0.257.50 4.40±0.30 EE12.8/15/3.6 12.70±0.307.40±0.30 3.60±0.25 3.60±0.258.60 5.50±0.30 EE13/12/6 13.20±0.30 6.10±0.30 5.90±0.30 2.70±0.309.80 4.70±0.30 EE13/13W 13.00±0.40 6.50±0.30 9.80±0.30 3.60±0.209.00 4.60±0.20 EE16/14/5 16.10±0.407.10±0.30 4.80±0.30 4.00±0.3011.70 5.20±0.20 EE16/14W 16.10±0.407.25±0.30 6.80±0.30 3.20±0.3512.50 5.60±0.30 EE19/16/5 19.10±0.408.00±0.30 4.85±0.30 4.85±0.3014.00 5.60±0.30 EE19/16W 19.30±0.408.30±0.307.90±0.30 4.80±0.3014.00 5.70±0.30 EE22/19/5.7 22.00±0.509.50±0.30 5.70±0.30 5.70±0.3015.60 5.70±0.30 EE25/20/6 25.40±0.5010.00±0.30 6.35±0.30 6.35±0.3018.60 6.80±0.30

开关电源磁芯主要参数

第5章开关电源磁芯主要参数 5.1 概述 5.1.1 在开关电源中磁性元件的作用 这里讨论的磁性元件是指绕组和磁心。绕组可以是一个绕组,也可以是两个或多个绕组。它是储能、转换和/或隔离所必备的元件,常把它作为变压器或电感器使用。 作为变压器用,其作用是:电气隔离;变比不同,达到电压升、降;大功率整流副边相移不同,有利于纹波系数减小;磁耦合传送能量;测量电压、电流。 作为电感器用,其作用是:储能、平波、滤波;抑制尖峰电压或电流,保护易受电压、电流损坏的电子元件;与电容器构成谐振,产生方向交变的电压或电流。 5.1.2 掌握磁性元件对设计的重要意义 磁性元件是开关变换器中必备的元件,但又不易透彻掌握其工作情况(包括磁材料特性的非线性,特性与温度、频率、气隙的依赖性和不易测量性)。在选用磁性元件时,不像电子元件可以有现成品选择。为何磁性元件绝大多数都要自行设计呢?主要是变压器和电感器涉及的参数太多,例如:电压、电流、频率、温度、能量、电感量、变比、漏电感、磁材料参数、铜损耗、铁损耗等等。磁材料参数测量困难,也增加了人们的困惑感。就以Magnetics公司生产的其中一种MPP铁心材料来说,它有10种μ值,26种尺寸,能在5种温升限额下稳定工作。这样,便有10×26×5= 1300种组合,再加上前述电压、电流等电参数不同额定值的组合,将有不计其数的规格,厂家为用户备好现货是不可能的。果真有现货供应,介绍磁元件的特性、参数、使用条件的数据会非常繁琐,也将使挑选者无从下手。因此,绝大多数磁元件要自行设计或提供参数委托设计、加工。 本章将介绍磁元件的一般特性,针对使用介绍设计方法。结合线性的具体形式的设计方法,以后还将进一步的介绍。 5.1.3 磁性材料基本特性的描述 磁性材料的特性首先用B-H平面上的一条磁化曲线来描述。以μ表示B/H,数学上称为斜率,表示为tanθ=B/h;电工上称为磁导率,如图5.1所示。由于整条曲线多处弯曲,因此有多个μ值称呼。另外,从不同角度考查也有不同称呼。

栏杆机

栏杆机 3.5基本机械结构 1.栏杆机臂 2.设置弹簧拉力的调节螺丝,带有安全夹 3.凸缘轴的紧固柄 4.橡胶缓冲块 5.连接件 6.电机的紧固柄 警告: 弹簧收紧后,弹簧及栏杆机臂对驱动装置(BDU)是加了相当大的力并因此产生了潜在的发生伤害的危险。 因此任何对于栏杆机臂驱动装置(BDU)的工作,必须在弹簧未被收紧并且栏杆机臂确保安全或被卸下的情况下才可以进行! 3.6测试/校准弹簧 所有栏杆机在生产工厂中都根据原配的栏杆机臂做了设置.但在使用时安装完栏杆机臂后进行栏杆机的第一次操作前,应该检查栏杆机臂的设置。 在栏杆机臂的重量被弹簧施加的拉力所平衡的情况下,栏杆机才可以正确运作。因此任何对于栏杆机臂的变动都必须根据如下步骤进行重新校准。 测试弹簧设置: 1.打开栏杆机箱体的门,卸下安装板,开启并取去封盖。 2.拔下电源插头。 3.手工将栏杆机臂调到约45°C角的位置后放开手。如果栏杆机臂稳定在此位置不动,说明此时 弹簧的调整是正确。 校准弹簧设置: 1.取下两个弹簧调节螺杆上的两个安全夹。同时拧紧或放松左右两根调节螺杆直至栏杆机臂在45°C角的位置保持稳定。 2.重新装上调节螺杆安全夹。 例外情况: 当栏杆机被设置为在发生电源故障的情况下自动打开,就需要比上面提到的更大的弹簧拉力(只有在栏杆机臂长度最大为3.5M 的情况下)。 请注意如果栏杆机在生产工厂中特别设置为这种打开方式,那么栏杆机臂在水平终点位置时不会锁止! 3.7校准栏杆机臂位置 要校准栏杆机臂位置(例如,在施加过度的力之后),请根据如下步骤进行: 1.打开栏杆机箱体的门,卸下安装板,开启并取出封盖。 2.按下黑色按键升起栏杆机臂。 3.将MLC控制器前面板上的旋转选择开关(图S0227)转到位置“1” 4.松开凸缘轴的紧固柄上的两个紧固螺钉,使得可以用手将栏杆机臂重新定位。 5.校准栏杆机臂的位置(垂直位置)。 6.使用扭矩扳手重新拧紧两个紧固螺钉(72Nm). 7.将MLC控制器选择开关(图S0227)转回到位置“0”。 4.电源连接

高速公路自动栏杆机控制模块维修实例

高速公路自动栏杆机控制模块维修实例 本人在成绵高速公路长期的维护工作中收集、总结的一些关于自动栏杆机控制模块的维护心得,供大家参考。 成绵高速公路自动栏杆机控制模块主要是恒富威和magnetic专业设计的自动栏杆机控制模块,主要用于栏杆机的控制。采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足高速公路环境下的应用。 下面我介绍下栏杆机控制模块面板的功能与接线 栏杆机控制模块中的数字代表意义货接法如下: “1”表示接电源L(火线)220V。“2”表示接电源N(零线)。“3”表示电源线地线。“4”表示电机接地线PE。“5”表示电机公共绕组U;接电机公共绕组U。“6”表示电机落杆绕组V;接电机绕组V。“7”表示电机升杆绕组W;接电机绕组W。“8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联)。“10、11”表示电机运行电容(4uF/AC450V)。“17”表示24V接地线。“18”表示表示电源+24V。“19”表示控制信号共用线(+24V)。“20”表示开脉冲,和控制信号共用线(+24V)短接有效。“21”表示环路感应器2输入(用于车辆到时自动提杆,用于6、8模式)。“22”表示关脉冲,和控制信号共用线(+24V)短接有效。“23”表示抬杆、落杆限位开关输入信号。“24”示安全开关,接常闭触点;断开时,系统不会执行落杆动作。“25”表示控制信号共用线(+24V),同“19”功能一样。“26”表示档杆状态输出公共触点。“27、28”完全等同于“20、22”表示计数输出,常开触点(300ms)。“29”表示抬杆状态输出触点。“30”表示落杆状态输出触点。“30、31”表示报警输出,常开触点。 栏杆机控制模块长期处于工作状态,每天控制栏杆上下达千次以上;是栏杆机易坏元件之一,下面我介绍常见几点常见的故障和实用的维修方法,供大家参考。 首先,维修设备之前,务必将故障设备的灰尘清除掉,养成这个习惯可以让你维修和检查故障起来轻松、准确许多。 故障一控制模块无电现象 控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件,如变压器,电容,电阻等有无出现变形,断裂,松动,磨损,冒烟,腐蚀等情况。其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动;以确定设备运行状况以及发生故障的性质和程度。 如某站一道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。我在更换前观察其他元件外表是否变形断裂,用手触摸电容、电感等接头有无松动。其次我就用万用表跑线,看是否有短路现象。经我检查后初步判定为保险丝被击穿,准备替换。替换前应认清被替换元器件的型号和规格。(同时替换某些元件时还应该注意方向。)最后我将同一型号的保险丝替换上并加电,控制模块工作灯亮起,用外用表测试控制模块,修复。 有时,无电现象还由变压器(PIN9 0-115V PIN16 115V-0)损坏造成的。控制模块变压器的13、14脚8V 2.4V A;15、16脚1.8V 5.4V A。首先观察变压器是否变形,有无焦味。再用外用表测试进电是否有电,出电是否和变压器上标示的一样则可判断变压器是否损坏。修复方法同上。 车辆过后栏杆无法下落 有的时候还会出现,自动栏杆在过车以后偶尔无法降杆,这往往也是栏杆机内部的控制模块工作紊乱导致。此时,只要对其进行重新复位,就能够很快恢复正常。操作方法:按下控制模块上RESET红色小键即复位,或者将栏杆机电源重开关一次即可修复。

相关主题
文本预览
相关文档 最新文档