当前位置:文档之家› 电子管音频放大器技术基础6

电子管音频放大器技术基础6

电子管音频放大器技术基础6
电子管音频放大器技术基础6

录音技术基础知识

录音技术基础知识

录音技术基础知识 基本录音/多轨录音 无论是盒式磁带录音机、数码多轨录音机、硬盘录音机,还是其它录音媒体,其录音过程大致相同,目的都是将声音获取到缩混带上。 做此工作,录音工程师采用两个步骤: 1、多轨录音——各种乐器和人声的录音与叠加录音的过程,每种录音都有各自的“音轨”。 2、多轨缩混——将这些多轨内容同步录在一组立体声轨上(“母带录音”),可以用某种播放系统如CD播放机或磁带卡座等进行再制作。 录音基础/多轨录音 多轨录音指多种乐器或人声的互相“叠加”,以便在播放任意一种音色时,同时听到其它的音色。有的录音设备具备将不同乐器录在每个“轨”上的能力。多轨录音好比将16个盒带录音机的磁带并列在一起。就成为16轨磁带(实际32轨,因为盒式磁带是立体声,有两个轨),从而具备了每轨录制不同乐器的潜力。 换言之,假如您为一个鼓手、一个贝司和一

个伴奏吉他手弹奏的曲子录音,用一台多轨录音机将每种乐器录在各自轨上。由于是一起演奏的曲子,音符要互相合拍,播放时,听起来仍好象几个乐手在一起演奏一般。如果您要在歌曲中加入一个主音吉他,既然每个乐器都录在各自音频上,就要先播放前三个轨,使吉他手在第四轨上录制主音吉他时,能与其它乐器“合拍”。这个过程就叫叠加。 按传统方式,录音师要先录制“节奏轨”,包括:鼓、贝司、伴奏吉他、键盘以及一个将被替换的主音人声,所有都录在一起。下一步,录音师开始做叠加,加入其它节奏,主声部,背景人声,所有其它乐器,最后录制主音人声。而现代录音方式通常是一次制作一个轨,按排序的乐器、鼓的循环,或者人声开始录音。 关键点是最终你的乐器必须被同时录制在一起。一旦完成后,混音过程才能开始。 录音基础/多轨缩混 缩混的目的是将你所录制的轨道缩到两个轨道(立体声)上或一个轨(单声)上。这样就可以在传统的播放系统如卡带或CD播放机上

电子管音频功率放大器,以其卓越的重放音质,广受HiFi发烧

电子管音频功率放大器,以其卓越的重放音质,广受HiFi发烧友的青睐。市售成品电子管功放动辄数千元,乃至上万元,如此高价是大多数爱好者无法企及的。爱好者说得好:“自己动手,丰衣足食”。只要你有一定的电子知识和一定的动手能力,自制一台物美价廉的电子管功放并非难事。电子管功放较之晶体管功放,看似庞大复杂,但当你了解了电子管电路的工作方式后,会发现,电子管劝放电路较之晶体管分立元件功放相对简洁,所用元件也少得多。除输出变压器自制有一定难度外,其他元器件只要选配得当,电路调试有方,一台靓声的电子管功放就会在你的手上诞生。 本章先对自制电子管功放的元件选配、安装程序、调试技巧及关键制作要领作一简要介绍。当你胸有成竹,跃跃欲试时,就可以动手操作了。 第一节电子管功放的装配与焊接技巧 一、搭棚焊接方式 国内外许多著名的电子管功率放大器过去和现在均采用搭棚式装配焊接方式。因为,搭棚式接法的优点是布线可走捷径,使走线最近,达到合理布线。另外,电子管功放的元件数量不多,体积较大,借助元件引脚,即可搭接,减少了过多引线带来的弊病。只要布局合理,易收到较好的效果。图8—1为搭棚式接法示意图。 搭棚式接法一般将功放机内的各种元器件分为3—4层,安装元件的步骤是由下而上。接地线与灯丝走线一般置于靠近底板的最下层,其地线贴紧底板,并保持最好的接触;第二层多为各电子管阴极与栅极接地的元器件。注意同一管子阴极与栅极的相关元件接地最好就近在同一点接地;第三层是各放大级之间的耦合电容等元件;最上层则为以高压架空接法连接的阻容等元件。高压元件置于上层可以有效地防止高压电场对各级电路造成的干扰。 二、关于一点接地 一点接地,在电子管功放电路的布线中是一项值得重视的措施。图8—2为一点

音频、视频技术基础习题3

《音频、视频技术基础》习题3 一、单项选择题 1.压缩编码技术,就是指用某种方法使数字化信息的()降低的技术。 A、采样率 B、传输速率 C、数据量 D、编码率 2.()决定了声音的动态范围。 A、声音大小 B、量化位数大小 C、采样频率 D、压缩技术 3.人类听觉的声音频率是()。 A、0~20Hz B、20Hz~20KHz C、20Hz~340Hz D、20KHz以上 4.人类接受的信息约70%来自于()。 A、阅读 B、听觉 C、视觉 D、触觉 5.Premiere Pro中输出视频的快捷键是()。 A、ctrl+Alt+M B、Shift+M C、ctrl+shift+M D、ctrl+M 6.构成视频信息的基本单元是()。 A、帧

B、画面 C、幅 D、像素 7.关于声音数字化技术中的量化位数叙述正确的是()。 A、量化位数是指一秒种内对声波模拟信号采样的次数 B、量化位数是指每个采样点十进制数据的位数 C、量化位数是指每个采样点十六进制数据的位数 D、量化位数是指每个采样点二进制数据的位数 8.一般来说,要求声音的质量越高,则()。 A、量化级数越低采样频率越高 B、量化级数越低采样频率越低 C、量化级数越高采样频率越低 D、量化级数越高采样频率越高 9.波形文件是采集各种声音的机械振动而得到的数字文件,其后缀是()。 A、wav B、mpga C、mp3 D、voc 10.超声波的频率范围是()。 A、高于20KHz B、低于20Hz C、低于20KHz D、高于20Hz,低于20KHz 11.以下软件中不是声音编辑软件的是()。 A、Windows“录音机” B、Winamp C、SoundForge D、Cool Edit Pro 12.用()软件可以将自己需要的VCD片段从VCD光盘中截取出来。 A、超级解霸

电子管功放

认真看完这个帖子,相信你就可以做成电子管功放了. 1,图纸可同时用于6P3P(6L6GC)家族和6550家族,这两种管子现在各厂都在生产。其中6P3P,6N8P库存较多,不容易被炒作涨价。 2,采用6P3P输出功率为20W,采用6550输出功率为60W。 3,额定功率失真小于0.4%,功率管已配对。 4,R2参考中心值15K,调节R2使帘栅极供电电压为285V。如有条件,帘栅极请采用稳压供电。 5,采用6P3P时,R1参考中心值75K,调节R1使6P3P屏流为32mA;采用6550时,R1参考中心值51K,调节R1使6550屏流为41mA。

直到今日,我评测一个胆机的最重要指标仍然是失真,尽管在很多主观流派中认为失真并不重要,甚至失真低=没韵味。然而多年的实际测试和听音经验告诉我,越是低失真的胆机,给我带来的主观听感越好,韵味更丰富。 如果你一个无视指标的爱好者,看到这里也可以结束了,本帖并不适合你。 下面开始介绍推挽胆机的一些设计理念和tips,我希望对于自己设计的爱好者能起到帮助作用。 在传统的推挽电路结构中,常见结构为以下几种: 1,电压放大+长尾倒相+功率级。优点是增益高,用管少,开环频响较好;缺点是长尾倒相级对称性一般,需仔细调试。 2,差分放大+(驱动)+功率级。优点是倒相对称性优秀,开环频宽较好;缺点是需要多一组负电源,不增加驱动级开环增益较低。 3,自平衡倒相+(驱动)功率级。优点是用管少,增益适中;缺点是倒相级对称性一般,频响较窄。 4,电压放大+屏阴分割+(驱动)+功率级。优点是用管少,倒相级无需调试;缺点是不加设驱动级增益低,频宽较窄。 由于架构1在用管,增益和稳定性方面都适中,比较适合初学者制作,本帖讨论将以一个电压放大+长尾倒相的推挽胆机架构作为分析对象。 A,输入级:架构1的输入级主要作用是提高电路的开环增益,为长尾倒相级提供合适的直流偏置。 由于长尾倒相级自身有一定增益,并不需要太大的输入电压,输入级可由多种方式组成:共阴,SRPP,叠串,u跟随 为了比较这些放大方式,我做了一次实验来测试比较它们的失真度,见表1

电子管基础知识(最适合初学者)

一起来学习电子管基础知识(最适合初学者) 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要1 20W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,F U50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右 关于电子管特性曲线的知识可以参照 以下链接:/dispbbs.asp?boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况

数字音频基础知识

第一章数字音频基础知识 主要内容 ?声音基础知识 ?认识数字音频 ?数字音频专业知识 第1节声音基础知识 1.1 声音的产生 ?声音是由振动产生的。物体振动停止,发声也停止。当振动波传到人耳时,人便听到了声音。 ?人能听到的声音,包括语音、音乐和其它声音(环境声、音效声、自然声等),可以分为乐音和噪音。 ?乐音是由规则的振动产生的,只包含有限的某些特定频率,具有确定的波形。 ?噪音是由不规则的振动产生的,它包含有一定范围内的各种音频的声振动,没有确定的波形。 1.2 声音的传播 ?声音靠介质传播,真空不能传声。 ?介质:能够传播声音的物质。 ?声音在所有介质中都以声波形式传播。 ?音速 ?声音在每秒内传播的距离叫音速。 ?声音在固体、液体中比在气体中传播得快。 ?15oC 时空气中的声速为340m/s 。 1.3 声音的感知 ?外界传来的声音引起鼓膜振动经听小骨及其他组织传给听觉神经,听觉神经再把信号传给大脑,这样人就听到了声音。 ?双耳效应的应用:立体声 ?人耳能感受到(听觉)的频率范围约为20Hz~ 20kHz,称此频率范围内的声音为可听声(audible sound)或音频(audio),频率<20Hz声音为次声,频率>20kHz声音为超声。 ?人的发音器官发出的声音(人声)的频率大约是80Hz~3400Hz。人说话的声音(话音voice / 语音speech)的频率通常为300Hz~3000 Hz(带宽约3kHz)。 ?传统乐器的发声范围为16Hz (C2)~7kHz(a5),如钢琴的为27.5Hz (A2)~4186Hz(c5)。 1.4 声音的三要素 ?声音具有三个要素: 音调、响度(音量/音强)和音色 ?人们就是根据声音的三要素来区分声音。 音调(pitch ) ?音调:声音的高低(高音、低音),由―频率‖(frequency)决定,频率越高音调越高。 ?声音的频率是指每秒中声音信号变化的次数,用Hz 表示。例如,20Hz 表示声音信号在1 秒钟内周期性地变化20 次。?高音:音色强劲有力,富于英雄气概。擅于表现强烈的感情。 ?低音:音色深沉浑厚,擅于表现庄严雄伟和苍劲沉着的感情。 响度(loudness ) ?响度:又称音量、音强,指人主观上感觉声音的大小,由―振幅‖(amplitude)和人离声源的距离决定,振幅越大响度越大,人和声源的距离越小,响度越大。(单位:分贝dB) 音色(music quality) ?音色:又称音品,由发声物体本身材料、结构决定。 ?每个人讲话的声音以及钢琴、提琴、笛子等各种乐器所发出的不同声音,都是由音色不同造成的。 1.5 声道

音频功率放大器的设计报告

音频功率放大器的设计报告 目录 一、设计任务和要求 (2) 二、设计方案的选择与论证 (2) 三、电路设计计算与分析 (4) UA741介绍 (4) 前级电路原理图及仿真结果 (5) (6)TDA2030介绍·················································· 音频功放电路原理图及仿真结果 (7) 结果与分析 (8) 总原理图 (9) PCB图 (10) 四、总结及心得 (12) 五、附录 (14) 六、参考文献 (15)

音频功率放大器的设计 一、设计任务和要求 1、设计任务 设计一音频功率放大器,满足: (1)、输出功率为1W---2W; (2)、输出阻抗8-16欧姆; (3)、带宽:100Hz—10KHz; 2、设计要求 (1)、根据设计指标,确定电路的理论设计; (2)、学会合理的选择电路的元器件; (3)、利用multisim软件完成对相关电路模块的仿真分析; (4)、按时提交课程设计报告,画出设计电路图,交一份A3的图纸,完成相 应的答辩; 二、设计方案的选择与论证 音频功率放大器,简称音频功放,该设备主要用于推动扬声设备发声,因而,在很多电子设备上均有应用,比如,手机、电脑、电视机、音响设备等,是我们生活、学习不可或缺的重要设备,为我们的生活带来了很多便利。 音频功率放大器实际上就是对比较小的音频信号进行放大,使其功率增加,然后输出。前置放大主要完成对小信号的放大,使用一个同向放大电路对输入的音频小信号的电压进行放大,得到后一级所需要的输入。后一级的主要对音频进行功率放大,使其能够驱动电阻而得到需要的音频。设计时首先根据技术

录音技术基础知识

录音技术基础知识基本录音/多轨录音 无论是盒式磁带录音机、数码多轨录音机、硬盘录音机,还是其它录音媒体,其录音过程大致相同,目的都是将声音获取到缩混带上。 做此工作,录音工程师采用两个步骤: 1、多轨录音——各种乐器和人声的录音与叠加录音的过程,每种录音都有各 自的“音轨”。 2、多轨缩混——将这些多轨内容同步录在一组立体声轨上(“母带录音”),可 以用某种播放系统如CD播放机或磁带卡座等进行再制作。 录音基础/多轨录音 多轨录音指多种乐器或人声的互相“叠加”,以便在播放任意一种音色时,同时听到其它的音色。有的录音设备具备将不同乐器录在每个“轨”上的能力。多轨录音好比将16个盒带录音机的磁带并列在一起。就成为16轨磁带(实际32轨,因为盒式磁带是立体声,有两个轨),从而具备了每轨录制不同乐器的潜力。 换言之,假如您为一个鼓手、一个贝司和一个伴奏吉他手弹奏的曲子录音,用一台多轨录音机将每种乐器录在各自轨上。由于是一起演奏的曲子,音符要互相合拍,播放时,听起来仍好象几个乐手在一起演奏一般。如果您要在歌曲中加入一个主音吉他,既然每个乐器都录在各自音频上,就要先播放前三个轨,使吉他手在第四轨上录制主音吉他时,能与其它乐器“合拍”。这个过程就叫叠加。 按传统方式,录音师要先录制“节奏轨”,包括:鼓、贝司、伴奏吉他、键盘以及一个将被替换的主音人声,所有都录在一起。下一步,录音师开始做叠加,加入其它节奏,主声部,背景人声,所有其它乐器,最后录制主音人声。而现代

录音方式通常是一次制作一个轨,按排序的乐器、鼓的循环,或者人声开始录音。 关键点是最终你的乐器必须被同时录制在一起。一旦完成后,混音过程才能开始。 录音基础/多轨缩混 缩混的目的是将你所录制的轨道缩到两个轨道(立体声)上或一个轨(单声)上。这样就可以在传统的播放系统如卡带或CD播放机上今昔播放了。 按传统方法,多轨录音机连在多通道的调音台上,这样每一个轨在调音面板上都可以被单独进行处理了。换句话说,多轨录音机的每一个输出都连接到调音台的每一个输入通道上,从那里再进行合并,成为单一的立体声输出。这个立体声的输出可以连接到母带处理机上录制立体声信号。 在合并许多通道到两个通道时,调音台还处理其它一些重要工作,如: -调节乐器的频率内容,一般称为EQ。 -给乐器增加效果,如混响,回声或合唱。 -调节每一轨的音量,保证不会有单独的乐器音量太过于大或者小。 如今,多轨录音机,多通道调调音台,均衡和效果器上的所有功能都可以集中在一个装置上。而且还可以用光盘刻录机、数码录音机或硬盘作为母带处理机。当然重要的是您的曲子中的所有的乐器都被录音、加工、缩混最后成为一种媒介而被大众听到。 一般连接端子 输入端子 在开始录音之前,你需要将乐器或者是话筒连接到录音机或调音台的输入部分。可能你会注意到有一些不同的连接类型,如:RCA型(在家用的立体声设备上也可

6p3p电子管功放制作心得

电子报/2013年/7月/14日/第015版 音响技术 6P3P电子管功放制作心得 江苏陈洪伟 胆机是音响放大器中古老而又经久不衰的长青树,其显著的优点是声音甜美柔和自然,尤其动态范围之大,线性之好,绝非其他放大器所能轻易替代。对于刚刚接触电子管放大器的爱好者来说,选择简洁、优秀的单端甲类电路为首选。单端甲类电子管功放具有音色圆润、甜美,制作成功率高的特点。本文介绍的线路采用524P整流,6N1前级输入,6P3P功率放大,采用标准接法。6P3P为入门级产品,品质相当出众,低廉的价格使制作成本较低。只要设计合理,精心制作,也能将6P3P玩到发烧境界。更重要的是,本线路让那些刚刚喜欢上电子管功放的初级发烧友,通过尝试逐步熟悉电子管功放的制作。 一、电路原理 如图1所示。该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。功率管6P3P采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源相连。这种接法的特点是放大效率高。6P3P栅-负压19V,屏极电压300V,屏级电流60mA。输出功率约7.5W,能够满足一般家居环境放音要求。 电源电路采用传统的电子管整流,CLC型滤波器,使整机音色达到和谐与平衡。电子管整流在开机时的预热过程具有保护功率电子管的作用,这一点在使用天价电子管时显得尤为重要。CLC型滤波方式滤波效果好,电源内阻低,对降低噪音,提高整机动态有极大的益处。 输出变压器是电子管功放电路的重要部件,如果自制条件不具备,可以构买成品。本机所用输出变压器铁芯为32mmx65mm,初极3300圈,分两层。线径为Φ0.82mm;次级共172圈,分三层,所用线径为Φ0.82mm。硅钢片空气隙0.08mm,工作电流70mA、功率10W。 二、装配 本机线路简洁,所用元件较少,可采用搭棚焊接,制作调试简单,成功率高。制作时可以三焊接电源与灯丝供电部分,电源正常之后再焊接放大电路,要注意的是,电源空载时,电压稍高,电容耐压一定要满足要求。 三、检测与调试 首先检查电路焊接有无质量问题,有无虚焊,漏焊,短路,断路,焊渣线头是否清理干净。 通电前测直流高压电源对地(高压电路两端)电阻,数值应接近或等于泄放电阻的阻值。测量交流进电电路与地之间的阻值,数值应该无穷大。测量输出有无开路(阻值无穷大)或短路(阻值约为零),正常数值应接近负载的直流电阻。测量电压放大级、推动级电源对地电阻,数值应大于泄放电阻。 通电测量:不插功放管通电测量功放管阳极直流电压值,空载数值应是交流电压有效直的1.2~1.4倍。测量次高压电压,空载直流电压应接近或等于阳极电压。测量功放管栅极偏压,数值应接近预定电压值。同时应将每只功放管的栅极负压调至最大值(负)。测量电压放大级、推动级电压值,每级阳极电压应接近或等于设置的工作电压值。 调整功放管静态电流插上功效管接好音箱,断开环路负反馈电路。开机,将直流电压表红表笔接阴极,黑表笔插在机箱的螺丝孔内,调整固定栅偏压可调电阻,边调边观察电压读数。这个过程中一定要细心,动作要慢,每次调整电位器的幅度一定要小。用电压读数除以阴极电阻值,即是管子的静态电流。 四、注意事项

音频放大器原理图

音频放大器原理图 音频放大器已经有快要一个世纪的历史了,最早的电子管放大器的第一个应用就是音频放大 器。然而直到现在为止,它还在不断地更新、发展、前进。主要因为人类的听觉是各种感觉中的相当重要的一种,也是最基本的一种。为了满足它的需要,有关的音频放大器就要不断地加以改进。 音频放大器简介 进入21世纪以后,各种便携式的电子设备成为了电子设备的一种重要的发展趋 势。从作为通信工具的手机,到作为娱乐设备的MP3播放器,已经成为差不多人人 具备的便携式电子设备。陆续将要普及的还有便携式电视机,便携式DVD等等。所 有这些便携式的电子设备的一个共同点,就是都有音频输出,也就是都需要有一个音频放大器;另一个特点就是它们都是电池供电的。都希望能够有较长的使用寿命。就是在这种需求的背景下,D类放大器被开发出来了。它的最大特点就是它能够在保持 最低的失真情况下得到最高的效率。 高效率的音频放大器不只是在便携式的设备中需要,在大功率的电子设备中也需 要。因为,功率越大,效率也就越重要。而随着人们的居住条件的改善,高保真音响设备和更高档的家庭影院也逐渐开始兴起。在这些设备中,往往需要几十瓦甚至几百瓦的音频功率。这时,低失真、高效率的音频放大器就成为其中的关键部件。 音频放大器背景 音频放大器的目的是在产生声音的输出元件上重建输入的音频信号,信号音量和 功率级都要理想一一如实、有效且失真低。音频范围为约20Hz?20kHz,因此放大 器在此范围内必须有良好的频率响应(驱动频带受限的扬声器时要小一些,如低音喇 叭或高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV或PC 音频的数瓦,再到迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商 用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。 音频放大器的一种简单模拟实现方案是采用线性模式的晶体管,得到与输入电压 成比例的输出电压。正向电压增益通常很高(至少40dB)。如果反馈环包含正向增益, 则整个环增益也很高。因为高环路增益能改善性能,即能抑制由正向路径的非线性引起的失真,而且通过提高电源抑制能力(PSR)来降低电源噪声,所以经常采用反馈。 音频放大器类别 长期以来,高品质音频放大器的工作类别,只限于A类(甲类)和AB类(甲乙类)。

常见的电子管功放是由 功率放大

常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要120W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。 3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W 输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列)目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,FU50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。 工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右 关于电子管特性曲线的知识可以参照

音视频技术基本知识一

https://www.doczj.com/doc/c59044335.html, 音视频技术基本知识一 网易视频云是网易倾力打造的一款基于云计算的分布式多媒体处理集群和专业音视频技术,为客户提供稳定流畅、低时延、高并发的视频直播、录制、存储、转码及点播等音视频的PaaS服务。在线教育、远程医疗、娱乐秀场、在线金融等各行业及企业用户只需经过简单的开发即可打造在线音视频平台。现在,网易视频云总结网络上的知识,与大家分享一下音视频技术基本知识。 与画质、音质等有关的术语 这些术语术语包括帧大小、帧速率、比特率及采样率等。 1、帧 一般来说,帧是影像常用的最小单位,简单的说就是组成一段视频的一幅幅图片。电影的播放连续的帧播放所产生的,现在大多数视频也类似,下面说说帧速率和帧大小。 帧速率,有的转换器也叫帧率,或者是每秒帧数一类的,这可以理解为每一秒的播放中有多少张图片,一般来说,我们的眼睛在看到东西时,那些东西的影像会在眼睛中停留大约十六分之一秒,也就是视频中只要每秒超过15帧,人眼就会认为画面是连续不断的,事实上早期的手绘动画就是每秒播放15张以上的图片做出来的。但这只是一般情况,当视频中有较快的动作时,帧速率过小,动作的画面跳跃感就会很严重,有明显的失真感。因此帧速率最好在24帧及以上,这24帧是电影的帧速率。 帧大小,有的转换器也叫画面大小或屏幕大小等,是组成视频的每一帧的大小,直观表现为转换出来的视频的分辨率的大小。一般来说,软件都会预置几个分辨率,一般为320×240、480×320、640×360、800×480、960×540、1280×720及1920×1080等,当然很多转换器提供自定义选项,这里,不得改变视频长宽比例。一般根据所需要想要在什么设备上播放来选择分辨率,如果是转换到普通手机、PSP等设备上,视频分辨率选择与设备分辨率相同,否则某些设备可能会播放不流畅,设备分辨率的大小一般都可以在中关村在线上查到。 2、比特率 比特率,又叫码率或数据速率,是指每秒传输的视频数据量的大小,音视频中的比特率,是指由模拟信号转换为数字信号的采样率;采样率越高,还原后的音质和画质就越好;音视频文件的体积就越大,对系统配置的要求也越高。 在音频中,1M以上比特率的音乐一般只能在正版CD中找到,500K到1M的是以APE、FLAC等为扩展名的无损压缩的音频格式,一般的MP3是在96K到320K之间。目前,对大多数人而言,对一般人而言192K就足够了。 在视频中,蓝光高清的比特率一般在40M以上,DVD一般在5M以上,VCD一般是在1M 以上。(这些均是指正版原盘,即未经视频压缩的版本)。常见的视频文件中,1080P的码率一般在2到5M之间,720P的一般在1到3M,其他分辨率的多在一M一下。 视频文件的比特率与帧大小、帧速率直接相关,一般帧越大、速率越高,比特率也就越大。当然某些转换器也可以强制调低比特率,但这样一般都会导致画面失真,如产生色块、色位不正、出现锯齿等情况。

关于音频功率放大器的常识

关于音频功率放大器的常识 一、分类 音频功率放大器从材料组成分为以下几类: ?电子管功放(电压放大器) ?晶体管功放(电流放大器) ?场效应管功放(电流放大器) ?集成电路功放 ?数字功放 音频功率放大器从用途分为以下几类:HIFI音乐功放和AV家庭音响功放。 其中HIFI音乐功放的特点是保真度高、电路简捷、用料讲究。功放的功能是信号放大或振荡。功放是对一定频率的信号的放大,在放大的过程中存在两种失真:偶次谐波失真、奇次谐波失真。其中偶次谐波失真比较符合人耳的听觉,特性“温暖、柔和”;奇次谐波失真是“生硬、刺耳”的金属声。 常规AV家庭音响规格是5.1或7.2,数字具体指音箱数量。家庭AV音箱中低音炮单独带功放,剩余音箱的功放整合至一个设备。由于AV音响的声场特殊性,常规AV音响带有分频器。 连接音响的线材通常使用无氧铜线材。 音响系统有点声源和矩阵声源两种声源模式,点声源适合小范围的音乐欣赏,矩阵声源适合大场景的表演欣赏。听者与声源的距离呈现效果反馈了设备的性能,常规频率响应数据是,每当听者与声源的距离增加1倍的时候,功放的功率要增加4倍,音箱的灵敏度要增加6dB。 功放的核心元件是具有功率放大功能的电子管、晶体管、场效应管、集成电路和数字电路。周边器件是日产黑金刚、红宝石等具有电源滤波功能的大电解电容。还有就是美国DALE电阻、日本ROA电阻、RXJX 无感线绕电阻。金属膜电阻或者大红袍电阻的主要功能是给电路提供电源,提供信号放大电路,减少交流

声。常规功放电路也会用到整流器来处理电平。 另外,功放电路离不开电源变压器,常用的电源变压器是环形变压器。电源变压器需要在一次侧与二次侧中间做静电屏蔽。需要注意如果隔离层引出线焊接不良或接地不良将造成电位差增大,出现交流声。常规处理办法是低阻抗,平衡式输入方式,能够最大程度地降噪。 在处理噪声方面,常规的做法还有母线接地即一点接地,这样可减小电位差,防止噪声干扰。 另外,电路上会引入几个负反馈原理,常规方式是级间负反馈、电流负反馈、整机负反馈。这样做可以达到输入阻抗高、输出阻抗低、控制力强、失真小、解析力强的整体效果。 电子管功放的特征围绕核心器件电子管,电子管是电流传导的功能,主要作用是整流和检波。电子管的动态特性有放大系数μ,跨系S、内阻Ri。电子管功放的特点是信号失真明显。 晶体管和场效应管功放的核心器件是晶体管或场效应管,主体常常由三极管(集电极、基极、栅极)构成的半导体材料。三极管分类又有半导体材料和极性分类、结构及制造工艺分类、电流容量分类、工作效率分类、封装结构分类、功能用途分类等。 功放电路由两部分组成,前级和后级。 前级电路的作用是切换音源、处理信号、控制音量。前级负责将信号整理和调整,使音乐信号在进入后级前得到缓冲、等化、调整。常规情况下前级的放大倍率为10倍。前级的组成有音源切换开关、音量电位器、音源输入、音源选择、控制音量。前级的信号流向是输入----信号切换----左右平衡----音量控制----放大电路----静音开关----输出。前级处理了阻抗的降低,之后连接到输出端。前级放大是将信号放大到额定电平,常规是1V左右。前级完成音质控制、美化声音,将音响系统的频率特性控制到高保真的音质水平。音频的频响是5Hz到35Hz 。

电子管功放电路大全

电子管功放电路大全

本贴图纸都经过实做验证,转载请注明出处。 6L6G(6P3P推挽1,输出功率25W THD=0.3% EL84(6P14)推挽,输出功率15W

前级 1(12AX7+12AU7) Lin XU in. 1G0/3V 4.71 迁 imv V4/V7 Fl 再4 ETB5 CT/C1D 卜 0血. mny FT 翻 B20 /I23 WB0 6SK Rir/Tr ' F=,制 1? R1/E2 ■=20 I 3LIK .K22 ^TOK CJ L/D12 seouF EUd^TJl ^L.D Lkai t i bv Jul a 6h hifidir Cft/ra F 「I -; T WO'/ ㈣ 3K Lfb/'Rfl

Lin /Kir 150K R3/R7 15K R2/R6 1.2K稳庄 10u 22K-- RW5 150K L _ 1 0.1 u0.1 U J-. C1/C2 厂。眈4 厂 信号 输入 R1/R8 IM R12R13 /R1 7 470K75tJ 4-30 CIV C5 lOu* 385/ + R14 /R15 56K 12/IU7 1U 05)06豔Xt RI9 /R19 4 7 Oik 1DK R12 R10/R11 前级2(12AX7+6DJ8) Gir o 4K +30(V Lin 信号 /Kin辆天 2K ZIOK R5 R4卜 /R41 3.3K 270K R2 ZR2 ‘ 3 " 1 $4 压 至 r VI, V2^12AX7; V3=E36CC/6S2£ C3/C3P 4.TuF Lout /Rout R9 4.70K lOuf RIO IO皿 Ell LOOK CUD

录音技术基础知识

录音技术基础知识 基本录音/多轨录音 无论是盒式磁带录音机、数码多轨录音机、硬盘录音机,还是其它录音媒体,其录音过程大致相同,目的都是将声音获取到缩混带上。 做此工作,录音工程师采用两个步骤: 1、多轨录音——各种乐器和人声的录音与叠加录音的过程,每种录音都有各自的“音轨”。 2、多轨缩混——将这些多轨内容同步录在一组立体声轨上(“母带录音”),可以用某种播 放系统如CD播放机或磁带卡座等进行再制作。 录音基础/多轨录音 多轨录音指多种乐器或人声的互相“叠加”,以便在播放任意一种音色时,同时听到其它的音色。有的录音设备具备将不同乐器录在每个“轨”上的能力。多轨录音好比将16个盒带录音机的磁带并列在一起。就成为16轨磁带(实际32轨,因为盒式磁带是立体声,有两个轨),从而具备了每轨录制不同乐器的潜力。 换言之,假如您为一个鼓手、一个贝司和一个伴奏吉他手弹奏的曲子录音,用一台多轨录音机将每种乐器录在各自轨上。由于是一起演奏的曲子,音符要互相合拍,播放时,听起来仍好象几个乐手在一起演奏一般。如果您要在歌曲中加入一个主音吉他,既然每个乐器都录在各自音频上,就要先播放前三个轨,使吉他手在第四轨上录制主音吉他时,能与其它乐器“合拍”。这个过程就叫叠加。 按传统方式,录音师要先录制“节奏轨”,包括:鼓、贝司、伴奏吉他、键盘以及一个将被替换的主音人声,所有都录在一起。下一步,录音师开始做叠加,加入其它节奏,主声部,背景人声,所有其它乐器,最后录制主音人声。而现代录音方式通常是一次制作一个轨,按排序的乐器、鼓的循环,或者人声开始录音。 关键点是最终你的乐器必须被同时录制在一起。一旦完成后,混音过程才能开始。 录音基础/多轨缩混 缩混的目的是将你所录制的轨道缩到两个轨道(立体声)上或一个轨(单声)上。这样就可以在传统的播放系统如卡带或CD播放机上今昔播放了。 按传统方法,多轨录音机连在多通道的调音台上,这样每一个轨在调音面板上都可以被单独进行处理了。换句话说,多轨录音机的每一个输出都连接到调音台的每一个输入通道上,从那里再进行合并,成为单一的立体声输出。这个立体声的输出可以连接到母带处理机上录制立体声信号。 在合并许多通道到两个通道时,调音台还处理其它一些重要工作,如: -调节乐器的频率内容,一般称为EQ。 -给乐器增加效果,如混响,回声或合唱。 -调节每一轨的音量,保证不会有单独的乐器音量太过于大或者小。 如今,多轨录音机,多通道调调音台,均衡和效果器上的所有功能都可以集中在一个装置上。而且还可以用光盘刻录机、数码录音机或硬盘作为母带处理机。当然重要的是您的曲子中的所有的乐器都被录音、加工、缩混最后成为一种媒介而被大众听到。 一般连接端子 输入端子 在开始录音之前,你需要将乐器或者是话筒连接到录音机或调音台的输入部分。可能你会注

毕业设计-音频功率放大器

音频功率放大器的设计 内容提要: 本文介绍了音频功率放大器构成、功能、及工作原理等。关键词:LM1875 功率芯片音频功率放大器 Audio power amplifier Abstract: Keywords: LM1875 power chip Audio amplifier

目录 一、音频功率放大器简介 (1) (一)早期的晶体管功放 (1) (二)晶体管功放的发展和互调失真 (1) (三)功放输入级——差动与共射-共基 (3) (四)放大器的电源与甲类放大器 (4) (五)其他类型的放大器 (5) 二、放大器常见名词 (6) (一)灵敏度 (6) (二)阻尼系数 (6) (三)反馈 (6) (四)动态范围 (6) (五)响应 (6) (六)信噪比(S/N) (7) (七)屏蔽 (7) (八)阻抗匹配 (7) 三、音频放大器的设计 (7) (一)设计要求: (7) (二)设计过程 (7) 四、LM1875的简介 (16) (一)LM1875的参数简介 (16) (二)LM1875的工作原理: (16) (三)LM1875的电路特点 (17) 五、电路设计 (17) (一)典型应用电路 (17) (三)双电源音频功率放大器PCB图 (19) 六、电路制作与调试 (20) (一)利用PCB制作电路板 (20) (二)装配与调试: (20) 七、电路图的绘制与制板中应注意的问题 (21) (一)Sch原理图应注意常见问题 (21) (二)PCB设计中应注意的问题 (22) (三)焊盘应注意的常见问题 (23) 八、总结 (23) 参考文献 (25)

音频功率放大器的设计 一、音频功率放大器简介 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。(一)早期的晶体管功放 半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。 早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的 OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还是胆机规声”,这种看法的确事出有因。 (二)晶体管功放的发展和互调失真 随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的 OCL电路或 OTL电路(图一)。最初的大功率 PNP 管是锗管,而 NPN管是硅管,两者的特性差别非常显著,电路的对称性很差,人们更多采用的是图二所示的准互补电路,通过小功率硅管 Q1与一只大功率的 NPN硅管 Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。 到了六十年代末,大功率的 PNP硅管商品化的时候,互补对称电路才得到 广泛的应用。元器件的进步使晶体管功率放大器的技术指标产生了质的飞跃,在主观音质评价方面,也改变了过去人们对晶体管功放的看法,无论是在厅堂扩音、电台节目制作还是家庭重放,晶体管功放都被大量地采用,首次在数量上以压倒性的优势超过了电子管功放。在商品化的晶体管扩音机中,相继出现了一些摧琛夺目的名机,如 JBL的SA600,Marantz互补对称电路MOdel15等等。

音频基本知识

音频基本知识 第一部分 模拟声音-数字声音原理 第二部分 音频压缩编码 第三部分 和弦铃声格式 第四部分 单声道、立体声和环绕声 第五部分 3D环绕声技术 第六部分数字音频格式和数字音频接口 第一部分 模拟声音-数字声音原理 一、模拟声音数字化原理 声音是通过空气传播的一种连续的波,叫声波。声音的强弱体现在声波压力的大小上,音调的高低体现在声音的频率上。声音用电表示时,声音信号在时间和幅度上都是连续的模拟信号。 图1 模拟声音数字化的过程 声音进入计算机的第一步就是数字化,数字化实际上就是采样和量化。连续时间的离散

化通过采样来实现。 声音数字化需要回答两个问题:①每秒钟需要采集多少个声音样本,也就是采样频率(f s)是多少,②每个声音样本的位数(bit per sample,bps)应该是多少,也就是量化精度。 ?采样频率 采样频率的高低是根据奈奎斯特理论(Nyquist theory)和声音信号本身的最高频率决定的。奈奎斯特理论指出,采样频率不应低于声音信号最高频率的两倍,这样才能把以数字表达的声音还原成原来的声音。采样的过程就是抽取某点的频率值,很显然,在一秒中内抽取的点越多,获取得频率信息更丰富,为了复原波形,一次振动中,必须有2个点的采样,人耳能够感觉到的最高频率为20kHz,因此要满足人耳的听觉要求,则需要至少每秒进行40k 次采样,用40kHz表达,这个40kHz就是采样率。我们常见的CD,采样率为44.1kHz。电话话音的信号频率约为3.4 kHz,采样频率就选为8 kHz。 ?量化精度 光有频率信息是不够的,我们还必须纪录声音的幅度。量化位数越高,能表示的幅度的等级数越多。例如,每个声音样本用3bit表示,测得的声音样本值是在0~8的范围里。我们常见的CD位16bit的采样精度,即音量等级有2的16次方个。样本位数的大小影响到声音的质量,位数越多,声音的质量越高,而需要的存储空间也越多。 ?压缩编码 经过采样、量化得到的PCM数据就是数字音频信号了,可直接在计算机中传输和存储。但是这些数据的体积太庞大了!为了便于存储和传输,就需要进一步压缩,就出现了各种压缩算法,将PCM转换为MP3,AAC,WMA等格式。 常见的用于语音(Voice)的编码有:EVRC (Enhanced Variable Rate Coder) 增强型可变速率编码,AMR、ADPCM、G.723.1、G.729等。常见的用于音频(Audio)的编码有:MP3、AAC、AAC+、WMA等 二、问题 1、为什么要使用音频压缩技术? 我们可以拿一个未压缩的CD文件(PCM音频流)和一个MP3文件作一下对比: PCM音频:一个采样率为44.1KHz,采样大小为16bit,双声道的PCM编码CD文件,它的数据速率则为 44.1K×16×2 =1411.2 Kbps,这个参数也被称为数据带宽。将码率除以8 bit,就可以得到这个CD的数据速率,即176.4KB/s。这表示存储一秒钟PCM编码的音频信号,需要176.4KB的空间。 MP3音频:将这个WAV文件压缩成普通的MP3,44.1KHz,128Kbps的码率,它的数据速率为128Kbps/8=16KB/s。如下表所示: 比特率 存1秒音频数据所占空间 CD(线性PCM) 1411.2 Kbps 176.4KB MP3 128Kbps 16KB AAC 96Kbps 12KB mp3PRO 64Kbps 8KB 表1 相同音质下各种音乐大小对比 2、频率与采样率的关系 采样率表示了每秒对原始信号采样的次数,我们常见到的音频文件采样率多为44.1KHz,这意味着什么呢?假设我们有2段正弦波信号,分别为20Hz和20KHz,长度均为一秒钟,以对应我们能听到的最低频和最高频,分别对这两段信号进行40KHz的采样,我们可以得到一个什么样的结果呢?结果是:20Hz的信号每次振动被采样了40K/20=2000次,而20K的信号每次振动只有2次采样。显然,在相同的采样率下,记录低频的信息远比高频

相关主题
文本预览
相关文档 最新文档