当前位置:文档之家› 数论+近世代数

数论+近世代数

数论+近世代数
数论+近世代数

初等数论练习题及答案

初等数论练习题一 一、填空题 1、τ(2420)=27;?(2420)=_880_ 2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2. 3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}. 4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。 5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。. 6、分母是正整数m 的既约真分数的个数为_?(m )_。 7 8、??? ??10365 =-1。 9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为二、计算题 1、解同余方程:3x 2+11x -20≡0 (mod 105)。 解:因105 = 3?5?7, 同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3), 同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5), 同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7), 故原同余方程有4解。 作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7), 其中b 1 = 1,b 2 = 0,3,b 3 = 2,6, 由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 11074217 271071107713231071107311072107 710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(( )(解: 故同余方程x 2≡42(mod 107)有解。 3、求(127156+34)28除以111的最小非负余数。

组合数论问题

组合数论问题 组合数论作为数论的一个(小)分支,是研究整数集合的组合性质。与代数数论、解析数论等分支相对应,组合数论的证明与结论更多地带有“离散的、组合的”味道。 例1. (组合数论经典定理)证明:任意2n+1个整数中一定可以找到n 个, 其和为n 的倍数。 [证:]先证命题的(完全)积性,即 引理:若对于正整数m, n 原命题都成立,则命题对于mn 亦成立。 由引理,只需对n=p 为素数的情形证明即可。 反证法,设存在2p+1个正整数1221,,,+p x x x 使得其中任意p 个之和 考察 )(m o d )(1122 1 p x x x C p i i i p p p ∑-++++≡ 例2.(IMO 预选题2008N4).对于整数k ?2,证明122k k C +-1 22k k C -被23k 整除但不被23k+1整除. [证:]利用2n n C =2(2)!(!)n n =2(21)!!!n n n -=222((21)!!)(2)! n n n -, 1 22k k C +-1 22k k C -=21 2(21)!!(2)!k k k +--22 2((21)!!)(2)!k k k -=22(21)!!(2)!k k k -(121(221)k k i i -=+-∏-1 2 1 (2(21))k k i i -=--∏). 1 21 (221)k k i i -=+-∏-121 (2(21))k k i i -=--∏=2 12(21)12(21)1 2k k r k r r S ---+--=∑≡2 k+1 (2k -1)!!121 1 21 k i i -=-∑ (mod 23k+1). 1 21121 k i i -=-∑=121 2111()212(21)k k i i i -=+---∑=2k-1 1 2 11(21)(2(21)) k k i i i -=---∑. A={1,3,…, 2k -1}是(mod 2k )的缩系,故r -2(r ∈A)是r 2(r ∈A)的置换,因此 1(2)k r A r r ∈-∑≡-2 1r A r ∈∑≡-2 r A r ∈∑=-1 2 1 (4(1)1)k i i i -=-+∑≡2k-1(mod 2k ).

六年级奥数.数论.整除问题(ABC级).学生版

知识框架 」、整除的定义: 当两个整数a和b (b工0, a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a 叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b不整除a,记作b a. 二、常见数字的整除判定方法 1. 一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2. 一个位数数字和能被3整除,这个数就能被3整除; 一个数各位数数字和能被9整除,这个数就能被9整除; 3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整 除; 4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、 11或13整除; 5. 如果一个数从数的任何一个位置随意切开所组成的所有数之和是9的倍数,那么这个数能被9整除; 6. 如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有 两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。 7. 若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被 7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的 过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3X2 = 7,所以133是7 的倍数;又例如判断6139是否7的倍数的过程如下:613 —9>2= 595 , 59- 5X2= 49,所以6139是7的倍数,余类推。 8. 若一个整数的个位数字截去,再从余下的数中,加个位数的4倍,如果和是13的倍数,则原数能被 13整除。如果和太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」 的过程,直到能清楚判断为止。 MSDC模块化分级讲义体系六年级奥数.数论.整除问题(ABC级).学生版Page 1 of 14

4月浙江自考初等数论试题及答案解析试卷及答案解析真题

1 浙江省2018年4月高等教育自学考试 初等数论试题 课程代码:10021 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.20被-30除的余数是( ) A .-20 B .-10 C .10 D .20 2.176至545的正整数中,13的倍数的个数是( ) A .27 B .28 C .29 D .30 3.200!中末尾相继的0的个数是( ) A .49 B .50 C .51 D .52 4.从以下满足规定要求的整数中,能选取出模20的简化剩余系的是( ) A .2的倍数 B .3的倍数 C .4的倍数 D .5的倍数 5.设n 是正整数,下列选项为既约分数的是( ) A . 3144 21++n n B . 121 -+n n C .2 512+-n n D .1 31++n n 二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.d(120)=___________。 2.314162被163除的余数是___________。 3.欧拉定理是___________。 4.同余方程3x ≡5(mod13)的解是___________。 5.不定方程10x-8y=12的通解是___________。

2 6.ο ___________)1847 365 ( = 7.[-π]=___________。 8.为使n-1与3n 的最大公因数达到最大的可能值,则整数n 应满足条件___________。 9.如果一个正整数具有21个正因数,问这个正整数最小是___________。 10.同余方程x 3+x 2-x-1≡0(mod 3)的解是___________。 三、计算题(本大题共4小题,每小题10分,共40分) 1.解同余方程组 ???? ?? ?≡≡≡≡) 9(mod 4)7(mod 32)4(mod 23) 25(mod 1x x x x 2.解不定方程15x+10y+6z=19。 3.试求出所有正整数n ,使得2n -1能被7整除。 4.判断同余方程 x 2≡-1457(mod 2389) 是否有解? 四、证明题(本大题共2小题,每小题10分,共20分) 1.证明形如4n+3的素数有无穷多个。 2.证明不定方程 x 2+y 2+z 2=x 2y 2 没有正整数解。

2013年春_西南大学《初等数论》作业及答案(共4次_已整理)

2013年春西南大学《初等数论》作业及答案(共4次,已整理) 第一次作业 1、设n,m为整数,如果3整除n,3整除m,则9()mn。 A:整除 B:不整除 C:等于 D:小于 正确答案:A 得分:10 2、整数6的正约数的个数是()。 A:1 B:2 C:3 D:4 正确答案:D 得分:10 3、如果5|n ,7|n,则35()n 。 A:不整除 B:等于 C:不一定 D:整除 正确答案:D 得分:10 4、如果a|b,b|a ,则()。 A:a=b B:a=-b C:a=b或a=-b D:a,b的关系无法确定 正确答案:C 得分:10 5、360与200的最大公约数是()。 A:10 B:20 C:30 D:40 正确答案:D 得分:10 6、如果a|b,b|c,则()。 A:a=c B:a=-c C:a|c D:c|a

正确答案:C 得分:10 7、1到20之间的素数是()。 A:1,2,3,5,7,11,13,17,19 B:2,3,5,7,11,13,17,19 C:1,2,4,5,10,20 D:2,3,5,7,12,13,15,17 正确答案:B 得分:10 8、若a,b均为偶数,则a + b为()。 A:偶数 B:奇数 C:正整数 D:负整数 正确答案:A 得分:10 9、下面的()是模12的一个简化剩余系。 A:0,1,5,11 B:25,27,13,-1 C:1,5,7,11 D:1,-1,2,-2 正确答案:C 得分:10 10、下面的()是模4的一个完全剩余系。 A:9,17,-5,-1 B:25,27,13,-1 C:0,1,6,7 D:1,-1,2,-2 正确答案:C 得分:10 11、下面的()是不定方程3x + 7y = 20的一个整数解。 A:x=0,y=3 B:x=2,y=1 C:x=4,y=2 D:x=2,y=2 正确答案:D 得分:10 12、设a,b,c,d是模5的一个简化剩余系,则a+b+c+d对模5同余于()。 A:0 B:1 C:2 D:3 正确答案:A 得分:10 13、使3的n次方对模7同余于1的最小的正整数n等于()。 A:6 B:2

小奥数论1_整除和余数知识点总结与经典例题

1.数论——数的整除和余数 2.1基本概念和基本性质 2.1.1定义 整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b 整除,或者说b能整除a。 2.1.2表达式和读法 b∣a,读着b能整除a;或a能被b整除;b a,不能整除; 2.1.3基本性质 ①传递性:如果a|b,b|c,那么a|c;即b是a的倍数,c是b的倍数,则c肯定是a的 倍数; ②加减性:如果a|b、a|c,那么a|(b c); ③因数性:如果ab|c,那么a|c,b|c;即如果ab的积能整除c,则a或b皆能整除 c; ④互质性,如果a|c,b|c,且(a,b)=1,那么ab|c,即如果a能整除c,b能整除c, 且ab互质,则ab的积能整除c; ⑤a个连续自然数中必恰有一个数能被a整除。

2.2数的整除的判别法 2.2.1末位判别法 2.2.2数字和判别法(用以判别能否被3或9整除) 各数位上数字的和是3或9的倍数,则能被3或9整除。 173652÷9:1+7+3+6+5+2的和除以3或9; 简便算法,利用整除的加减性,可以去掉1个或多个9,剩下数字的和x再除以3或9;如果x﹥9,则余数为x-9;如果x﹤9,则余数为x。 2.2.3奇偶数位判别法(用以判别能否被11整除) 从右往左编号,编号为奇数的为奇数位,编号为偶数的为偶数位,看奇数位上的数字的和与偶数位上的数字的和的两者之差是否能被11整除; 81729033÷11:奇数位和为6,偶数位和为27;如果奇数位和比偶数位和小,则奇数位和加1个或多个11,直到够减。余数的判断法与整数位的判断法一致。

2.2.4三位一截判别法(用以判别能否被7/11/13整除) 2.2.4.1基本用法 从右往左三位一截并编号,编号为奇数的为奇数段,编号为偶数的为偶数段,看奇数段的数字的和与偶数段的数字的和的两者之差是否能被7、11、13整除; 如,86372548,奇数段的和为(548+86),偶数段的和为372,求两者差看能否被7整除,同样,不够减前面加1个或多个7,直到够减,余数位的判断法与整数位的判断法一致。 2.2.4.2特殊用法 ①一般求空格数 如果中间有空格,则利用加减性加或减除数7的倍数,分别从右边和左边抵消缩减位数,到最后看7的哪个倍数与缩减后的末位数相同,并看7的哪个倍数与缩减后的首位数相同,则前一个倍数的十位数和后一个倍数的个位数的和即为空格中应填的数。注意,如果这个数加或减7后为1到9间的自然数,则加或减7后的这个数也为正确答案。 395864□82365,答案为5 463925□01234,答案为1和8 ②特殊求空格数 根据整除的因数性,如果1个数能被1001整除,则这个数能被7、11、13、77、91、143整除,因为: 7×11×13=1001; 77×13=1001; 99×11=1001;

初等数论试卷模拟试题和答案

初等数论试卷一 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,, ,n a a a 的公倍数中最小的称为最小公倍数 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d =- =+ =±± B.00,,0,1,2, ;a b x x t y y t t d d =+= -=±± C.00,,0,1,2, ;b a x x t y y t t d d =+= -=±± D.00,,0,1,2, ;b a x x t y y t t d d =-= -=±± 4.下列各组数中不构成勾股数的是( ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡ D.()()112 2 11mod mod .a b m a b m ≡?≡ 6.模10的一个简化剩余系是( ) A.0,1,2, ,9; B.1,2,3,,10;

小奥数论整除和余数知识点总结及例题

小奥数论整除和余数知识 点总结及例题 Prepared on 21 November 2021

1.数论——数的整除和余数 2.1基本概念和基本性质 整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b 整除,或者说b能整除a。 b∣a,读着b能整除a;或a能被b整除;ba,不能整除; ①传递性:如果a|b,b|c,那么a|c;即b是a的倍数,c是b的倍数,则c肯 定是a的倍数; ②加减性:如果a|b、a|c,那么a|(b c); ③因数性:如果ab|c,那么a|c,b|c;即如果ab的积能整除c,则a或b皆能 整除c; ④互质性,如果a|c,b|c,且(a,b)=1,那么ab|c,即如果a能整除c,b能 整除c,且ab互质,则ab的积能整除c; ⑤a个连续自然数中必恰有一个数能被a整除。 各数位上数字的和是3或9的倍数,则能被3或9整除。 173652÷9:1+7+3+6+5+2的和除以3或9; 简便算法,利用整除的加减性,可以去掉1个或多个9,剩下数字的和x 再除以3或9;如果x﹥9,则余数为x-9;如果x﹤9,则余数为x。 从右往左编号,编号为奇数的为奇数位,编号为偶数的为偶数位,看奇数位上的数字的和与偶数位上的数字的和的两者之差是否能被11整除; 奇数位和为6,偶数位和为27;如果奇数位和比偶数位和小,则奇数位和加1个或多个11,直到够减。余数的判断法与整数位的判断法一致。 2.2.4三位一截判别法(用以判别能否被7/11/13整除)

从右往左三位一截并编号,编号为奇数的为奇数段,编号为偶数的为偶数段,看奇数段的数字的和与偶数段的数字的和的两者之差是否能被7、11、13整除; 两者差看能否被7整除,同样,不够减前面加1个或多个7,直到够减,余数位的判断法与整数位的判断法一致。 ① 一般求空格数 如果中间有空格,则利用加减性加或减除数7的倍数,分别从右边和左边抵消缩减位数,到最后看7的哪个倍数与缩减后的末位数相同,并看7的哪个倍数与缩减后的首位数相同,则前一个倍数的十位数和后一个倍数的个位数的和即为空格中应填的数。注意,如果这个数加或减7后为1到9间的自然数,则加或减7后的这个数也为正确答案。 395864□82365,答案为5 463925□01234,答案为1和8 ② 特殊求空格数 根据整除的因数性,如果1个数能被1001整除,则这个数能被7、11、13、77、91、143整除,因为: 7×11×13=1001; 77×13=1001; 99×11=1001; 7×143=1001; 根据abc → abc → =abc → ×1001; aaa → aaa → =aaa → ×1001;求能被7整除的空格数 系列截判法(用以判别能否被9/99/999整除) 除数是几位数就可以从右往左几位一截,将截取的段位数相加再截取,直至不能再截取,看相应的数能否被相应的除数9/99/999整除。 除数是11时,也可以用两位一截判别法,因为根据整数的因数性,能被99整除的数,肯定能被11整除。 例如: 2.3余数的判别法 ① 整除是余数为0的情况。a ÷b=c …..0; 此时,a=b ×c;b=a ÷c

第五讲数论与组合

1是否存在实数x使得tan x+和 cot x+都是有理数。 2在1,2,…,2012中取一组数,使得任意两数之和不能被其差整除,最多能取多少个数

3在由若干南方球队和北方球队参加的排球单循环赛中,已知南方队比北方队多9支,所有南方队得到的分数总和是所有北方队得到的分数总和的9倍(每场比赛胜者得一分,负者得零分)。证明:循环赛结束后,某支南方队积分最高。 4在一次考试中333个同学共答对了1000道题。答对至多3题者为不及格,答对至少6道题者为优秀。已知不是所有同学答对的题的个数的奇偶性都相同。问:成绩不及格者和

优秀者人数哪个多 5目前有n(n≥2)为乒乓球选手,他们互相进行了若干场乒乓球双打比赛,并且发现任意两名选手作为队友恰好只参加过一次比赛,请问n的所有可能取值。 6将边长为正整数m,n的矩形划分成若干边长均为正整数的正方形.每个正方形的边均平行于矩形的相应

边.试求这些正方形边长之和的最小值. 7对于整数n ≥4,求出最小的整数f(n),使得对于任何正整数m ,集合{m ,m+1,…,m+n -1}的任一个f(n)元子集中,均至少有3个两两互素的元素. n m D A C B A 1 D 1

8如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子。如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连。问最少取出多少个棋子才可能满足要求?并说明理由。

9一种密码锁的密码设置是在正n边 A A A的每个顶点处赋值0和1形12n 两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置? 10设A是一个9 3 的方格表,在每一

初等数论第2版习题答案

第一章 §1 1 证明:n a a a ,,21 都是m 的倍数。 ∴存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ===,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211+++=+++∴ 即n n a q a q a q +++ 2211是m 的整数 2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n )1()1()2)(1(/6+-+++∴n n n n n n 从而可知 )12)(1(/6++n n n 3 证: b a , 不全为0 ∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而 有形如by ax +的最小整数00by ax + Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+ 则 S b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=r by ax by ax ++∴/00 下证8P 第二题 by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ).,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 00/),(by ax b a +∴ 故),(00b a by ax =+ 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b - -- 则a 必在此序列的某两项之间

六年级奥数.数论.整除问题(abc级).学生版

数的整除 知识框架 一、整除的定义: 当两个整数a和b(b≠0),a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a 叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b 不整除a,记作b a. 二、常见数字的整除判定方法 1.一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2.一个位数数字和能被3整除,这个数就能被3整除; 一个数各位数数字和能被9整除,这个数就能被9整除; 3.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整 除; 4.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、 11或13整除; 5.如果一个数从数的任何一个位置随意切开所组成的所有数之和是9的倍数,那么这个数能被9整除; 6.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有 两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。 7.若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被 7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。 8.若一个整数的个位数字截去,再从余下的数中,加个位数的4倍,如果和是13的倍数,则原数能被 13整除。如果和太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」

(完整word版)初等数论练习题一(含答案)

《初等数论》期末练习二 一、单项选择题 1、=),0(b ( ). A b B b - C b D 0 2、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 7 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C (mod )ac bc m ≡/ D b a ≠ 5、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 7、如果a b ,b a ,则( ). A b a = B b a -= C b a ≥ D b a ±= 8、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 10、模7的最小非负完全剩余系是( ). A -3,-2,-1,0,1,2,3 B -6,-5,-4,-3,-2,-1 C 1,2,3,4,5,6 D 0,1,2,3,4,5,6 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15] 12、同余式)593(mod 4382≡x ( ). A 有解 B 无解 C 无法确定 D 有无限个解 二、填空题 1、有理数 b a ,0,(,)1a b a b <<=,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ). 4、设n 是一正整数,Euler 函数)(n ?表示所有( )n ,而且与n ( )的正整数的个数. 5、设b a ,整数,则),(b a ( )=ab . 6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除. 7、+=][x x ( ). 8、同余式)321(mod 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.

第1,2讲 组合与数论问题

第1,2讲组合与数论问题 一.填空题: 1.设a,b,c是互异的自然数且ab+bc+ca=abc,则a+b+c=_______. 2.从1到2013连续的2013个自然数按某种顺序排列,然后按连续三项计算和数,得到2011个和数,则这些和数中,奇数的个数最多有_________个. 3.在式子:12○22○32○…○20092的“○”中填入“+”或“?”中的一个,如果所得的数非负,那么这个非负数的最小值是________. 4.直角三角形的三边之长为正整数,其中一条直角边的长为35,那么它的周长的最大值与最小值分别是_______、_________. 5. 已知 S的最大 整数为__________. 6.末四位数为2013,且被71整除的最小的正整数为_____________. 7.用6种不同的颜色给正方体的6个面染色,各面颜色互不相同,经过适当的翻转重复的染色视为同一种染色,则不同的染色方式有__________. 8.某数学竞赛分两试进行.一试有选择题6个,答对一个得6分,填空题6个,答对一个得9分,解答题三个,每题20分,每5分一档分步计分,二试解答题有三个,每题50分,每10分一档分步计分,某同学参加竞赛,则他的得分可能有________种. 9.把1,2,3,…,2n这2n个正整数随意放置在一个圆周上,据统计,在所有相邻的三个数中,三个数全为奇数的有a组,三个数中恰有两个数奇数的有b组,三个数中恰有一个数为奇数的有c组,三个数都为偶数的有d组,如果a-d≠0,那么(b-c)/(a-d)=____________. 10.自然数k具有性质:在半径为1的圆上任取4点,都有两点的距离不大于k,则k的最小值为________. 二.解答题: 11.n是正整数,求证 537 5315 n n n ++是整数.

五年级奥数.数论.整除性(A级).教师版

九 进 制 乔治·兰伯特是美国加利福尼亚州一所中学的数学教师,他对数学特别敏感而且有极大的研究兴趣。他常年与数字、公式打交道,深感数学的神秘与魅力。他开始注意一些巧合的事件,力图用数学的方式来破解巧合。 他发现:法国皇帝拿破仑与纳粹元首希特勒相隔一个多世纪,但是他们之间有很多数字巧合。拿破仑1804年执政,希特勒1933年上台,相隔129年。拿破仑1816年战败,希 特勒1945年战败,相隔129年。拿破仑1809年占领维也纳,希特勒在1938 年攻人维也纳,也是相隔129年。拿破仑1812年进攻俄国,希特勒在相隔 129年后进攻苏联。美国第16届总统林肯于1861年任总统,美国第35届 总统肯尼迪于1961年任总统,时隔100年。两人同在星期五并在女人的参 与下被刺遇害。接任肯尼迪和林肯的总统的名字都叫约翰逊。更巧的是, 杀害林肯的凶手出生于1829年,杀害肯尼迪的凶手出生于1929年,相隔 又是100年。 兰伯特被这些数字迷住了,他经常将这些数字翻来覆去地分解组合。 他惊奇地发现,拿破仑和希特勒的巧合数129与林肯和肯尼迪的巧合数100,把它们颠倒过去分别是921和001,用921减去129,用100减去001,得数都能被9除尽:921-129=792,100-001=99;792+9=88,99÷9=11,结果都有一个十位和个位都相同的两位数的商。 兰伯特非常吃惊,他对9着了迷。他发现将l 、2、3、4、5、6、7、8、9加在一起是45,而4+5=9。他还发现,用9乘以任何一个数,将所得到的积的各位数字相加,所得到的和总是9。取任何一个数,比如说2004,将每位数加起来是2+0+0+4=6,用2004减去6结果得到1998,而1998÷9=222,能被9除尽。 他还总结出这样一个规律:把一个大数的各位数字相加得到一个和,再把这个和的各位数字相加又得到一个和。这样继续下去,直到最后的数字之和是一个一位数为止。最后这个数称为最初那个数的“数字根”,这个数字等于原数除;29的余数,这个计算过程被称作是“弃9法”。懂得了弃9法,蓝伯特醒悟了不少,他进而想到,人类不应该10个10个地数数,也不应该12个12个数数,而应该9个9个地数数,实行9进制。 课前预习 数论之整除性

0初等数论试卷及答案

初等数论考试试卷 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B ) A.整数12,, ,n a a a 的公因数中最大的称为最大公因数; < B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数 【有最小的吗】 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( C ) A.00,,0,1,2,;a b x x t y y t t d d =- =+=±± B.00,,0,1,2, ;a b x x t y y t t d d =+=-=±± C.00,,0,1,2, ;b a x x t y y t t d d =+=-=±± D.00,,0,1,2, ;b a x x t y y t t d d =-=-=±± ( 4.下列各组数中不构成勾股数的是( D ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡

组合数学与数论1

第一部分:组合数学 第一章计数的基本原则 一.组合数学的历史和内容 1.历史:组合数学最早起源于中世纪的印度,在漫长的历史中,一 直发展缓慢。随着上一世纪计算机的出现,组合数学开始快速地发展。近几年,由于计算机安全领域受到重视以及组合数学在计算机安全领域的应用,组合数学受到越来越多的重视。 2.内容:组合数学主要包括以下几个内容: (1)组合分析(也称为组合计数理论) (2)组合优化(包括线性规划,整数规划等) (3)组合设计(包括区组设计等) (4)组合算法(例如:搜索算法,DFS算法与分支定界法,动态规 划等) *图论本是组合数学这个家族的一个主要成员,但它已成长壮大,独立成一门学科。 3. 本课程介绍的主要内容:组合计数理论 二.加法原则与乘法原则 1. 加法原则: 设事件A有m种产生方式,事件B有n种产生方式,则“事件A 或事件B”有m+n种产生方式。 例子:大于0而小于10的偶数有4个,即:{2,4,6,8},大于0而小于10的奇数有5个,即:{1,3,5,7,9}。则大于0而小于10

的整数有:4+5=9个,即:{1,2,3,4,5,6,7,8,9}。 *如果A1,A2,?,A n是互不相交的有穷集,那么 |A1∪A2∪?∪A n|=|A1|+|A2|+?+|A n| 2.乘法原则: 若事件A有m种产生方式,事件B有n种产生方式,则“事件A 与事件B”有mn种产生方式。 例1:设一个符号由两个字符组成,第一个字符有a,b,c,d,e五种方式,第二个字符有1,2,3三种方式。则根据乘法原则,该符号具有5×3= 15种方式,即 a1,b1,c1,d1,e1;a2,b2,c2,d2,e2;a3,b3,c3,d3,e3. 例2:从A到B有3条不同的道路,从B到C有2条不同的道路,从A经B到C共有n=3×2=6条不同的道路。 例3:求比10000小的正整数中含有数字1的数的个数。 解:先求所有4位数中不含有数字1的个数,即求由{0,2,3,4,5,6,7,8,9} 9个数字组成的4位数的个数。每一位都有9种出现方式,根据乘法原则,由9个数字组成的4位数个数为:9×9×9×9= 6561,其中包含0000不是正整数。故比10000小不含数字1的4位正整数的个数=6561?1=6560. 所以小于10000含有数字1的4位数个数=9999?6560=3439.

初等数论习题与答案、及测试卷

1 证明:n a a a ,,21 都是m 的倍数。 ∴存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ===,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211+++=+++∴ 即n n a q a q a q +++ 2211是m 的整数 2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n 1()1()2)(1(/6+-+++∴n n n n n n 从而可知 12)(1(/6++n n n 3 证: b a , 不全为0 ∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而 有形如by ax +的最小整数00by ax + Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+ 则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=r ax by ax + +∴/00 下证8P 第二题 by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 0/),(by ax b a +∴ 故),(00b a by ax =+ 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b - -- 则a 必在此序列的某两项之间

小奥数论整除和余数知识点总结及例题

1. 数论——数的整除和余数 2.1基本概念和基本性质 整数a 除以整数b (b≠0),除得的商是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。 b ∣a ,读着b 能整除a;或a 能被b 整除; ba ,不能整除; ① 传递性:如果a|b,b|c,那么a|c;即b 是a 的倍数,c 是b 的倍数,则c 肯定是a 的倍 数; ② 加减性:如果a|b 、a|c ,那么a|(b c); ③ 因数性:如果ab|c ,那么a|c ,b|c;即如果ab 的积能整除c,则a 或b 皆能整除c; ④ 互质性,如果a|c ,b|c ,且(a,b )=1,那么ab|c,即如果a 能整除c,b 能整除c ,且 ab 互质,则ab 的积能整除c; ⑤ a 个连续自然数中必恰有一个数能被a 整除。 2.2数的整除的判别法

各数位上数字的和是3或9的倍数,则能被3或9整除。 173652÷9:1+7+3+6+5+2的和除以3或9; 简便算法,利用整除的加减性,可以去掉1个或多个9,剩下数字的和x 再除以3或9;如果x﹥9,则余数为x-9;如果x﹤9,则余数为x。 从右往左编号,编号为奇数的为奇数位,编号为偶数的为偶数位,看奇数位上的数字的和与偶数位上的数字的和的两者之差是否能被11整除; 奇数位和为6,偶数位和为27;如果奇数位和比偶数位和小,则奇数位和加1个或多个11,直到够减。余数的判断法与整数位的判断法一致。 2.2.4三位一截判别法(用以判别能否被7/11/13整除) 从右往左三位一截并编号,编号为奇数的为奇数段,编号为偶数的为偶数段,看奇数段的数字的和与偶数段的数字的和的两者之差是否能被7、11、13整除; 两者差看能否被7整除,同样,不够减前面加1个或多个7,直到够减,余数位的判断法与整数位的判断法一致。 ①一般求空格数 如果中间有空格,则利用加减性加或减除数7的倍数,分别从右边和左边抵消缩减位数,到最后看7的哪个倍数与缩减后的末位数相同,并看7的哪个倍数与缩减后的首位数相同,则前一个倍数的十位数和后一个倍数的个位数的和即为空格中应填的数。注意,如果这个数加或减7后为1到9间的自然数,则加或减7后的这个数也为正确答案。

初等数论1习题参考答案

附录1 习题参考答案 第一章习题一 1. (ⅰ) 由a b知b = aq,于是b = (a)(q),b = a(q)及b = (a)q,即a b,a b及a b。反之,由a b,a b及a b 也可得a b; (ⅱ) 由a b,b c知b = aq1,c = bq2,于是c = a(q1q2),即a c; (ⅲ) 由b a i知a i= bq i,于是a1x1a2x2a k x k = b(q1x1 q2x2q k x k),即b a1x1a2x2a k x k;(ⅳ) 由b a知a = bq,于是ac = bcq,即bc ac; (ⅴ) 由b a知a = bq,于是|a| = |b||q|,再由a 0得|q| 1,从而|a| |b|,后半结论由前半结论可得。 2. 由恒等式mq np= (mn pq) (m p)(n q)及条件m p mn pq可知m p mq np。 3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a 1, , a 9, a 19的数字和为s, s 1, , s 9, s 10,其中必有一个能被11整除。 4. 设不然,n1= n2n3,n2p,n3p,于是n = pn2n3p3,即p3n,矛盾。 5. 存在无穷多个正整数k,使得2k1是合数,对于这样的k,(k1)2

不能表示为a2p的形式,事实上,若(k 1)2= a2p,则(k 1 a)( k 1 a) = p,得k 1 a = 1,k 1 a = p,即p = 2k 1,此与p为素数矛盾。 第一章习题二 1. 验证当n =0,1,2,… ,11时,12|f(n)。 2.写a = 3q1r1,b = 3q2r2,r1, r2 = 0, 1或2,由3a2b2 = 3Q r12r22知r1 = r2 = 0,即3a且3b。 3.记n=10q+r, (r=0,1,…,9),则n k+4-n k被10除的余数和r k+4-r k=r k(r4-1)被10 除的余数相同。对r=0,1,…,9进行验证即可。 4. 对于任何整数n,m,等式n2 (n 1)2 = m2 2的左边被4除的余数为1,而右边被4除的余数为2或3,故它不可能成立。 5 因a4 3a2 9 = (a2 3a 3)( a2 3a 3),当a = 1,2时,a2 3a 3 = 1,a4 3a2 9 = a2 3a 3 = 7,13,a4 3a2 9是素数;当a 3时,a2 3a 3 > 1,a2 3a 3 > 1,a4 3a2 9是合数。 6. 设给定的n个整数为a1, a2, , a n,作 s1 = a1,s2 = a1a2,,s n = a1a2a n, 如果s i中有一个被n整除,则结论已真,否则存在s i,s j,i < j,使得s i与s j 被n除的余数相等,于是n s j s i = a i + 1a j。

相关主题
文本预览
相关文档 最新文档