当前位置:文档之家› 工业化生产硅太阳电池电阻率对电学性能的影响分析

工业化生产硅太阳电池电阻率对电学性能的影响分析

工业化生产硅太阳电池电阻率对电学性能的影响分析
工业化生产硅太阳电池电阻率对电学性能的影响分析

工业化生产硅太阳电池电阻率对电学性能的影响分析

龙维绪

摘要:分析工业化生产硅太阳电池,不同硅材料的电阻率影响其短路电流、开路电压和填充因子等光电特性因素。在材料电阻率较高时,能得到较高的短路电流,但开路电压、填充因子偏低,总的转换效率偏小。针对高电阻率的材料,生产线的工艺参数有必要作出相应调整。

关键词:硅太阳电池电阻率电性能变化工艺调整

1、引言

在太阳电池的工业化生产中,由于原材料料的变化,常会引起太阳电池转换效率的大幅度波动,表现为:测试太阳电池的I-V特性时,其短路电流(Isc)、开路电压(Voc)和填充因子(FF)中有一个或两个,甚至三个因素均有下降所致。目前在生产线上,在材料电阻率发生变化时,特别是遇到高电阻率材料时,工艺参数没有做出相应的调整。本文结合SE线上硅太阳电池的电性能参数,在工业化生产中遇到的一些问题,通过总结分析,指出高电阻率硅太阳电池的电性能变化规律,并在此基础上讨论了高电阻率电池的转换效率的工艺调整方案。

2、不同电阻率硅太阳电池的电学性能

统计8月份SE生产线上生产不同电阻率的硅太阳电池的电性能参数,电阻率为0.5~1Ω-cm、1~3Ω-cm、 3~6Ω-cm、6~10Ω-cm,生产厂家同为上海卡姆丹克批次,工序参数基本相同,没有经历大的调整,都采用相同工序。其电性能参数平均值如表1:(电性能参数见附件)

表1 不同电阻率的电性能参数平均值

0.5-1 0.633 5.295 0.006 98.952 77.996 17.600

1-3 0.631 5.325 0.0062 154.346 78.017 17.630 3-6 0.623 5.405 0.0063 317.933 77.184 17.500 6-10 0.619 5.399 0.007 335.537 76.593 17.220

2.1电阻率对短路电流的影响

硅的电阻率与掺杂浓度有关。就太阳能电池制造而言,硅材料电阻率的范围相当宽,从0.1~50Ω-cm甚至更大均可采用。利用PC1D软件对不同电阻率对应的掺杂浓度计算,如表2:

表2 不同电阻率对应的基体掺杂浓度 电阻率(Ω-cm )

基体掺杂浓度NA 0.5--1 3.19e16--1.47e16 1--3 1.47e16--4.55e15 3--6 4.55e15--2.23e15 6--10

2.23e15--1.32e15

在实际半导体中,少子寿命往往是由几种不同能级状态的复合中心支配的,在硅材料中,少子寿命随着掺杂浓度的增大而衰减小[1]。

太阳电池的短路电流密度SC J 由光子流密度()F λ和光谱响应()SR λ、太阳电池表面的反射率()R λ决定[1]:

[]0()()1()SC J q F SR R d λλλλ∞

=-? (1)

基区掺杂浓度减小,增大了基区的少子寿命或扩散长度,使载流子的损失减少,因此增大了长波光谱响应。随着基区电阻率的增大,势垒区宽度变宽,使原来属于基区的每一范围转变成势垒区,从而提高了势垒区的光谱响应,但势垒区对太阳电池的光谱响应始终占不了绝对优势。另外,基区掺杂浓度对短波光谱响应几乎没有影响,这是因为高能光子的吸收系数比较大,投射到基区的高能光子已经十分微弱。所以高电阻率的硅片对太阳电池短路电流的贡献主要表现在长波光谱响应上。图1表示硅太阳电池基区电阻率对光谱响应的影响[2]。电池基区的少子寿命由于存在俄歇复合中心,少子寿命依赖于掺杂浓度NA ,在基区电阻率小于0.1Ω-cm 中,随着掺杂浓度的增加,基区中少子寿命迅速下降,引起光谱响应急剧衰减。

图1 N ∕P 硅太阳电池光谱响应与基区电阻率的关系[2] 图中:○—重掺杂电池 ●—背面场重掺杂电池

图2表征了SE 生产线上不同电阻率范围,电池短路电流的变化趋势,从总的趋势来看,短路电流的变化跟理论得出的结论基本一致。

图2 不同电阻率范围内短路电流的变化趋势

2.2电阻率对开路电压的影响

对理想p -n 结且不考虑太阳电池有限尺寸的影响,在开路情况下,光照p -n 结两端产生的为开路电压Voc 表达式如下[3]:

???

? ??+=1ln 0I I q AKT V L

oc (2) 式中:

)(

2

0n

A n P

D p i

T N D N D qn A I ττ+

= (3)

I 0为没有考虑尺寸影响时的二极管反向饱和电流,其中T A 为p -n 结面积,k 为玻耳兹曼常数,T 为绝对温度,q 为电子电荷,由(2)、(3)可知基区掺杂浓度强烈地影响着反向饱和电流,表现为电阻率越大,基区掺杂浓度越小,反向饱和电流越大,电池的开路电压oc V 明显下降。图3显示了基区掺杂浓度与开路的的关系,从图中可以看出,当电阻率小于0.1Ω-cm 左右时,开路电压反而随着掺杂浓度的增加而降低[2]。

图3 基区掺杂浓度对

V的影响(简单理论值与最佳测量值之间的比较)[2]

oc

图中:○—最佳测量值﹣﹣﹣—中掺杂理论

图4表征了SE生产线上不同电阻率范围,开路电压的变化趋势,从总的趋势来看,开路电压的变化跟理论得出的结论吻合很好。

图4不同电阻率范围内开路电压的变化趋势

2.3电阻率对填充因子的影响

电池基区的掺杂浓度影响电池的填充因子。当掺杂浓度增加时,少子寿命会衰减。填充因子与基区电阻率的关系如图5所示[2]:

图5基区电阻率对填充因素的影响[2]

图4表征了SE生产线上不同电阻率范围,开路电压的变化趋势,从图中可以看出在1-3(Ω-cm)范围内,填充变化不明显,在高电阻率区填充下降趋势比较大。

图6不同电阻率范围内填充因子的变化趋势

影响填充因子的因素很多。串联电阻对填充因子有直接的影响,在太阳电池中,Rs值为四部分之和,即基片的体电阻(Rb)、扩散薄层电阻(Rt)、金属半导体的接触电阻(Rms)和金属电极本身的电阻(Rm)。这四部分电阻中,在相同工艺的条件下,直接影响到电池串联电阻的是Rb,电阻率高的的硅材料体电阻(Rb)明显要高些,从而降低了电池的填充因子。图7显示了不同电阻率范围内串联电阻的变化趋势,比较图6串联电阻的变化强烈地影响着填充因子。

图7不同电阻率范围内串联电阻的变化趋势

3、结论

在一定电阻率范围内,电池的开路电压随着硅基体电阻率的下降而增加,在材料电阻率较低时,能得到较高的开路电压,而短路电流略低,但总的转换效率较高。比较0.5~1Ω-cm、1~3Ω-cm硅太阳电池效率,3~6Ω-cm、6~10Ω-cm 波动比较比较大,而且平均效率小0.1~0.4%。图8是其效率的波动曲线。

图8不同电阻率范围内的效率变化趋势

由于生产批次波动频繁,在生产线上分析电池效率波动时,考虑电阻率的影响,是完全有必要的。另外,对于6~10Ω-cm的高阻片,可以考虑以下工艺尝试提高电池效率:

(1)增加扩散层的掺杂浓度

由(3)式可得适度增大N D,抑制暗电流的减小有一定的作用。在扩散工艺控制上,减小3~5个方块电阻。这将有利于后续的烧结工序,发射区不容易被烧穿,另外一个方面,直接减少了电池的串联电阻,抑制电池的填充FF的减小

有很大的帮助。当然,增大掺杂浓度,会增大发射区表面的少子的俄歇复合速度,降低电池的短波响应,但由于高阻片在长波光谱响应方面有增益,两个方面的作用使得短路电流在峰值附近保持一个平衡。

(2)增大AL 背场的作用

因P +区的掺杂浓度+

A N 大于P 区的掺杂浓度A N ,在这种P +/P 高低结处,其

接触电势差与掺杂浓度的关系为[4]:

A A N N kTln qV'+= (4)

在近似情况下,不考虑P 区的影响,背场电池的开路电压可以近似写成:

??

??????

-+L

x L n A

2

i

sc

oc jB

dx D N qn J ln q kT V (5) 式中,i n 为本征掺杂浓度。由此式可看出:因随着P +层掺杂浓度+

A N 的提高,

层内电子扩散系数n D 减小,所以太阳电池的开路电压会提高。对于电阻率为10Ω-cm 的基片,有铝背场的晶体硅太阳电池,相比无铝背场的晶体硅太阳电池,开路电压V oc 可以提高约40-60mV [4]。在衬底电阻率较高的情况下,背电场电池的性能与常规电池差别很大,由于高电阻率的暗电流相对较高,适度增加背电场的烧结力度,补偿结果使输出功率在较大值上维持一个稳定值。

对于高阻片工艺改进后的电池性能分析,待续。

参考文献

[1] 赵富鑫,魏彦章.太阳电池及其应用[M].北京:国防工业出版社,1985.314-315.

[2]安其霖,曹国琛,李国欣等.太阳电池原理与工艺[M].上海:上海科学技术出版1984.26-56.

[3] Martin A. Green..太阳电池工作原理、工艺和系统的应用[M].北京:电子工业出版社,1987.68-76.

[4] 陈庭金,马逊,夏朝凤,等.硅太阳电池铝背场的研究[J]. 中华学术论坛,2004年11月. 15-17.

附件:8月份SE线上上海卡姆丹克批次,不同电阻率电性能参数数据

晶体硅太阳能电池的制造工艺流程

晶体硅太阳能电池的制造 工艺流程 This model paper was revised by the Standardization Office on December 10, 2020

提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。 晶体硅太阳能电池的制造工艺流程说明如下: (1)切片:采用多线切割,将硅棒切割成正方形的硅片。 (2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。 (3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。 (4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为-。 (5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。 (6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。 (7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。 (8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。 (9)烧结:将电池芯片烧结于镍或铜的底板上。 (10)测试分档:按规定参数规范,测试分类。

由此可见,太阳能电池芯片的制造采用的工艺方法与半导体器件基本相同,生产的工艺设备也基本相同,但工艺加工精度远低于集成电路芯片的制造要求,这为太阳能电池的规模生产提供了有利条件。

硅太阳能电池的结构及工作原理

硅太阳能电池的结构及 工作原理 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。?? 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、

日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。由此可以看出,太阳能电池市场前景广阔。 在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。

晶体硅太阳能电池

晶体硅太阳能电池 专业班级:机械设计制造及其自动化13秋姓名:张正红 学号: 1334001250324 报告时间: 2015年12月

晶体硅太阳能电池 摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。 关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势 前言 “开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。 大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在! 一、晶体硅太阳能电池工作原理 太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。

硅太阳能电池的结构及工作原理

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显

电学性能测试设备的制作方法

本技术新型公开了一种电学性能测试设备,包括加工装置、测试装置和分析装置,加工装置、测试装置和分析装置安装在基座上面并呈直线排布,加工装置在右侧,测试装置在中间,分析装置在左侧,传送带安装在加工装置与测试装置中间,线缆安装在电气设备连接处,支撑架安装在基座底部边缘;本电学性能测试设备,在使用时只需将所检测材料在加工装置加工成检测装置所需状态,通过传送带运输到检测装置,经检测后将数据传输到分析电脑中即可,本设备安装五种常用的检测装置,能够同时检测多种电学性能,并将数据统一传输到分析电脑,做到全方位系统的测试材料的电学性能。 技术要求

1.一种电学性能测试设备,包括加工装置(1)、测试装置(3)和分析装置(5),其特征在于:所述加工装置(1)、测试装置(3)和分析装置(5)安装在基座(6)上面并呈直线排布,加工装置(1)在右侧,测试装置(3)在中间,分析装置(5)在左侧,传送带(2)安装在加工装置(1)与测试装置(3)中间,线缆(4)安装在电气设备连接处,支撑架(7)安装在基座(6)底部边缘;所述加工装置(1)包括放料口(11)和加工台(12),放料口(11)放置在加工台(12)顶部中间,加工台(12)安装在基座(6)右侧,测试装置(3)包括介电强度检测装置(31)、介电常数检测装置(32)、介电损耗检测装置(33)、体积电阻系数和表面电阻系数检测装置(34)、耐电弧性检测装置(35)、检测架(36)、排污口(37)和废料盒(38),介电强度检测装置(31)、介电常数检测装置(32)、介电损耗检测装置(33)、体积电阻系数和表面电阻系数检测装置(34)、耐电弧性检测装置(35)安装在检测架(36)上面并且呈线性排布,从右到左以依次为介电强度检测装置(31)、介电常数检测装置(32)、介电损耗检测装置(33)、体积电阻系数和表面电阻系数检测装置(34)、耐电弧性检测装置(35),检测架(36)安装在基座(6)中部,排污口(37)安装在检测架(36)右侧下方,废料盒(38)放置在基座(6)之上并且在排污口(37)的下方,分析装置(5)包括分析电脑(51)和分析台(52),分析电脑(51)放置在分析台(52)上面,分析台(52)安装在基座(6)左侧。 2.根据权利要求1所述的一种电学性能测试设备,其特征在于:所述电气设备均用线缆(4)连接。 3.根据权利要求1所述的一种电学性能测试设备,其特征在于:所述检测装置均为标准设备。 4.根据权利要求1所述的一种电学性能测试设备,其特征在于:所述支撑架(7)共6个并均匀分布在基座(6)下方边缘。 技术说明书 一种电学性能测试设备 技术领域

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

晶硅太阳能电池的特点和种类

晶体硅太阳能电池的种类及特点 太阳能电池已经有30多年的发展历史。目前世界各国研制的硅太阳能电池种类繁多,;主要系列有单晶、多晶、非晶硅几种。其中单晶硅太阳能电池占50%,多晶硅电池占20%、非晶占30%。我国光伏发电发展需解决的关键问题。太阳能光伏发电发展的瓶颈是成本高。为此,需加大研发力度,集中在降低成本和提高效率的关键技术上有所突破,主要包括:a)晶体硅电池技术。降低太阳硅材料的制备成本:开发专门用于晶体硅太阳能电池的硅材料,是生产高效和低成本太阳电池的基本条件;同时实现硅材料国产化和提高性能,从产业链的源头,抓好降低成本工作。提高电池/组件转换效率:高效钝化技术,高效陷光技术,选择性发射区,背表面场,细栅或者单面技术,封装材料的最佳折射率等高效封装技术等。光伏技术的发展以薄膜电池为方向,高效率、高稳定性、低成本是光伏电池发展的基本原则。 单晶硅在太阳能的有效利用当中,太阳能光电利用是近些年来发展最快,也是最具活力的研究领域。而硅材料太阳能电池无疑是市场的主体,硅基(多晶硅、单晶硅)太阳能电池占80%以上,每年全世界需消费硅材料3000t左右。生产太阳能电池用单晶硅,虽然利润比较低,但是市场需求量大,供不应求,如果进行规模化生产,其利润仍然很可观。目前,中国拟建和在建的太阳能电池生产线每年将需要680多吨的太阳能电池用多晶硅和单晶硅材料,其中单晶硅400多吨,而且,需求量还以每年15%~20%的增长率快速增长。硅系列太阳能电池中,单晶硅太阳能电池在实验室里最高的转换效率为23%,而规模生产的单晶硅太阳能电池,其效率为15%,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成熟的加工处理工艺基础上的。现在单晶硅的电池工艺已近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%。单晶硅具有完整的金刚石结构。通过掺杂得到n,P型单晶硅,进而制备出p/n结、二极管及晶体管,从而使硅材料有了真正的用途。单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。 多晶硅众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为:(1)可

高效晶体硅太阳能电池介绍

高效晶体硅太阳电池简介(1) PERC电池是澳大利亚新南威尔士大学光伏器件实验室最早研究 的高效电池。它的结构如图2-13a所示,正面采用倒金字塔结构,进行双面钝化,背电极通过一些分离很远的小孔贯穿钝化层与衬底接触,这样制备的电池最高效率可达到23.2%[26]。由于背电极是通过一些小孔直接和衬底相接触的,所以此处没能实现钝化。为了尽可能降低此处的载流子复合,所设计的孔间距要远大于衬底的厚度才可。然而孔间距的增大又使得横向电阻增加(因为载流子要横向长距离传输才能到达此处),从而导致电池的填充因子降低。另外,在轻掺杂的衬底上实现电极的欧姆接触非常困难,这就限制了高效PERC电池衬底材料只能选用电阻率低于0.5 Ωcm以下的硅材料。 为了进一步改善PERC电池性能,该实验室设想了在电池的背面增加定域掺杂,即在电极与衬底的接触孔处进行浓硼掺杂。这种想法早已有人提出,但是最大的困难是掺杂工艺的实现,因为当时所采用的固态源进行硼掺杂后载流子寿命会有很大降低。后来在实验过程中发现采用液态源BBr3进行硼掺杂对硅片的载流子寿命影响较小,并且可以和利用TCA制备钝化层的工艺有很好的匹配。1990年在PERC结构和工艺的基础上,J.Zhao在电池的背面接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图2.13b所示[27]。定域掺硼的温度为900 ℃,时间为20 min,随后采用了drive-in step技术(1070 ℃,2 h)。经过这样处理后背面接触孔处的薄层电阻可降到20 Ω/□以下。孔间距离也进行了调整,由2 mm缩短为250 μm,大大减少了横

向电阻。如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL电池的效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。 1993年该课题组对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。这种PERL电池取得高效的原因是[28]:(1)正面采光面为倒金字塔结构,结合背电极反射器,形成了优异的光陷阱结构;(2)在正面上蒸镀了MgF2/ZnS双层减反射膜,进一步降低了表面反射;(3)正面与背面的氧化层均采用TCA工艺(三氯乙烯工艺)生长高质量的氧化层,降低了表面复合;(4)为了和双层减反射膜很好配合,正面氧化硅层要求很薄,但是随着氧化层的减薄,电池的开路电压和短路电流又会降低。为了解决这个矛盾,相对于以前的研究,增加了“alneal”工艺,即在正面的氧化层上蒸镀铝膜,然后在370 ℃的合成气氛中退火30 min,最后用磷酸腐蚀掉这层铝膜。经过“alneal”工艺后,载流子寿命和开路电压都得到较大提高,而与正面氧化层的厚度关系不大。这种工艺的原理是,在一定温度下,铝和氧化物中OH-离子发生反应产生了原子氢,在Si/SiO2的界面处对一些悬挂键进行钝化。(5)电池的背电场通过定域掺杂形成,掺杂的温度和时间至关重要,对实现定域掺杂的接触孔的设计也非常重要,因为这关系到能否在整个背面形成背电场以及体串联电阻的大小。在这个电池中浓硼扩散区面积为30 μm×30 μm,接触孔的面积为10 μm ×10 μm,孔间距为250 μm,浓硼扩散区的面积仅占背面积的1.44%。定域扩散

材料的电学性能测试

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的 按照导电性能区分,不同种类的材料都可以分为导体、半导体和绝缘体三大类。区分标准一般以106Ω?cm和1012Ω?cm为基准,电阻率低于106Ω?cm称为导体,高于1012Ω?cm称为绝缘体,介于两者之间的称为半导体。然而,在实际中材料导电性的区分又往往随应用领域的不同而不同,材料导电性能的界定是十分模糊的。就高分子材料而言,通常是以电阻率1012Ω?cm为界限,在此界限以上的通常称为绝缘体的高分子材料,电阻率小于106Ω?cm称为导电高分子材料,电阻率为106 ~1012Ω?cm常称为抗静电高分子。通常高分子材料都是优良的绝缘材料。 通过本实验应达到以下目的: 1、了解高分子材料的导电原理,掌握实验操作技能。 2、测定高分子材料的电阻并计算电阻率。 3、分析工艺条件与测试条件对电阻的影响。 二、实验原理 1、电阻与电阻率 材料的电阻可分为体积电阻(R v)与表面电阻(R s),相应的存在体积电阻率与表面电阻率。 体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。在两电极间可能形成的极化忽略不计。 体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。 表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;该电流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分。在两电极间可能形成的极化忽略不计。 表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻。 体积电阻和表面电阻的试验都受下列因素影响:施加电压的大小和时间;电极的性质和尺寸;在试样处理和测试过程中周围大气条件和试样的温度、湿度。高阻测量一般可以利用欧姆定律来实现,即R=V/I。如果一直稳定通过电阻的电流,那么测出电阻两端的电压,就可以算出R的值。同样,给被测电阻施加一个已知电压,测出流过电阻的电流,也可以算出R的值。问题是R值很大时,用恒流测压法,被测电压V=RI将很大。若I=1μA,R=1012Ω,要测的电压V=106V。用加压测流法,V是已知的,要测的电流I=V/R将很小。因为处理弱电流难度相对小些,我们采用加压测流法,主要误差来源是微弱电流的测量。 2、导电高分子材料的分类

硅太阳能电池的主要性能参数

硅太阳能电池的主要性能参数 本信息来源于太阳能人才网|https://www.doczj.com/doc/c56557308.html, 原文链接: 硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。 ①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。 ②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7v。 ③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。 ④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。 ⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im ×um。峰值功率的单位是w(瓦)。太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。 ⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。计算公式为ff=pm/(isc×uoc)。填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。 串、并联电阻对填充因子有较大影响,太阳能电池的串联电阻越小,并联电阻越大,填充因子的系数越大。填充因子的系数一般在0.5~0.8之间,也可以用百分数表示。 ⑦转换效率(η):转换效率是指太阳能电池受光照时的最大输出功率与照射到电池上的太阳能量功率的比值。即: η=pm(电池片的峰值效率)/a(电池片的面积)×pin(单位面积的入射光功率),其中pin=lkw /㎡=100mw/cm2。 电池组件的板型设计 在生产电池组件之前,就要对电池组件的外型尺寸、输出功率以及电池片的排列布局等进行设计,这种设计在业内就叫太阳能电池组件的板型设计。电池组件板型设计的过程是一个对电池组件的外型尺寸、输出功率、电池片排列布局等因素综合考虑的过程。设计者既要了解电池片的性能参数,还要了解电池组件的生产工艺过程和用户的使用需求,做到电池组件尺寸合理,电池片排布紧凑美观。 组件的板形设计一般从两个方向入手。一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。 电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。

晶硅太阳能电池片的制作过程

晶硅太阳能电池板的制作过程 1、表面制绒单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。 2、扩散制结太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN 结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。 3、去磷硅玻璃该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除扩散制结后在硅片表面形成的一层磷硅玻璃。在扩散过程中,POCL3与O2反应生成P2O5淀积在硅片表面。P2O5与Si反应又生成SiO2和磷原子,这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。去磷硅玻璃的设备一般由本体、清洗槽、伺服驱动系统、机械臂、电气控制系统和自动配酸系统等部分组成,主要动力源有氢氟酸、氮气、压缩空气、纯水,热排风和废水。氢氟酸能够溶解二氧化硅是因为氢氟酸与二氧化硅反应生成易挥发的四氟化硅气体。若氢氟酸过量,反应生成的四氟化硅会进一步与氢氟酸反应生成可溶性的络和物六氟硅酸。 4、等离子刻蚀由于在扩散过程中,即使采用背靠背扩散,硅片的所有表面包括边缘都将不可避免地扩散上磷。PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路。因此,必须对太阳能电池周边的掺杂硅进行刻蚀,以去除电池边缘的PN结。通常采用等离子刻蚀技术完成这一工艺。等离子刻蚀是在低压状态下,反应气体CF4的母体分子在射频功率的激发下,产生电离并形成等离子体。等离子体是由带电的电子和离子组成,反应腔体中的气体在电子的撞击下,

(整理)南昌大学材料性能学重点 材料电学性能.

第二章材料电学性能 内容概要:本章介绍金属的导电机理,以及影响金属导电的因素,导电率的测量方法及其它材料的电学性质。 具体内容和学时安排如下: 第一节导电性能及本质 要求学生掌握导电的三大理论:经典电子理论;电子的量子理论;能带理论。这三大理论的成功或不足点。理解自由电子、能级和能带、周期性势场、能带密度、K空间的概念。 第二节金属导电性能影响因素 理解温度、相变、应力和热处理(淬火和退火)对材料导电性能的影响。 第三节合金的导电性能 理解固溶体和化合物的导电性 第四节电阻率的测量 电阻率的测量方法有单电桥法;双电桥法;电子四探针法。重点要求掌握单电桥法。第五节电阻分析应用 根据电阻率与温度的线性关系,可来研究材料的相变,材料的组织结构变化。 第六节超导电性 掌握超导的两大性能:完全导电性和完全抗磁性。掌握超导态转变为正常态的三个条件:临界温度;临界电流;临界磁场。超导的本质-BCS理论。 第七节材料的热电性能 了解三大热电现象:第一热导效应、第二热电效应、第三热电效应。 第八节半导体导电性的敏感效应 了解半导体能带结构特点;半导体导电有本征导电和杂质导电;实现导电的条件。 第九节介电极化与介电性能 掌握电介质极化机理和介电常数的本质 第十节电介质的介电损耗 了解电介质的能量损耗。 (共12个学时) 第一节导电性能及本质

材料的电学性能是指材料的导电性能,与材料的结构、组织、成分等因素有关。 一、电阻与导电的概念 R=U/I R 不仅与材料的性质有关,还与材料的几何形状有关 。 S L R ρ= L 与材料的长度,s与材料的横截面积,ρ为电阻率,单位为 m Ω? ρ σ1 = 值越小,a 值越大。 ρ 值愈小,σ值愈大。 纯金属:e 为10-8~10-7 合金: 10-7~10-5 半导体:10-3~10 9 绝缘体:﹥10 9 导电性能最好的金属是银、铜、金,其电阻率分别为1.5×10-8Ω?m 、1.73×10-8Ω?m 、等 二、导电机理及能带理论 关于材料的导电机理有三大理论:经典电子理论;电子的量子理论;能带理论。 1 金属及半导体的导电机理 1〉经典电子理论 经典电子理论认为(以Drude 和Lorentz 为代表):在金属晶体中,离子构成晶格点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此称为“电子气”。它们的运动遵循经典气体分子的运动规律,自由电子之间以及自由电子与正离子之间仅仅是机械碰撞而已。在没有外加电场时,金属中的自由电子沿各个方向的运动几率相同,因此不产生电流。当对金属施加外电场,自由电子沿电场方向加速运动,从而产生电流。在自由电子定向运动时,要与正离子发生碰撞,使电子受阻,这就是电阻。 设电子两次碰撞之间所经历的时间为τ 2* 2n e m τσ*= m*为电子的有效质量(考虑了晶体场对电子的相互作用) τ为电子在两次碰撞之间的时间间隔,τ为时间自由程. v 为电子运动的平均速度。 在T=0K 时,电子不受到散射.p=0.σ→∞。理想晶体。 T ≠0K 时,晶体的阵热振动或经典电子理论成功计算了电导率以及电导率与热导率的关系;但经典电子理论不能解释以下几种现象:电子的长平均自由程;材料导电性能差异;金属电子比热小。 2〉量子自由电子理论 量子自由电子理论认为:金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,且为整个金属所有,可以在整个金属中自由运动。但这一理论认为:金属中每个原子的内层电子基本保持单个原子时的能量状态,而所有的价电子却按量子规律具有不同的能量状态,即具有不同的能级。 量子电子理论认为:电子具有波粒二象性。运动着的电子作为物质波,其频率与电子的运动速

晶体硅太阳能电池依然是主流

未来10年晶体硅太阳能电池所占份额尽管会因薄膜太阳能电池的发展等原因而下降,但其主导地位仍不会根本改变;而薄膜电池如果能够解决转换效率不高,制备薄膜电池所用设备价格昂贵等问题,会有巨大的发展空间。 目前太阳能电池主要包括晶体硅电池和薄膜电池两种,它们各自的特点决定了它们在不同应用中拥有不可替代的地位。但是,专家认为,未来10年晶体硅太阳能电池所占份额尽管会因薄膜太阳能电池的发展等原因而下降,但其主导地位仍不会根本改变;而薄膜电池如果能够解决转换效率不高、制备薄膜电池所用设备价格昂贵等问题,会有巨大的发展空间。晶体硅太阳能电池依然是主力 在太阳能光伏领域,晶体硅太阳能电池的转换效率较高,原材料来源简单,因此虽然薄膜太阳能电池迅速崛起,但晶体硅太阳能电池目前仍是太阳能电池行业的主力。在2007年全球前十大太阳能电池生产商中,有9家是以生产晶体硅太阳能电池为主的。 据应用材料公司提供的PV(光伏)产业预测,尽管多晶硅太阳能电池技术相对市场占有率有下降趋势(即2007年45%,2010年40%,2015年37%),但总体上多晶硅太阳能电池年增长率在以40%—50%的速度发展,未来市场相当可观。 硅是自然界存量最多的元素之一,硅材料来源广泛、价格低廉且容易获得,大生产制造技术成熟,电池制造成本持续下降,业内专家预计,未来10年晶体硅太阳能电池所占份额尽管会因薄膜电池的发展等原因而下降,但主导地位仍不会根本改变。而随着太阳能电池尺寸的加大,多晶硅太阳能电池制造技术的成熟,其转换效率和单晶硅电池的差距越来越小,制造成本优势逐渐显现,所占份额也会不断提高。以高纯多晶硅为原料而制备的晶硅电池占据现有太阳能电池80%以上的市场,由于其原料易于制备,电池制备工艺最为成熟,在硅系太阳能电池中转换效率最高,无论其原料还是产品都对人类无毒无害等优点而获得了广泛的开发和应用。预计在未来的20年~30年里还不可能有其他材料和技术能取代晶硅电池位居第一的地位。 多晶硅产能扩大成本降低 多晶硅太阳能电池之所以占据主流,除取决于此类电池的优异性能外,还在于其充足、廉价、无毒、无污染的硅原料来源,而近年来多晶硅成本的降低更将使多晶硅太阳能电池大行其道。 随着硅太阳能商业化电池效率不断提高、商业化电池硅片厚度持续降低和规模效应等影响,硅太阳能成本仍在降低,规模每扩大1倍,成本降低约20%。

电学性能

一、实验目的 按照导电性能区分,不同种类的材料都可以分为导体、半导体和绝缘体三大类。区分标准一般以106Ω?cm和1012Ω?cm为基准,电阻率低于106Ω?cm称为导体,高于1012Ω?cm称为绝缘体,介于两者之间的称为半导体。然而,在实际中材料导电性的区分又往往随应用领域的不同而不同,材料导电性能的界定是十分模糊的。就高分子材料而言,通常是以电阻率1012Ω?cm为界限,在此界限以上的通常称为绝缘体的高分子材料,电阻率小于106Ω?cm称为导电高分子材料,电阻率为106 ~1012Ω?cm常称为抗静电高分子。通常高分子材料都是优良的绝缘材料。 通过本实验应达到以下目的: 1、了解高分子材料的导电原理,掌握实验操作技能。 2、测定高分子材料的电阻并计算电阻率。 3、分析工艺条件与测试条件对电阻的影响。 二、实验原理 1、电阻与电阻率 材料的电阻可分为体积电阻(R v)与表面电阻(R s),相应的存在体积电阻率与表面电阻率。 体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。在两电极间可能形成的极化忽略不计。 体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。 表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;该电流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分。在两电极间可能形成的极化忽略不计。 表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻。 体积电阻和表面电阻的试验都受下列因素影响:施加电压的大小和时间;电极的性质和尺寸;在试样处理和测试过程中周围大气条件和试样的温度、湿度。高阻测量一般可以利用欧姆定律来实现,即R=V/I。如果一直稳定通过电阻的电流,那么测出电阻两端的电压,就可以算出R的值。同样,给被测电阻施加一个已知电压,测出流过电阻的电流,也可以算出R的值。问题是R值很大时,用恒流测压法,被测电压V=RI将很大。若I=1μA,R=1012Ω,要测的电压V=106V。用加压测流法,V是已知的,要测的电流I=V/R将很小。因为处理弱电流难度相对小些,我们采用加压测流法,主要误差来源是微弱电流的测量。 2、导电高分子材料的分类

晶硅太阳能电池片的制作过程

晶硅太阳能电池片的制 作过程 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

晶硅太阳能电池板的制作过程 1、表面制绒单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。 2、扩散制结太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。

几种商业化的高效晶体硅太阳能电池技术

高效晶体硅太阳能电池技术 摘要:晶体硅太阳能电池是目前应用技术最成熟、市场占有率最高的太阳能电池。本文在解释常规太阳能电池能量损失机理的基础上,介绍了可应用于商业化生产的高效晶体硅太阳能电池技术及其工艺流程,并对每种电池技术的优、缺点及工艺难度进行了评价。 关键词:晶体硅电池;高效电池;商业化 1引言 能源是一个国家经济和社会发展的基础.目前广泛使用的石油、天然气、煤炭等化石能源面临着严峻的挑战.2005年2月我国通过了《中华人民共和国可再生能源法》,从立法角度推进可再生能源的开发和利用,这是解决我国能源与环境、实现可持续发展的重要战略决策。 不论从资源的数量、分布的普遍性,还是从清洁性、技术的可靠成熟性来说,太阳能在可再生能源中都具有更大的优越性,光伏发电已成为可再生能源利用的首要方式。而晶硅太阳电池一直占据着光伏市场的最大份额.与其它的可再生能源一样,目前要使之从补充能源过渡到替代能源,太阳电池光伏发电推广的最大制约因素仍然是发电成本。围绕着降低生产成本的目标,以高效电池获取更多的能量来代替低效电池一直是科学研究的的热门[1].近年来高效单晶硅太阳能电池研究已取得巨大成就,在美国、德国和日本,高效太阳能电池研究正如火如荼,特别是美国,商品化高效电池的转换效率已超过20%。 . 2硅太阳能电池能量损失机理 目前研究成果表面,影响晶体硅太阳能电池转换效率的原因主要来自两个方面:①光学损失.包括电池前表面反射损失、接触栅线的阴影损失以及长波段的非吸收损失,其中反射和阴影损失是可以通过技术措施减小的,而长波非吸收损失与半导体性质有关;②电学损失.它包括半导体表面及体内的光生载流子复合、半导体和金属栅线的体电阻以及金属-半导体接触(欧姆接触)电阻损失.相对而言,欧姆损失在技术上比较容易降低,其中最关键的是降低光生载流子的复合,它直接影响太阳电池的开路电压。而提高电池效率的关键之一就是提高开路电压V oc。光生载流子的复合主要是由于高浓度的扩散层在前表面引入了大量的复合中心。此外,当少数载流子的扩散长度与硅片的厚度相当或超过硅片厚度时,背表面的复合速度S b对太阳电池特性的影响也很明显。而从商业太阳电池来看,为了降低太阳电池的成本和提高效率,现在生产厂家也在不断地减小硅片的厚度,以降低原材料的价格.因此必须有减少前、背两个表面的光生载流子复合的结构和措施. 3高效晶体硅太阳能电池技术 3.1背接触电池IBC/MWT/EWT (1)IBC电池(PCC电池) 背接触电池是由Sunpower公司开发的高效电池,其特点是正面无栅状电极,正负极交叉排列在背面,量产效率可达19%~20%。 这种把正面金属栅线去掉的电池结构有很多优点[2]:(1)减少正面遮光损失,相当于增加了有效半导体面积,有利于增加电池效率;(2)有可能大大降低组件装配成本,因为全部外部接触均在单一表面上;(3)从建造结构的观点看来提供了增值,因为汇流条和焊线串接存在引起的视觉不适被组件背面所替代。

热电材料的电学性能

1、实验目的 装订线 1. 通过实验了解热电材料的Seebeck系数和电阻率的测定方法; 2. 测量在特定温度范围内热电材料电学电学性能随温度的变化 关系; 3. 结合实验结果分析并热电材料电功率因子与温度的关系。2、实验原理 1. 塞贝克系数 塞贝克效应是材料的一个物理性能,是一种由电流引起的可逆热效应或者说是温度差引起的电效应,其示意图如下: 对于两种不同的导体串联组成的回路,在导体b的开路位置y和z之间,将会有一个电位差,称为热电动势,数值是:,当T不是很大时,为常数,定义为两种导体的相对Seebeck系 数,即 (1) Seebeck系数常用的单是uV/K, Seebeck系数的测量原理如下图所示,1、3和2、4分别是NiCr和NiSi热电偶臂。测量时两段温差保持10℃,S两端存在 温差时会产生热电势差Vs,相对于热电偶的其中一个电偶臂 1、3的Seebeck系数为

2. 电阻率 从原理上讲,对电阻为R,长度为L,截面积为A的样品,电导率=R(A/L)。然而,由于半导体热电材料通常电阻率较小,接触电阻相对较大,容易引入实验误差。实验中电阻率的测定采用下图所示的两探针原理以避免接触电阻的影响。电阻率测量在试样两端等温进行,当△T足够小时,才对样本施加测试电流,这是电阻 R=V R/I const, V R为样品两端电压探针的电压降,I const为恒流源电流,取一特定值。为消除附加的Seebeck电压影响,试验通过改变电流方向进行两次电压测量,取其平均值。得R值后,有公式=R(A/L)算出其电阻率。

3、实验设备与装备 测量装置温度由AI-708P智能控制器控制。样品两端电压利用Agilent970A数据采集仪输入微机。 所用电源为恒流源。测量时抽真空以防样品氧化。 4、实验方法与步骤 1. 实验样品的制备方法: 原料称量→悬浮熔炼→(快速凝固→)机械研磨→热压成型(获 得样品) 2. 实验样品的安装 双眼中先将被测样品两端抛光,并真空镀银或覆盖银浆,形成欧姆接触,以保证样品与纯铜夹具间的良好接触。 3. 热电性能的测定 夹好样品后抽真空,然后根据两个AI-708P控制仪中事先设定的升温程序程序升温至不同的温度,在每一个选定的温度,待温度稳定后才开始测量。 4. 数据处理得到的Seebeck系数和电阻率 5、实验结果处理 本次实验采用5#组数据。 1.以Seebeck系数对温度作图: 首先以直线拟合,获得结果为y=-52.1-0.176x 但是由图上各点位置看出,并非理想结果。误差较大。 再以二次曲线拟合,如图: 可见曲线精确度高了不少,此时方程为 y=-188.87+0.54x-0.000935x2 个人认为还是二次曲线比较理想一些。 电阻率对温度作图

相关主题
文本预览
相关文档 最新文档