当前位置:文档之家› 有限元编程综述

有限元编程综述

有限元编程综述
有限元编程综述

有限元编程综述

——平面四节点等参单元分析

姓名:

学号:

指导老师:

日期:

摘要:有限元法,主要用来解决复杂结构中力与位移的关系。其基本思想是将具有无限个自由度的连续的求解区域离散为具有有限个自由度、且按一定方式(节点)相互连接在一起的离散体(单元),即将连续体假想划分为数目有限的离散单元,而单元之间只在数目有限的指定点处相互联结,用离散单元的集合体代替原来的连续体。本文主要介绍有限元分析的基本思想及有限元编程的主要流程,并通过一个平面四节点等参单元来具体论述相关内容。

关键词:有限元基本原理平面四节点等参单元分析流程

1基本原理及概述

所谓有限元法(FEA),其基本原理是把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。求解得到节点值后就可以通过设定的插值函数确定单元上以至个集合体上的场函数。对每个单元,选取适当的插值函数,使得该函数在子域内部、在子域分界面上以及子域与外界面上都满足一定的条件。单元组合体在已知外载荷作用下处于平衡状态时,列出一系列以节点、位移为未知量的线性方程组,利用计算机解出节点位移后,再用弹性力学的有关公式,计算出各单元的应力、应变,当各单元小到一定程度,那么它就代表连续体各处的真实情况。

通常情况下的有限元分析过程是运用可视化分析软件(如ANSYS、ABAQUS、SAP等)进行前处理和后处理,而中间的计算部分一般采用自己编制的程序来运算。具有较强数值计算和处理能力的Fortran语言是传统有限元计算的首选语言。随着有限元技术的逐步成熟,它被应用在越来越复杂的问题处理中,但在实际应用中也暴露出一些问题。有时网格离散化的区域较大,而又限于研究精度的要求,使得划分的网格数目极其庞大,结点数可多达数万个,从而造成计算中要运算的数据量巨大,程序运行的时间较长的弊端,这就延长了问题解决的时间,使得求解效率降低。因为运行周期长,不利于程序的调试,特别是对于要计算多种运行工况时的情况;同时大数据量处理对计算机的内存和CPU 提出了

更高的要求,而在实际应用中,单靠计算机硬件水平的提高来解决问题的能力是有限的。因此,必须寻找新的编程语言。

随着有限元前后处理的不断发展和完善,以及大型工程分析软件对有限元接口的要求,有限元分析程序不应只满足解题功能,它还应满足软件工程所要求的结构化程序设计条件,能够对存储进行动态分配,以充分利用计算机资源,它还应很容易地与其它软件如CAD 的实体造型,优化设计等接口。现在可编写工程应用软件的计算机语言较多,其中C语言是一个较为优秀的语言,很容易满足现在有限元分析程序编程的要求。

C语言最初是为操作系统、编译器以及文字处理等编程而发明的。随着不断完善,它已应用到其它领域,包括工程应用软件的编程。近年来,C语言已经成为计算机领域最普及的一个编程语言,几乎世界上所有的计算机都装有C的编译器,从PC机到巨型机到超巨型的并行机,C与所有的硬件和操作系统联系在一起。用C 编写的程序,可移植性极好,几乎不用作多少修改,就可在任何一台装有ANSI、C编译器的计算机上运行。C既是高级语言,也是低级语言,也就是说,可用它作数值计算,也可用它对计算机存储进行操作。

2编程思想

本程序采用C语言编程,编制平面四边形四节点等参元程序,用以求解平面结构问题。程序采用二维等带宽存储整体刚度矩阵,乘大数法引入约束,等带宽高斯消去法求解位移,然后求中间高斯点的应力,最后用绕节点平均法讲单元应力等效到节点上,再将结果写到tecplot文件中。

在有限元程序中,变量数据需赋值的可分为节点信息,单元信息,载荷信息等。对于一个节点来说,需以下信息:节点编号(整型),节点坐标(实型),节点已知位移(实型),节点载荷(实型),边界条件(实型)等。同样,对于一个单元来说,需以下信息:单元的节点联接信息(整型),材料信息(弹性模量,泊松比等)(实型)等。

在FORTRAN 程序中,以上这些变量混合在一起,很难辨认,使程序的可读性不好,如需要进行单元网络的自适应划分,节点及单元的修改将非常困难。在进行C语言编译过程中,采用结构struct 使每个节点信息存储在一个结构体

数组中,提高程序的可读性,使数据结构更趋于合理。

3 平面四节点等参单元介绍

四节点等参单元实际单元与基本单元的映射关系如图 3-1所示

坐标的映射关系为:

其位移模式和坐标的映射有相同的插值函数,形函数为:

单元应变矩阵为:

{}x y xy u x u y u v y x εεεγ??????????

?????==?????????????

??+??????

上式一般简写为:

{}[]{}B εδ=

其中[

]

B 的子块矩阵为

图 3-1

[]i i i i i N x N B y N N y x ???????????=???????????????

由于i N 是ε、η的函数,在[]i B

中的x 、y 要按照复合函数来求导,即

[]i i i i i i N N N x y x x J N N N x y y y εεεηηη?????????

??????

????????????

???????==????????????????????

??????????????

从而有:

[]1i i i i N N x J N N y εη-??????

??????????=????????????????

因此,单元应力矩阵为:

{}[][]{}D B σδ=

单元刚度矩阵为:

[]

[][][]T

e

A

K B D B hdxdy =??

其中积分采用三点高斯积分,

33

11

,11

11

1

(,)()

(,)nip

i

j

i j i

i

i j i f d d f W f ξηξη

ωω

ξηξη--===∑∑∑??

其中,2

nip n =(高斯积分点的总数),i ω和

j

ω或i W 是加权系数,i ξ和

j

η是

单元内的坐标.。对于三点高斯积分,高斯积分点的位置:

11 5.0ξω==,

220.0,8.09.0ξω==

,33 5.0ξω==。

结构刚度矩阵为:

e e

K K =∑

结构结点荷载列阵为:

e e

P P =∑

注意,对于上两式中e

∑的理解不是简单的叠加而是按照对应的自由度集

成。

总刚平衡方程:

[]{}{}K P δ=

从式上式求出:

{}[]{}1

K P δ-=

4 有限元分析流程

一个典型的有限元分析过程主要包括以下几个步骤: 1) 读输入数据,定义节点及单元数组。 2) 由边界条件计算方程个数,赋值荷载列阵。 3) 读入在带状存储的总刚度矩阵中单元和载荷信息。 4) 定义总刚度阵数组。 5) 组装总刚度阵。

6) 解方程组。

其流程图可见下图:

5计算流程图

6 程序变量及函数说明

6.1 控制信息

np:结构节点总数

ne:结构离散单元总数

nr1,nr2:总的约束的节点数,nr1,x方向;nr2,y方向

nd:每个单元的节点数

nf:每个节点的自由度数

ld:集中力载荷的个数

nm:材料的种类

nu1,nu2:非零位移边界条件的节点数,nu1,x方向;nu2,y方向

u1,u2:非零位移的大小,u1,x方向;u2,y方向

n=nf*np :结构的节点位移总数

ndf=nd*nf :每个单元的节点自由度数

6.2 输入的原始数据

x(np):节点的x方向坐标

y(np):节点的y方向坐标

me(nd,ne):单元节点的总体编号

nrr(nr1+nr2) :约束为零的位移所对应的总体位移编号

p(n):载荷向量

nu(nu1+nu2):位移载荷

mat(6,nm):材料参数

6.3程序中的其他标识符

LD(n):存放结构刚度阵所以主对角线元素在A(nn)中的序号

IS(ndf):单元节点位移和节点力在总体位移阵列和载荷阵列中对应的序号EK(ndf,ndf):总体坐标系下的单元刚度矩阵

A (nn ):架构刚度阵下三角变带宽一维压缩存储的数组 nn :数组A 的元素个数 RSTG(3):高斯积分点的值 H(3):高斯积分点的加权系数 S (6,ne ):各单元的应力分量 XJAC (2,2):雅阁比矩阵 RJAC (2,2):雅阁比矩阵的逆

PN (2,4):4个节点处形函数对局部坐标的导数 DNX (2,4):4个节点处形函数对整体坐标的导数 FUN (4):形函数的值

7 计算结果与Abaqus 分析结果的比较 7.1、中间带圆孔平面应力板的分析

宽40m ,长50m ,圆孔位于板中心,半径为4m ,承受水平方向位移载荷,E=200Pa ,3.0=μ,取1t =m 。用abaqus 建模离散,并计算。再讲abaqus 离散的节点和单元信息拷贝到本程序的输入文件中,用该程序计算,结果输出成tecplot 文件,用tecplot 可以查看结果。与abaqus 的计算结果进行比较,位移和应力云图如下(左边是程序计算结果,右边是abaqus 结果,下同):

7.2、纤维增强复合材料平面应力板的分析

宽40m ,长50m ,增强纤维位于板中心,纤维半径为8m ,承受水平方向位移载荷,基体材料E=20000Pa ,25.0=μ,纤维材料E=8000Pa ,3.0=μ,取1t =m 。

7.3、半无限大含裂纹板的应力分析

宽40m ,长60m ,裂纹位于板左侧中间位置,裂纹长10m ,承受竖直方向位移载荷,E=200Pa ,3.0=μ,取1t =m 。

7.4结果分析比较:

通过以上三个算例发现该程序可以用于计算单材料、双材料、带孔、含裂纹等各种平面问题,加载条件可以是加集中力和加位移,因此,该程序的适用范围还是比较广的。

以上三个算例的自编程序所得结果与abaqus 分析结果进行比较发现,两者的计算结果很接近,而且自编程序对于孔边应力集中和裂尖应力集中都能很好的表达,说明该程序有很好的精度。

第三个算例在裂尖处数值上有些区别,但总的分布规律还是很吻合的,主要是因为本程序是用四节点等参单元,对于应力的奇异性表达效果还不是很好。

参考文献

[1] 冷纪桐 有限元技术基础.化学工业出版社,2007

[2] 张洪武 刘辉 吴敬凯 郑永刚 平面4节点广义等参单元 计算力学学报,2010.6 [2] 王勖成 有限元法 清华大学出版社,2003

-有限元分析报告

西安市新城区某公司科研办公楼结构设计 有限元分析报告 撰写人:王平 班级:工程力学1203 学号:121010321 指导教师:张卫喜 2016年6月15日

目录 1 工程概况 (2) 2 分析依据 (3) 3 荷载与计算工况 (4) 3.1荷载简化及荷载组合 (4) 3.2 边界条件 (4) 3.3 工况 (5) 4 有限元模型 (6) 4.1 基本假定 (6) 4.2 力学模型 (6) 4.3 主要物理参数取值 (6) 4.4单元选取 (7) 4.5分网与有限元模型 (8) 5 静力分析 (9) 5.1模态结果 (9) 5.2静力分析结果 (13) 5.3 强度校核 (16) 6基于ANSYS、PKPM、手算的误差分析 (18) 6.1计算原理的不同 (18) 6.2 研究对象的复杂性 (19)

1工程概况 工程名称:西安市新城区某公司科研办公楼; 建筑所在地:西安市; 建设规模:总建筑面积约4700m2,主体结构6层,无地下室。结构总高度22.5m,底层结构高度4.5m,其余层结构高度为3.6m,几何模型图如图1所示; 抗震设防烈度:抗震设防烈度为8度,设计基本地震加速度值0.2g,第一组。场地类别为Ⅱ类,特征周期为0.35s。周期折减系数为0.75。 建筑设计使用年限:50年。 结构重要性等级:二级。 图1框架几何模型图

2分析依据 框架结构是由梁、板、柱以刚接相连接而成,构成承重体系的结构,即由梁、板、柱组成框架共同抵抗使用过程中出现的水平荷载和竖直荷载。本设计报告采用ANSYS有限元软件分析。 根据框架结构体系特点,本结构分析主要依据以下国家规范: [1]国家标准:《建筑结构荷载规范》(GB50009-2012).北京:中国建筑工业出版社.2012; [2]国家标准:《建筑抗震设计规范》(GB50011-2010).北京:中国建筑工业出版社.2010; [3]国家标准:《混凝土结构设计规范》(GB50010-2010).北京:中国建筑工业出版社.2010; [4]建筑、勘察等技术文件。

有限元分析系统的发展现状与展望外文翻译

Finite element analysis system development present situation and forecast Along with modern science and technology development, the people unceasingly are making the faster transportation vehicle, the large-scale building, the greater span bridge, the high efficiency power set and the preciser mechanical device. All these request engineer to be able precisely to forecast in the design stage the product and the project technical performance, needs to be static, technical parameter and so on dynamic strength to the structure as well as temperature field, flow field, electromagnetic field and transfusion carries on the analysis computation. For example analysis computation high-rise construction and great span bridge when earthquake receives the influence, has a look whether can have the destructive accident; The analysis calculates the nuclear reactor the temperature field, the determination heat transfer and the cooling system are whether reasonable; Analyzes in the new leaf blade the hydrodynamics parameter, enhances its operating efficiency. The sell may sum up as the solution physics question control partial differential equations often is not impossible. In recent years the finite element analysis which develops in the computer technology and under the numerical analysis method support(FEA, Finite Element Analysis) the side principle for solves these complex project analysis estimation problems to provide the effective way. Our country in " 95 " Plan period vigorously promotes the CAD technology, mechanical profession large and middle scalene terries CAD popular rate from " 85 " End 20% enhances that present 70%.With enterprise application of CAD, engineering and technical personnel has gradually get rid drawing board, and will join the main energy how to optimize the design, engineering and improving the quality of products, computer-aided engineering analysis (CAE. Computer Aided Engineering) method and software will be the key technical elements . ln engineering practice, finite element analysis software and CAD system integration design standards should be a qualitative leap, mainly in the following aspects : The increase design function, reduces the design cost; Reduces design and the analysis cycle period; Increase product and project reliability; Uses the optimized design, reduces the material the consumption or the cost;

有限元分析报告

南京理工大学 机械工程学院研究生研究型课程考试答卷 课程名称:计算机辅助工程(Computer Aided Engineering) 考试形式:□专题研究报告□论文√大作业(Project) □综合考试 学生姓名(name):李日和学号(ID number): 114101000072 评阅人: 时间:2015 年6 月16 日 iv

1.1背景及意义 随着科技水平的飞速发展以及工业生产的发展,对制造水平提出了更高的要求。航空航天事业的发展,对难加工材料的需求也是越来越大。特别是金刚石材料的应用,在这个超精密加工的时代有着无可替代的位置。中国是有色金属资源的大国,而金刚石工具在有色金属的加工应用中,也有着出色的适应性。在耐磨材料的加工中金刚石工具也起着举足轻重的作用。目前,实际生产中使用的金刚石成型砂轮一般采用单层电镀工艺来制作,镀层金属只是机械性地包埋金刚石磨粒,与镀层金属和基体之间并没有形成牢固的化学结合,因此镀层金属对磨粒的把持力小,当工作负荷较大时,砂轮工具容易由磨粒脱落或着镀层金属成片剥落而导致整体失效。如要增加磨粒与镀层金属的结合力,只有增加镀层金属的厚度,其结果是导致容屑空间和磨粒出露高度的减小,金刚石砂轮容易发生堵塞,砂轮的散热效果变差,由于温度上升工件表面容易发生烧伤。在单层钎焊超硬磨料砂轮时,在磨料、钎料与母材的界面上发生溶解、扩散、化合之类的相互作用,从本质上改善了磨料、钎料、基体三者之间的结合强度。用钎焊的方法制造的单层金刚石工具,因为钎焊合金与金刚石磨粒有着牢固的化学结合,金刚石露出的高度大,相比于电镀金刚石工具,这种金刚石工具具有磨削效率高、工具寿命长等特点。而且,目前钎焊多采用感应加热的方式。感应加热是一种非接触的加热方式,因此,在感应钎焊过程中不容易掺入其他杂质,影响钎焊效果;感应钎焊采用的是涡流进行加热的方式,因为在感应频率非常高,因此加热速度快,且能选择性地进行感应加热;感应加热是通过电磁感应,让工件自己加热,是由内向外的加热方式,效率高,能耗小;感应加热设备简单成本低,温度容易控制,因此,容易实现自动化加热。 2.1 问题描述与仿真目的 在进行感应钎焊金刚石砂轮时,温度均匀及温度控制是钎焊是否成功的重要条件。温度不均导致钎料分布不均;温度过高钎料流动性太强,无法定形,且有可能损害基体使基体失效;温度过低钎料与基体无法发生冶金反应。但是在感应钎焊加热过程中,温度的大小可以得到很好的控制,本次仿真不考虑该问题对感应钎焊的影响。由于在感应加热过程中存在着集肤效应、圆环效应和邻近效应,对不同表面的加热效果是不均匀的,这对焊接金刚石颗粒会造成致命的损害。通过仿真得出不同形状的感应线圈与加热条件对工件表面温度分布的影响,从而得到一组优化的实验参数,并通过实验进行验证仿真结果。

(完整word版)有限元分析软件的比较

有限元分析软件的比较(购买必看)-转贴 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element A nalysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PA FEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件

有限元法发展综述

有限元法发展综述 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式往往是不可能的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。 有限元法是一种高效能、常用的计算方法.有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系. 一、有限元法的孕育过程及诞生和发展 大约在300年前,牛顿和莱布尼茨发明了积分法,证明了该运算具有整体对局部的可加性。虽然,积分运算与有限元技术对定义域的划分是不同的,前者进行无限划分而后者进行有限划分,但积分运算为实现有限元技术准备好了一个理论基础。 在牛顿之后约一百年,著名数学家高斯提出了加权余值法及线性代数方程组的解法。这两项成果的前者被用来将微分方程改写为积分表达式,后者被用来求解有限元法所得出的代数方程组。在18世纪,另一位数学家拉格郎日提出泛函分析。泛函分析是将偏微分方程改写为积分表达式的另一途经。 在19世纪末及20世纪初,数学家瑞雷和里兹首先提出可对全定义域运用展开函数来表达其上的未知函数。1915年,数学家伽辽金提出了选择展开函数中形函数的伽辽金法,该方法被广泛地用于有限元。1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数。这实际上就是有限元的做法。 所以,到这时为止,实现有限元技术的第二个理论基础也已确立。 20世纪50年代,飞机设计师们发现无法用传统的力学方法分析飞机的应力、应变等问题。波音公司的一个技术小组,首先将连续体的机翼离散为三角形板块的集合来进行应力分析,经过一番波折后获得前述的两个离散的成功。20世纪

有限元分析的发展趋势

有限元分析的发展趋势 摘要:1965年“有限元”这个名词第一次出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。有限元的核心思想是结构的离散化,就是将实际结构假想地离散为有限数目的规则单元组合体,实际结构的物理性能可以通过对离散体进行分析,得出满足工程精度的近似结果来替代对实际结构的分析,这样可以解决很多实际工程需要解决而理论分析又无法解决的复杂问题。 关键词:有限元分析结构计算结构设计 Abstract: The 1965 "finite" appeared for the first time this term, and today is widely used finite element in engineering, after more than 30 years of history, theory and algorithms have been improved. Finite element discretization of the core idea is to structure, is the actual structure of the supposed discrete combination unit for a limited number of rules, the actual structure to analyse the physical properties can be felt through a discrete body of drawn precision engineering approximation as an alternative to the analysis of actual structures, this would solve a lot of theoretical analysis and practical engineering needed to address complex problems that cannot be resolved. Key words: finite element analysis structural calculation physical design 1 有限元的发展历程 有限元法的发展历程可以分为提出(1943)、发展(1944一1960)和完善(1961-二十世纪九十年代)三个阶段。有限元法是受内外动力的综合作用而产生的。 1943年,柯朗发表的数学论文《平衡和振动问题的变分解法》和阿格瑞斯在工程学中取得的重大突破标志着有限元法的诞生。 有限元法早期(1944一1960)发展阶段中,得出了有限元法的原始代数表达形式,开始了对单元划分、单元类型选择的研究,并且在解的收敛性研究上取得了很大突破。1960年,克劳夫第一次提出了“有限元法”这个名称,标志着有限元法早期发展阶段的结束。 有限元法完善阶段(1961一二十世纪九十年代)的发展有国外和国内两条线索。在国外的发展表现为: 第一,建立了严格的数学和工程学基础;第二,应用范围扩展到了结构力学以外的领域;第三,收敛性得到了进一步研究,形成了系统的误差估计理论;第四,发展起了相应的商业软件包。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶,铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面: 一、增加产品和工程的可靠性; 二、在产品的设计阶段发现潜在的问题 三、经过分析计算,采用优化设计方案,降低原材料成本

有限元概述

有限元 百科名片 有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后 再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 目录 简介 1)物体离散化 2)单元特性分析 3)单元组集 4)求解未知节点位移 5)有限元的未来是多物理场耦合 编辑本段简介 英文:Finite Element 有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元法分析计算的思路和做法可归纳如下: 编辑本段1)物体离散化 将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 编辑本段2)单元特性分析 A、选择位移模式

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

有限元分析71831

有限元分析 有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。由于单元的数目是有限的,节点的数目也是有限的,所以称为有限元法(FEM,Finite Element Method)。 有限元法是一种求解关于场问题的一系列偏微分方程的数值方法.这种类型的问题会在许多工程学科中遇到,如机械设计、声学、电磁学、岩土力学、断裂力学、流体力学等.在机械工程中,有限元分析被光分应用在结构、振动和传热问题上。 有限元法是60年代以来发展起来的新的数值计算方法,是计算机时代的产物。虽然有限元的概念早在40年代就有人提出,但由于当时计算机尚未出现,它并未受到人们的重视。随着计算机技术的发展,有限元法在各个工程领域中不断得到深入应用,现已遍及宇航工业、核工业、机电、化工、建筑、海洋等工业,是机械产品动、静、热特性分析的重要手段。早在70年代初期就有人给出结论:有限元法在产品结构设计中的应用,使机电产品设计产生革命性的变化,理论设计代替了经验类比设计。目前,有限元法仍在不断发展,理论上不断完善,各种有限元分析程序包的功能越来越强大,使用越来越方便。 大约在300年前,牛顿和莱布尼茨发明了积分法,证明了该运算具有整体对局部的可加性。虽然,积分运算与有限元技术对定义

域的划分是不同的,前者进行无限划分而后者进行有限划分,但积分运算为实现有限元技术准备好了一个理论基础。 在牛顿之后约一百年,著名数学家高斯提出了加权余值法及线性代数方程组的解法。这两项成果的前者被用来将微分方程改写为积分表达式,后者被用来求解有限元法所得出的代数方程组。在18世纪,另一位数学家拉格郎日提出泛函分析。泛函分析是将偏微分方程改写为积分表达式的另一途经。 在19世纪末及20世纪初,数学家瑞雷和里兹首先提出可对全定义域运用展开函数来表达其上的未知函数。1915年,数学家伽辽金提出了选择展开函数中形函数的伽辽金法,该方法被广泛地用于有限元。1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数。这实际上就是有限元的做法。 所以,到这时为止,实现有限元技术的第二个理论基础也已确立。 20世纪50年代,飞机设计师们发现无法用传统的力学方法分析飞机的应力、应变等问题。波音公司的一个技术小组,首先将连续体的机翼离散为三角形板块的集合来进行应力分析,经过一番波折后获得前述的两个离散的成功。20世纪50年代,大型电子计算机投入了解算大型代数方程组的工作,这为实现有限元技术准备好了物质条件。1960年前后,美国的R. W. Clough教授及我国的冯康教授分别独立地在论文中提出了“有限单元”,这样的名词。此后,这样

有限元法的概述

有限元法的概述 有限元方法(Finite Element Method)是力学,数学物理学,计算方法,计算机技术等多种学科综合发展和结合的产物。在人类研究自然界的三大科学研究方法(理论分析,科学试验,科学计算)中,对于大多数新型领域,由于科学理论和科学实践的局限性,科学计算成为一种最重要的研究手段。在大多数工程研究领域,有限元方法是进行科学计算的重要方法之一;利用有限元方法几乎可以对任意复杂的工程结构进行分析,获取结构的各种机械性能信息,对工程结构进行评判,对工程事故进行分析。有限元法在设计过程中有极为关键的作用。 人们对各种力学问题进行分析求解,其方法归结起来可以分为解析法(Analytical Method)和数值法(Numeric Method).如果给定一个问题,通过一定的推导可以用具体的表达式来获得问题的解答,这样的求解方法就称为解析法。但是由于实际结构物的复杂性,除了少数极其简单的问题外,绝大多数科学研究和工程计算问题用解析法求解式极其困难的。因此,数值法求解便成为了一种不可替代的广泛应用的方法,并取得了不断的发展,如有限元法,有限差分法,边界元方法等都是属于数值求解方法。其中有限元法式 20 世纪中期伴随着计算机技术的发展而迅速发展起来的一种数值分析方法,它的数学逻辑严谨,物理概念清晰,应用非常广泛,能活灵活现处理和求解各种复杂的问题。有限元方法采用矩阵式来表达基本公式,便于计算机编程,这些优点赋予了它强大的生命力。 有限元方法的实质是将复杂的连续体划分成为有限多个简单的单元体,化无限自由度问题为优先自由度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。用有限元方法分析工程结构的问题时,将一个理想体离散化后,如何保证其数值的收敛性和稳定性是有限元理论讨论的主要内容之一,而

solidworkssimulation有限元法概述

SolidWorks Simulation概述 SolidWorks Simulation是一款基于有限元(即FEA数值)技术的设计分析软件,是SRAC 开发的工程分析软件产品之一。SRAC是DS SolidWorks@公司的子公司,成立于1982年,是将有限元分析带入微型电脑的先驱。1995年,SRAC开始与DS SolidWorks@公司合作开发了COSMOSWorks软件,从而进入了工程界主流有限元分析软件的市场,成为了DS SolidWorks@公司的金牌产品之一。同时,它作为嵌入式分析软件与SolidWorks无缝集成,迅速成为顶级销售产品。整合了SolidWorks CAD软件的COSMOS-Works软件在商业上取得了成功,并于2001年获得了Dassault Systemes(DS SolidWorks@母公司)的认可。2003年,SRAC公司与DS SolidWorks⑤公司合并。COSMOSWorks推出的2009版被重命名为Solid-Works Simulation。 SolidWorks是一款基于特征的参数化CAD系统软件。和许多最初在UNIX环境中开发,后来才向Windows系统开放的CAD系统不同,SolidWorks与SolidWorks Simulation茌一开始就是专为Windows操作系统开发的,所以相互整合是完全可行的。 SolidWorks Simulation有不同的程序包或应用软件以适应不同用户的需要。除了SolidWorks Simula-tionXpress程序包是SolidWorks的集成部分之外,所有的SolidWorks Simulation软件程序包都是插件式的。不同程序包的主要功能如下: ·SolidWorks SimulationXpress:能对带有简单载荷和支撑的零件进行静态分析。 ·SolidWorks Simulation:能对零件和装配体进行静力分析。 ·SolidWorks Simulation Professional:能进行零件和装配体的静态、热传导、扭曲、频率、跌落测试、优化和疲劳分析。 ·SolidWorks Simulation Premium:具有SolidWorks Simulation Professional的所有功能,外加非线性功能和动力学分析。 有限元分析概述 在数学术语中,FEA也称之为有限单元法,是一种求解关于场问题的一系列偏微分方程的数值方法。这种类型的问题涉及许多工程学科,如机械设计、声学、电磁学、岩土力学、流体动力学等。在机械工程中,有限元分析被广泛地应用在结构、振动和传热问题上。 FEA不是唯一的数值分析工具,在工程领域还有其他的数值方法,如有限差分法、边界元法和有限体积法。然而由于FEA的多功能性和高数值性能,它占据了绝大多数工程分析的软件市场,而其他方法则被归入小规模应用。使用FEA,通过不同方法理想化几何体,能够分析任何形状的模型,并得到预期的精度。当使用现代的商业软件,例如SolidWorks Simulation时,FEA理论、数值问题公式和求解方法对用户是完全透明的。 作为一个强有力的工程分析工具,FEA可以解决从简单到复杂的各种问题。一方面,设计工程师使用FEA在产品研发过程中分析设计改进,由于时间和可用的产品数据的限制,需要对所分析的模型作许多简化。另一方面,专家们使用FEA来解决一些非常深奥的问题,如车辆碰撞动力学、金属成形和生物结构分析。 不管项目多复杂或是应用领域多广,无论是结构、热传导或是声学分析,所有FEA的第一步总是相同的,都是从几何模型开始。在本课程中,即为SolidWorks的零件和装配件。我们给这些模型分配材料属性,定义载荷和约束,再使用数值近似方法,将模型离散化以便分析。 离散化过程也就是网格划分过程,即将几何体剖分成相对小且形状简单的实体,这些实体称为有限单元。单元称为“有限”的,是为了强调这样一个事实:它们不是无隈的小,而是与整个模型的尺寸相比之下适度的小。 当使用有限单元工作时,FEA求解器将把单个单元的简单解综合成对整个模型的近似解

有限元的发展历史现状及应用前景

有限元分析的发展趋势 “有限元”这个名词第一次出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。有限元的核心思想是结构的离散化,就是将实际结构假想地离散为有限数目的规则单元组合体,实际结构的物理性能可以通过对离散体进行分析,得出满足工程精度的近似结果来替代对实际结构的分析,这样可以解决很多实际工程需要解决而理论分析又无法解决的复杂问题。
近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶,铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面:
增加产品和工程的可靠性;
在产品的设计阶段发现潜在的问题
经过分析计算,采用优化设计方案,降低原材料成本
缩短产品投向市场的时间
模拟试验方案,减少试验次数,从而减少试验经费

国际上早在60年代初就开始投入大量的人力和物力开发有限元分析程序,但真正的CAE软件是诞生于70年代初期,而近15年则是CAE软件商品化的发展阶段,CAE开发商为满足市场需求和适应计算机硬、软件技术的迅速发展,

在大力推销其软件产品的同时,对软件的功能、性能,用户界面和前、后处理能力,都进行了大幅度的改进与扩充。这就使得目前市场上知名的CAE软件,在功能、性能、易用性、可靠性以及对运行环境的适应性方面,基本上满足了用户的当前需求,从而帮助用户解决了成千上万个工程实际问题,同时也为科学技术的发展和工程应用做出了不可磨灭的贡献。目前流行的CAE分析软件主要有NASTRAN、 ADINA 、ANSYS、ABAQUS、MARC、MAGSOFT、COSMOS等。MSC-NASTRAN 软件因为和NASA的特殊关系,在航空航天领域有着很高的地位,它以最早期的主要用于航空航天方面的线性有限元分析系统为基础,兼并了PDA公司的PATRAN,又在以冲击、接触为特长的DYNA3D的基础上组织开发了DYTRAN。近来又兼并了非线性分析软件MARC,成为目前世界上规模最大的有限元分析系统。ANSYS软件致力于耦合场的分析计算,能够进行结构、流体、热、电磁四种场的计算,已博得了世界上数千家用户的钟爱。ADINA非线性有限元分析软件由著名的有限元专家、麻省理工学院的 K.J.Bathe教授领导开发,其单一系统即可进行结构、流体、热的耦合计算。并同时具有隐式和显式两种时间积分算法。由于其在非线性求解、流固耦合分析等方面的强大功能,迅速成为有限元分析软件的后起之秀,现已成为非线性分析计算的首选软件。

纵观当今国际上CAE软件的发展情况,可以看出有限元分析方法的一些发展趋势:

1、与CAD软件的无缝集成

有限元分析报告大作业

基于ANSYS软件的有限元分析报告 机制1205班杜星宇U201210671 一、概述 本次大作业主要利用ANSYS软件对桌子的应力和应变进行分析,计算出桌子的最大应力和应变。然后与实际情况进行比较,证明分析的正确性,从而为桌子的优化分析提供了充分的理论依据,并且通过对ANSYS软件的实际操作深刻体会有限元分析方法的基本思想,对有限元分析方法的实际应用有一个大致的认识。 二、问题分析 已知:桌子几何尺寸如图所示,单位为mm。假设桌子的四只脚同地面完全固定,桌子上存放物品,物品产生的均匀分布压力作用在桌面,压力大小等于300Pa,其中弹性模量E=9.3GPa,泊松比μ=0.35,密度ρ=560kg/m3,分析桌子的变形和应力。

将桌脚固定在地面,然后在桌面施加均匀分布的压力,可以看作对进行平面应力分析,桌脚类似于梁单元。由于所分析的结构比较规整且为实体,所以可以将单元类型设为八节点六面体单元。 操作步骤如下: 1、定义工作文件名和工作标题 (1)定义工作文件名:执行Utility Menu/ File/Change Jobname,在弹出Change Jobname 对话框修改文件名为Table。选择New log and error files复选框。 (2)定义工作标题:Utility Menu/File/ Change Title,将弹出Change Title对话框修改工作标题名为The analysis of table。 (3)点击:Plot/Replot。 2、设置计算类型 (1)点击:Main Menu/Preferences,选择Structural,点击OK。

国内外主要有限元分析软件比较

有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司。 常见软件 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 软件对比 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS 专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA 是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1.在世界范围内的知名度 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域

有限元综述

有限元综述 蔡璟、吕丹丹、李川 摘要:有限元法(Finite Element Method)是一种高效能、常用的数值计算方法。1965年“有限元”这个名词第一次出现,经历了三十多年的发展历史,理论和算法都已经日趋完善。如今,有限元在工程上得到广泛应用。本文首先介绍了有限元的研究背景和意义,其次从它的诞生、主要特点以及解题步骤三方面阐述相关概念,再讨论传统有限元算法及优化算法、有限元与其他算法结合得到的混合算法两个方面来分类阐述各自的研究现状与特点,最后总结有限元算法的应用以及发展趋势。 关键词:有限元法,FEM,经典算法,优化算法,网格优化,Herrmann算法,时域有限元,混合算法,矩量法,时域有限差分,应用研究,边界元法,光滑粒子法,发展趋势

前言 有限元法(Finite Element Method)是一种高效能、常用的数值计算方法,其基本思想是由解给定的泊松方程化为求解泛函的极值问题。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,解决了物理场应用中的限制。经历几十年的发展,有限元法已经被广泛用于各个领域。 1.研究背景和意义 有限元法的思想首先由 R. Courant 在 1943 年提出,十九世纪六十年代数值分析科学家认识了有限元基本思想,建立了有限元方法的数学基础。其中,我国数学家冯康独立地提出了有限元方法,将其命名为“基于变分原理的差分格式”,对有限元方法的创始及奠基工作做出了重要贡献。 以变分原理为基础建立起来的有限元法,因其理论依据的普遍性,不仅广泛地被应用于各种结构工程,而且作为一种声誉很高的数值分析方法已被普遍推广并成功地用来解决其他工程领域中的问题,例如热传导!渗流!流体力学、空气动力学、土壤力学、机械零件强度分析、电磁场工程问题等等。 有限元法由于可以模拟任意几何模型和各种特性的复杂材料而且具有的适应性强、程序较为通用等优势而得到了长足的发展。同时,结合其他方法和理论呈现出广阔的应用前景,如自适应网格剖分、三维场建模求解、耦合问题、开放域问题等领域取得较多成果。现阶段,为了进一步拓宽求解问题的广泛性以及适应求解问题对高精度,高复杂程度的要求,有限元还需要进行突破性的工作。2.有限元研究概况 2.1有限元的诞生 1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数,最早提出有限元法基本思想。20世纪50年代,飞机设计师们发现无法用传统的力学方法分析飞机的应力、应变等问题。波音公司的一个技术小组,首先将连续体的机翼离散为三角形板块的集合来进行应力分析,经过一番波折后获得前述的两个离散的成功。20世纪50年代,大型电子计算机投入了解算大型代数方程组的工作,这为实现有限元技术准备好了物质条件。1960年前后,美国的R.W.Clough教授及我国的冯康教授分别独立地在论文中提出了“有限单元”这样的名词。此后,这样的叫法被大家接受,有限元技术从此正式

有限元分析基础

有限元分析基础 第一章有限元法概述 在机械设计中,人们常常运用材料力学、结构力学等理论知识分析机械零构件的强度、刚度和稳定性问题。但对一些复杂的零构件,这种分析常常就必须对其受力状态和边界条件进行简化。否则力学分析将无法进行。但这种简化的处理常常导致计算结果与实际相差甚远,有时甚至失去了分析的意义。所以过去设计经验和类比占有较大比重。因为这个原因,人们也常常在设计中选择较大的安全系数。如此也就造成所设计的机械结构整体尺寸和重量偏大,而局部薄弱环节强度和刚度又不足的设计缺陷。 近年来,数值计算机在工程分析上的成功运用,产生了一门全新、高效的工程计算分析学科——有限元分析方法。该方法彻底改变了传统工程分析中的做法。使计算精度和计算领域大大改善。 §1.1 有限元方法的发展历史、现状和将来 一,历史 有限元法的起源应追溯到上世纪40年代(20世纪40年代)。1943年R.Courant从数学的角度提出了有限元法的基本观点。50年代中期在对飞机结构的分析中,诞生了结构分析的矩阵方法。1960年R.W.Clough在分析弹性力学平面问题时引入了“Finite Element Method”这一术语,从而标志着有限元法的思想在力学分析中的广泛推广。 60、70年代计算机技术的发展,极大地促进了有限元法的发展。具体表现在: 1)由弹性力学的平面问题扩展到空间、板壳问题。 2)由静力平衡问题——稳定性和动力学分析问题。 3)由弹性问题——弹塑性、粘弹性等问题。 二,现状 现在有限元分析法的应用领域已经由开始时的固体力学,扩展到流体力学、传热学和电磁力学等多个传统的领域。已经形成了一种非常成熟的数值分析计算方法。大型的商业化有限元分析软件也是层出不穷,如: SAP系列的代表SAP2000(Structure Analysis Program) 美国安世软件公司的ANSYS大型综合有限元分析软件 美国航天航空局的NASTRAN系列软件 除此以外,还有MASTER、ALGO、ABIQUES、ADINA、COSMOS等。 三,将来 有限元的发展方向最终将和CAD的发展相结合。运用“四个化”可以概括其今后的发展趋势。那就是:可视化、集成化、自动化和网络化。 §1.2 有限元法的特点 机械零构件的受力分析方法总体说来分为解析法和数值法两大类。如大家学过的材料力学、结构力学等就是经典的解析力学分析方法。在这些解析力学方法中,弹性力学的分析方法在数学理论上是最为严谨的一种分析方法。 其解题思路是:从静力、几何和物理三个方面综合考虑,建立描述弹性体的平衡、应力、应变和位移三者之间的微分方程,然后考虑边界条件,从而求出微分方程的解析解。其最大的有点就是,严密精确。缺点就是微分方程的求解困难,很多情况下,无法求解。 数值方法是一种近似的计算方法。具体又分为“有限差分法”和“有限元法”。 “有限差分法”是将得到的微分方程离散成近似的差分方程。通过对一系列离散的差分

相关主题
文本预览
相关文档 最新文档