当前位置:文档之家› 数字信号处理数学基础复习

数字信号处理数学基础复习

数字信号处理数学基础复习
数字信号处理数学基础复习

数字信号处理试题

一、 单 项选择题 1. 序列x(n)=Re(e jn π/12 )+I m (e jn π/18 ),周期为( )。 A. 18π B. 72 C. 18π D. 36 2. 设C 为Z 变换X(z)收敛域内的一条包围原点的闭曲线,F(z)=X(z)z n-1 ,用留数法求X(z)的反变换时( )。 A. 只能用F(z)在C 内的全部极点 B. 只能用F(z)在C 外的全部极点 C. 必须用收敛域内的全部极点 D. 用F(z)在C 内的全部极点或C 外的全部极点 3. 有限长序列h(n)(0≤n ≤N-1)关于τ= 2 1 -N 偶对称的条件是( )。 A. h(n)=h(N-n) B. h(n)=h(N-n-1) C. h(n)=h(-n) D. h(n)=h(N+n-1) 4. 对于x(n)= n )21(u(n)的Z 变换,( )。 A. 零点为z=21,极点为z=0 B. 零点为z=0,极点为z=21 C. 零点为z=21,极点为z=1 D. 零点为z=2 1 ,极点为z=2 5、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.160,Z 变换的收敛域为( )。 A. 0<|z|<∞ B. |z|>0 C. |z|<∞ D. |z|≤∞ 9.在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率Ωs 与信号最高截止频率Ωc 应满足关系( ) A. Ωs>2Ωc B. Ωs>Ωc C. Ωs<Ωc D. |Ωs<2Ωc 10.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( ) A.y(n)=y(n-1)x(n) B.y(n)=x(n)/x(n+1) C.y(n)=x(n)+1 D.y(n)=x(n)-x(n-1)

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

数字信号处理答案解析

1-1画出下列序列的示意图 (1) (2) (3) (1) (2)

(3) 1-2已知序列x(n)的图形如图1.41,试画出下列序列的示意图。 图1.41信号x(n)的波形 (1)(2)

(3) (4) (5)(6) (修正:n=4处的值为0,不是3)(修正:应该再向右移4个采样点)1-3判断下列序列是否满足周期性,若满足求其基本周期 (1) 解:非周期序列; (2) 解:为周期序列,基本周期N=5; (3)

解:,,取 为周期序列,基本周期。 (4) 解: 其中,为常数 ,取,,取 则为周期序列,基本周期N=40。 1-4判断下列系统是否为线性的?是否为移不变的? (1)非线性移不变系统 (2) 非线性移变系统(修正:线性移变系统) (3) 非线性移不变系统 (4) 线性移不变系统 (5) 线性移不变系统(修正:线性移变系统)1-5判断下列系统是否为因果的?是否为稳定的? (1) ,其中因果非稳定系统 (2) 非因果稳定系统 (3) 非因果稳定系统 (4) 非因果非稳定系统

(5) 因果稳定系统 1-6已知线性移不变系统的输入为x(n),系统的单位脉冲响应为h(n),试求系统的输出y(n)及其示意图 (1) (2) (3) 解:(1) (2) (3)

1-7若采样信号m(t)的采样频率fs=1500Hz,下列信号经m(t)采样后哪些信号不失真? (1) (2) (3) 解: (1)采样不失真 (2)采样不失真 (3) ,采样失真 1-8已知,采样信号的采样周期为。 (1) 的截止模拟角频率是多少? (2)将进行A/D采样后,的数字角频率与的模拟角频率的关系如何? (3)若,求的数字截止角频率。 解: (1) (2) (3)

数字信号处理期末试卷!

数字信号处理模拟试题一 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率Ωs与信号最高截止频率Ωc应满足关系(A ) A.Ωs>2Ωc B.Ωs>Ωc C.Ωs<Ωc D.Ωs<2Ωc 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?(D) A.y(n)=y(n-1)x(n) B.y(n)=x(n)/x(n+1) C.y(n)=x(n)+1 D.y(n)=x(n)-x(n-1) 3.已知某序列Z变换的收敛域为5>|z|>3,则该序列为(D ) A.有限长序列 B.右边序列 C.左边序列 D.双边序列 4.实偶序列傅里叶变换是(A ) A.实偶序列 B.实奇序列 C.虚偶序列 D.虚奇序列 5.已知x(n)=δ(n),其N点的DFT[x(n)]=X(k),则X(N-1)=(B) A.N-1 B.1 C.0 D.-N+1 6.设两有限长序列的长度分别是M与N,欲通过计算两者的圆周卷积来得到两者的线性卷积,则圆周卷积的点数至少应取(B ) A.M+N B.M+N-1 C.M+N+1 D.2(M+N) 7.下面说法中正确的是(C) A.连续非周期信号的频谱为周期连续函数 B.连续周期信号的频谱为周期连续函数 C.离散非周期信号的频谱为周期连续函数 D.离散周期信号的频谱为周期连续函数 8.下列各种滤波器的结构中哪种不是IIR滤波器的基本结构?(C ) A.直接型 B.级联型 C.频率抽样型 D.并联型 9.下列关于FIR滤波器的说法中正确的是(C) A.FIR滤波器容易设计成线性相位特性

数字信号处理总结与-习题(答案

对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。4、)()(5241 n R x n R x ==,只有 当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞ =-∞ <∞ ∑ 6、用来计算N =16点DFT ,直接计算需要(N 2 )16*16=256_次复乘法,采用基2FFT 算法, 需要__(N/2 )×log 2N =8×4=32 次复乘法。7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并 联型的运算速度最高。9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是__N 1+N 2-1_。11、N=2M 点基2FFT ,共有 M 列蝶形, 每列有N/2 个蝶形。12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法 14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h 1(n)*h 2(n), =H 1(e j ω )× H 2(e j ω )。19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。 1、下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( y(n)=x(n 2 ) ) A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法能用于设计FIR 高通滤波4、因果FIR 滤波器的系统函数H(z)的全部极点都在(z = 0 )处。6、已知某序列z 变换的收敛域为|z|<1,则该序列为(左边序列)。7、序列)1() (---=n u a n x n ,则)(Z X 的收敛域为(a Z <。8、在对连续信号均匀 采样时,要从离散采样值不失真恢复原信号,则采样周期T s 与信号最高截止频率f h 应满足关系(T s <1/(2f h ) ) 9、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 (16=N )。10、线性相位FIR 滤波器有几种类型( 4) 。11、在IIR 数字滤波器的设计中,用哪种方法只适 合于片断常数特性滤波器的设计。(双线性变换法)12、下列对IIR 滤波器特点的论述中错误的是( C )。 A .系统的单位冲激响应h(n)是无限长的B.结构必是递归型的C.肯定是稳定的D.系统函数H(z)在有限z 平面(0<|z|<∞)上有极点 13、有限长序列h(n)(0≤n ≤N-1)关于τ= 2 1 -N 偶对称的条件是(h(n)=h(N-n-1))。14、下列关于窗函数设计法的说法中错误的是( D )。A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法不能用于设计FIR 高通滤波器 15、对于傅立叶级数而言,其信号的特点是(时域连续非周期,频域连续非周期)。

数字信号处理试题及答案

数字信号处理试题及答案 一、填空题:(每空1分,共18分) 1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。 2、 双边序列z 变换的收敛域形状为 圆环或空集 。 3、 某序列的 DFT 表达式为∑-==1 0)()(N n kn M W n x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是 M π 2 。 4、 线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(2 2++--=z z z z z H ,则系统的极点为 2,2 1 21-=-=z z ;系统的稳定性为 不稳定 。系统单位冲激响应)(n h 的初值 4)0(=h ;终值)(∞h 不存在 。 5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点 的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。 6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的 映射变换关系为T ω = Ω。用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω 与数字频率ω之间的映射变换关系为)2 tan(2ω T =Ω或)2arctan(2T Ω=ω。 7、当线性相位 FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为 )1()(n N h n h --= ,此时对应系统的频率响应)()()(ω?ω ωj j e H e H =,则其对应的相位函数 为ωω?2 1 )(-- =N 。 8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。 二、判断题(每题2分,共10分) 1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可 以了。 (╳) 2、 已知某离散时间系统为)35()]([)(+==n x n x T n y ,则该系统为线性时不变系统。(╳)

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念 0.1信号、系统与信号处理 1?信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号能量信号/功率信号 连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类: 2?系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3. 信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理, 而且也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 精选

PrF ADC DSP DAC PoF (1)前置滤波器 将输入信号X a(t )中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次X a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术 ----- D igitalSignalProcessing 另一层是狭义的理解,为数字信号处理器----- DigitalSignalProcesso。 0.5课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号 频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessin)信号对象主要是随机信 号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1 ?按自变量与函数值的取值形式是否连续信号可以分成哪四种类型?

数字信号处理试题和答案 (1)

一. 填空题 1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。 2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为:fs>=2f max。 3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的N 点等间隔采样。 4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。 5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。 6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。 7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。 8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。 9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。 10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关 11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。 12.对长度为N的序列x(n)圆周移位m位得到的序列用x m (n)表示,其数学表达式为 x m (n)= x((n-m)) N R N (n)。 13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。 14.线性移不变系统的性质有交换率、结合率和分配律。 15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。

数字信号处理期末试题及答案汇总

数字信号处理期末试题及答案汇总

数字信号处理卷一 一、填空题(每空1分, 共10分) 1.序列()sin(3/5)x n n π=的周期为 。 2.线性时不变系统的性质有 律、 律、 律。 3.对4 ()()x n R n =的Z 变换为 ,其收敛域为 。 4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。 5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。 6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。 7.因果序列x(n),在Z →∞时,X(Z)= 。 二、单项选择题(每题2分, 共20分) 1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( ) A. 3 B. 4 C. 6 D. 7 3.LTI 系统,输入x (n )时,输出y (n );输入 为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换DFT 的是 ( ) A.时域为离散序列,频域为连续信号 B.时域为离散周期序列,频域也为离散周期序列

C.时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列 5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号()A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统()A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴 B.原点C.单位圆 D.虚轴 8.已知序列Z变换的收敛域为|z|>2,则该序列为()A.有限长序列 B.无限长序列C.反因果序列 D.因果序列 9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是( ) A.N≥M B.N≤M C.N≤2M D.N≥2M 10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( )

数字信号处理学习心得体会

数字信号处理学习心得 体会

数字信号处理学习心得 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基 2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响

应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的

数字信号处理(吴镇扬)第一章习题解答

第1章 离散时间信号与系统 1. 解:由题意可知 165 w π= 则周期为:22585168 5 N k k w πππ = ?= ?= ?= 其中k 为整数,且满足使N 为最小整数。 2. (1)解:由题意可知 37 w π= 则周期为:2214314337 N k k w πππ= ?=?= ?= (2)解:由题意可知 1211,4 7 w w ππ= = 则 12281814 N k k w πππ= ?= ?=?= 2221411417 N k k w πππ = ?= ?=?= 则所求周期N 为:1N 和2N 的最小公倍数,即为:56 3. 解:(1) n 幅值 (2)

01 24 3 n 幅度 4. 解:由题意得: 123123 8,2,6,102, 2, 2s s s s ππππΩ=Ω=Ω=Ω=Ω>ΩΩ<ΩΩ<Ω 1/4s T = 根据采样定理,只有信号对1()a x t 采样没有频率混叠。 11()() () cos 2(/4) cos 24 cos 2 a a n n x n x t t nT t t n n n δπδππ∞ =-∞ ∞ =-∞ =-=-==∑ ∑ t 幅度

22()() () cos 6(/4) cos 64 3cos 2 a a n n x n x t t nT t t n n n δπδππ∞ =-∞ ∞ =-∞ =-=--=-=-∑ ∑ t 幅度 33()() () cos10(/4) cos104 5cos 2 a a n n x n x t t nT t t n n n δπδππ∞ =-∞ ∞ =-∞ =- =-==∑ ∑ t 幅度

2017数字信号处理模拟题a答案

1. 两个有限长序列x1(n),0≤n ≤33和x2(n),0≤n ≤36,做线性卷积后结果的长度是 70 , 若对这两个序列做64点循环卷积,则圆周卷积结果中n= 6 至 64 为线性卷积结果。 2. 一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为 ; 输入为x (n-3)时,输出为 3. 若正弦序列x(n)=sin(30n π/120)是周期的,则周期是N= 8 4. 如果一台计算机的速度为平均每次复乘5μS ,每次复加0.5μS ,用它来计算512 点的DFT[x(n)],问直接计算需要多少时间,用FFT 运算需要多少时间。 1、 直接计算 复乘所需时间 62621510510512 1.31072T N s --=??=??= 复加所需时间()6610.51010.5105125110.130816T N N s --=???-=???= 所以12 1.441536T T T s =+= 2、用FFT 计算 复乘所需时间 66122512510log 510log 5120.0115222 N T N s --=?? =??= 复加所需时间662220.510log 0.510512log 5120.002304T N N s --=??=??= 所以120.013824T T T s =+=

6.设系统差分方程 y(n)=ay(n-1)+x(n) 其中x(n)为输入,y(n)为输出。当边界条件选为y(-1)=0时,是判断系统是否线性的、移不变的

7.用级联型结构实现以下系统函数,试问一共能构成几种级联型网络,并画出其中一种的信号流图。 ()() ()() 22 41 1.41()0.50.90.8Z Z Z H z Z Z Z +-+= -++

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

数字信号处理习题及答案

==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV ==================第一章 时域离散时间信号与系统================== 1. ①写出图示序列的表达式 答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期 ②判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1)A是常数 8ππn 73Acos x(n)??? ? ??-= (2))8 1 (j e )(π-=n n x 解: (1) 因为ω= 73π, 所以314 π2=ω, 这是有理数, 因此是周期序列, 周期T =14。 (2) 因为ω= 81, 所以ω π2=16π, 这是无理数, 因此是非周期序列。 ③序列)Acos(nw x(n)0?+=是周期序列的条件是是有理数2π/w 0。 3.加法 乘法 序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。 移位 翻转:①已知x(n)波形,画出x(-n)的波形图。 ② 尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。 卷积和:①h(n)*求x(n),其他0 2 n 0n 3,h(n)其他03n 0n/2设x(n) 例、???≤≤-=???≤≤= ②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n ) x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)

数字信号处理试卷及答案

A 一、 选择题(每题3分,共5题) 1、)6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期6 π = N C.周期π6=N D. 周期π2=N 2、序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、对)70()(≤≤n n x 和)190()(≤≤n n y 分别作 20 点 DFT ,得)(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 围时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

数字信号处理学习心得

数字信号处理学习心得 XXX ( XXX学院XXX班) 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂

基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层

数字信号处理完整试题库

1. 有一个线性移不变的系统,其系统函数为: 2z 2 1 )21)(2 11(2 3)(11 1<<-- - = ---z z z z H 1)用直接型结构实现该系统 2)讨论系统稳定性,并求出相应的单位脉冲响应)(n h 4.试用冲激响应不变法与双线性变换法将以下模拟滤波器系统函数变换为数字滤波器系统函数: H(s)= 3) 1)(s (s 2 ++其中抽样周期T=1s 。 三、有一个线性移不变的因果系统,其系统函数为: ) 21)(2 1 1(2 3)(111------= z z z z H 1用直接型结构实现该系统 2)讨论系统稳定性,并求出相应的单位脉冲响应)(n h 七、用双线性变换设计一个三阶巴特沃思数字低通虑波器,采样频率为kHz f s 4=(即采样周期为s T μ250=),其3dB 截止频率为kHz f c 1=。三阶模拟巴特沃思滤波器为: 3 2 ) ()(2)(211)(c c c a s s s s H Ω+Ω+Ω+= 解1)2 111112 5 12 3) 21)(2 1 1(2 3)(------+-- = --- = z z z z z z z H …………………………….. 2分 当2 1 2> >z 时: 收敛域包括单位圆……………………………6分 系统稳定系统。……………………………….10分 1111 1211 2 111)21)(2 11(2 3)(------- -= -- - = z z z z z z H ………………………………..12分 )1(2)()2 1 ()(--+=n u n u n h n n ………………………………….15分 4.(10分)解: 3 1 11)3)(1(1)(+- +=++= s s s s s H ………………1分 1 311)(------ -= Z e s T Z e T z H T T ……………………3分

数字信号处理课程总结(全)

数字信号处理课程总结 以下图为线索连接本门课程的内容: ) (t x a ) (t y a ) (n x 一、 时域分析 1. 信号 ? 信号:模拟信号、离散信号、数字信号(各种信号的表示及关系) ? 序列运算:加、减、乘、除、反褶、卷积 ? 序列的周期性:抓定义 ? 典型序列:)(n δ(可表征任何序列)、)(n u 、)(n R N 、 n a 、jwn e 、)cos(θ+wn ∑∞ -∞ =-= m m n m x n x )()()(δ 特殊序列:)(n h 2. 系统 ? 系统的表示符号)(n h ? 系统的分类:)]([)(n x T n y = 线性:)]([)]([)]()([2121n x bT n x aT n bx n ax T +=+ 移不变:若)]([)(n x T n y =,则)]([)(m n x T m n y -=- 因果:)(n y 与什么时刻的输入有关 稳定:有界输入产生有界输出 ? 常用系统:线性移不变因果稳定系统 ? 判断系统的因果性、稳定性方法 ? 线性移不变系统的表征方法: 线性卷积:)(*)()(n h n x n y = 差分方程: 1 ()()()N M k k k k y n a y n k b x n k === -+ -∑∑

3. 序列信号如何得来? ) (t x a ) (n x 抽样 ? 抽样定理:让)(n x 能代表)(t x a ? 抽样后频谱发生的变化? ? 如何由)(n x 恢复)(t x a ? )(t x a = ∑ ∞ -∞ =--m a mT t T mT t T mT x ) ()] (sin[ ) (π π 二、 复频域分析(Z 变换) 时域分析信号和系统都比较复杂,频域可以将差分方程变换为代数方程而使分析简化。 A . 信号 1.求z 变换 定义:)(n x ?∑∞ -∞ =-= n n z n x z X )()( 收敛域:)(z X 是z 的函数,z 是复变量,有模和幅角。要其解析,则z 不能取让)(z X 无穷大的值,因此z 的取值有限制,它与)(n x 的种类一一对应。 ? )(n x 为有限长序列,则)(z X 是z 的多项式,所以)(z X 在z=0或∞时可 能会有∞,所以z 的取值为:∞<

相关主题
文本预览
相关文档 最新文档