当前位置:文档之家› 圆周运动基本概念和规律A

圆周运动基本概念和规律A

圆周运动基本概念和规律A
圆周运动基本概念和规律A

课时作业[圆周运动的基本概念和规律]

基础热身

1.如图K18-1所示是摩托车比赛转弯时的情形.转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是()

图K18-1

A.摩托车一直受到沿半径方向向外的离心力作用

B.摩托车所受外力的合力小于所需的向心力

C.摩托车将沿其线速度的方向沿直线滑去

D.摩托车将沿其半径方向沿直线滑去

2.质量为m的石块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果摩擦力的作用使得石块的速度大小不变,如图K18-2所示,那么()

图K18-2

A.因为速率不变,所以石块的加速度为零

B.石块下滑过程中受的合外力越来越大

C.石块下滑过程中受的摩擦力大小不变

D.石块下滑过程中的加速度大小不变,方向始终指向球心

3.如图K18-3所示,a、b是地球表面上不同纬度上的两个点,如果把地球看作是一个球体,a、b两点随地球自转做匀速圆周运动,这两个点具有大小相同的() A.线速度B.角速度

C.加速度D.轨道半径

4.如图K18-4所示为A、B两质点做匀速圆周运动的向心加速度随半径变化的图象,其中A为双曲线的一个分支,由图可知()

A.A质点运动的线速度大小不变

B.A质点运动的角速度大小不变

C.B质点运动的线速度大小不变

D.B质点运动的角速度与半径成正比

技能强化

5.2011·淮北联考如图K18-5所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是()

A.小球通过最高点时的最小速度v min=g(R+r)

B.小球通过最高点时的最小速度v min=0

C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力

D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力

6.如图K18-6所示,放置在水平地面上的支架质量为M,支架顶端用细线拴着的摆球质量为m,现将摆球拉至水平位置,而后释放,摆球运动过程中,支架始终不动,以下说法正确的是()

A.在释放前的瞬间,支架对地面的压力为(m+M)g

B.在释放前的瞬间,支架对地面的压力为Mg

C.摆球到达最低点时,支架对地面的压力为(m+M)g

D.摆球到达最低点时,支架对地面的压力为(3m+M)g

7.2011·湖南联考如图K18-7所示,在倾角为α=30°的光滑斜面上,有一根长为L=0.8 m的细绳,一端固定在O点,另一端系一质量为m=0.2 kg的小球,沿斜面做圆周运动,若要小球能通过最高点A,则小球在最低点B的最小速度是()

A.2 m/s B.210 m/s

C.2 5m/s D.2 2 m/s

8.一小球质量为m,用长为L的悬绳(不可伸长,质量不计)固定于O点,在O点正下方L

2处钉有一颗钉子,如图K18-8所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,下列说法错误的是()

A.小球线速度没有变化

B.小球的角速度突然增大到原来的2倍

C.小球的向心加速度突然增大到原来的2倍

D.悬线对小球的拉力突然增大到原来的2倍

9.质量为m的小球由轻绳a和b分别系于一轻质木架上的A点和C点.如图K18-9所示,当轻杆绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向.当小球运动到图示位置时,绳b被烧断的同时木架停止转动,则() A.绳a对小球拉力不变

B.绳a对小球拉力增大

C.小球可能前后摆动

D.小球不可能在竖直平面内做圆周运动

10.如图K18-10所示,在光滑的圆锥漏斗的内壁,两个质量相同的小球A和B分别紧贴着漏斗在水平面内做匀速圆周运动,其中小球A在小球B的上方.下列判断正确的是() A.A球的速率大于B球的速率

B.A球的角速度大于B球的角速度

C.A球对漏斗壁的压力大于B球对漏斗壁的压力

D.A球的转动周期大于B球的转动周期

11.如图K18-11所示,直径为d的纸制圆筒以角速度ω绕垂直纸面的轴O匀速转动(图示为截面).从枪口发射的子弹沿直径穿过圆筒.若子弹在圆筒旋转不到半周时,在圆周上留下a、b两个弹孔,已知aO与bO夹角为θ,求子弹的速度.

图K18-11

12.如图K18-12所示,把一个质量m=1 kg的小球通过两根等长的细绳a、b与竖直杆上的A、B两个固定点相连接,绳长都是1 m,AB长度是1.6 m,直杆和小球旋转的角速度等于多少时,b绳上才有张力?

图K18-12

挑战自我

13.如图K18-13所示,小球从光滑的圆弧轨道下滑至水平轨道末端时,光电装置被触动,控制电路会使转筒立刻以某一角速度匀速连续转动起来.转筒的底面半径为R,已知轨道末端与转筒上部相平,与转筒的转轴距离为L,且与转筒侧壁上的小孔的高度差为h;开始时转筒静止,且小孔正对着轨道方向.现让一小球从圆弧轨道上的某处无初速滑下,若正好能钻入转筒的小孔(小孔比小球略大,小球视为质点,不计空气阻力,重力加速度为g),求:

(1)小球从圆弧轨道上释放时的高度H;

(2)转筒转动的角速度ω.

图K18-13

课时作业[圆周运动的基本概念和规律]

【基础热身】

1.B [解析] 摩托车只受重力、地面支持力和地面的摩擦力作用,没有离心力,选项A 错误;摩托车正常转弯时可看作是做匀速圆周运动,所受的合力等于向心力,如果向外滑动,说明提供的向心力即合力小于需要的向心力,选项B 正确;摩托车将沿曲线做离心运动,选项C 、D 错误.

2.D [解析] 由于石块做匀速圆周运动,只存在向心加速度,大小不变,方向始终指向球心,选项D 正确、选项A 错误;由F 合=F 向=ma 向知合外力大小不变,选项B 错误;又因石块在运动方向(切线方向)上合力为零,才能保证速率不变,在该方向重力的分力不断减小,所以摩擦力不断减小,选项C 错误.

3.B [解析] 地球上各点(除两极点)随地球一起自转,其角速度与地球自转角速度相同,故选项B 正确;不同纬度的地点绕地轴做匀速圆周运动的半径不同,故选项D 错误;根据v =ωr ,a =rω2可知选项A 、C 错误.

4.A [解析] 对于质点A 有a A ∝1

r ,与a =v 2r

相比较,则v A 大小不变.对于质点B 有a B

∝r ,与a =rω2

相比较,则ωB 不变,故选项A 正确.

【技能强化】

5.BC [解析] 小球沿管上升到最高点的速度可以为零,故选项A 错误、选项B 正确;小球在水平线ab 以下的管道中运动时,由外侧管壁对小球的作用力F N 与小球重力在背离圆

心方向的分力F 1的合力提供向心力,即:F N -F 1=m v 2

R +r

,因此,外侧管壁一定对小球有作

用力,而内侧壁无作用力,选项C 正确;小球在水平线ab 以上的管道中运动时,小球受管壁的作用力与小球速度大小有关,选项D 错误.

6.BD [解析] 在释放前的瞬间绳拉力为零,对支架:F N1=Mg ;当摆球运动到最低点时,

由机械能守恒定律得mgR =1

2m v 2,由牛顿第二定律得F T -mg =m v 2R

,由以上两式得F T =3mg .

对支架受力分析,地面支持力F N2=Mg +3mg .由牛顿第三定律知,支架对地面的压力F N2′=3mg +Mg ,故选项B 、D 正确.

7.C [解析] 小球通过A 点的最小向心力为F =mg sin α,所以其通过A 点的最小速度为:

v A =gL sin α=2 m/s ,则根据机械能守恒定律得:12m v 2B =12m v 2

A +2mgL sin α,解得v

B =2 5 m/s ,即选项

C 正确.

8.D [解析] 在小球通过最低点的瞬间,水平方向上不受外力作用,沿切线方向小球的加速度等于零,因而小球的线速度不会发生变化,选项A 正确;在线速度不变的情况下,小球的半径突然减小到原来的一半,由v =ωr 可知角速度增大为原来的2倍,选项B 正确;由a =v 2

r

,可知向心加速度突然增大到原来的2倍,选项C 正确;在最低点,F -mg =ma ,选项

D 错误.

9.BC [解析] 绳b 烧断前,小球竖直方向的合力为零,即F a =mg ,烧断b 后,小球在

竖直面内做圆周运动,且F a ′-mg =m v 2

l

,所以F a ′>F a ,选项A 错误、选项B 正确;当ω

足够小时,小球不能摆过AB 所在高度,选项C 正确;当ω足够大时,小球在竖直面内能通过AB 上方的最高点而做圆周运动,选项D 错误.

10.AD [解析] 先对A 、B 两球进行受力分析,两球均只受重力和漏斗的支持力.如图

所示,对A 球由牛顿第二定律,有:F N A sin α=mg ,F N A cos α=m v 2A

r A

=mω2A r A ;对B 球由牛顿第二定律,有F N B sin α=mg ,F N B cos α=m v 2B

r B

=mω2B r B .由以上各式可得F N A =F N B ,选项C 错误.可得m v 2A r A =m v 2

B r B

,因为r A >r B ,所以v A >v B ,选项A 正确.可得mω2A r A =mω2B r B ,因为r A >r B ,所以ωA <ωB ,选项B 错误.又因为ω=2π

T

,所以T A >T B ,选项D 正确.

11.ωd π-θ

[解析] 子弹射出后沿直线运动,从a 点射入,从b 点射出,该过程中圆筒转过的角度为π-θ.

设子弹速度为v ,则子弹穿过筒的时间t =d

v 此时间内筒转过的角度α=π-θ

据α=ωt 得,π-θ=ωd v 则子弹速度v =ωd

π-θ

12.大于3.5 rad/s

[解析] 已知a 、b 绳长均为1 m ,即AC =BC =1 m ,AO =1

2

AB =0.8 m ,在△AOC 中,cos θ

=AO AC =0.8

1=0.8,sin θ=0.6,θ=37°.小球做圆周运动的轨道半径为r =OC =AC sin θ=1×0.6 m =0.6 m.

b 绳被拉直但无张力时,小球所受的重力mg 与a 绳拉力F Ta 的合力F 提供向心力,其受力分析如图所示,由图可知小球的合力为F =mg tan θ.

根据牛顿第二定律得F =mω2r 解得ω=g tan θ

r

=3.5 rad/s.

当直杆和小球的角速度ω′>3.5 rad/s 时,b 绳才有张力.

【挑战自我】

13.(1)(L -R )24h (2)n π2g

h

(n =1,2,3…)

[解析] (1)设小球从离开轨道到进入小孔所用的时间为t ,则由平抛运动规律得 h =1

2

gt 2,L -R =v 0t 小球在轨道上运动过程中机械能守恒,故有mgH =1

2m v 20

联立解得:t =2h

g ,H =(L -R )24h

.

(2)在小球做平抛运动的时间内,圆筒必须恰好转整数转,小球才能钻进小孔, 即ωt =2n π(n =1,2,3……).

所以ω=n π2g

h

(n =1,2,3…)

高中物理:第五章匀速圆周运动

第五章匀速圆周运动 本章学习提要 1.理解物体做圆周运动的原因;理解向心加速度和向心力的概念;知道向心力和哪些因素有关,能计算向心加速度和向心力,从而加深对力和运动状态变化关系的理解。 2.知道圆周运动在解释月球运动、测量分子速度、解决车辆转弯问题等方面的广泛应用。 3.知道离心现象及其应用。 本章由基础型课程中圆周运动的运动学规律,拓展到圆周运动的动力学原因,进一步加深对牛顿运动定律这一普遍规律的理解。同时,通过对圆周运动的探究,感受“以直代曲”的思想方法,通过学习圆周运动的应用,体验物理知识与生产生活的联系,在学习离心力的过程中感悟生活语言和科学概念的区别,学习用科学知识来认识和描述自然现象。 A 向心加速度向心力 一、学习要求 理解向心力,能够计算向心力。理解向心加速度,能用相关公式计算向心加速度,能分析质点在竖直平面内做圆周运动时,恰能经过最高点的受力情况。通过探究向心力与哪些因素有关的实验过程感受科学探究的基本方法,并培养细致严谨的科学作风。 二、要点辨析 1.向心力是变力 向心力是一个矢量,既有大小,也有方向。物体做圆周运动,必须要有向心力不断改变物体的速度方向,而向心力本身也总是指向圆心不断改变方向,因此向心力是变力,而且无论物体做圆周运动的速度大小是否改变,向心力都是变力,只不过当物体做匀速圆周运动时,向心力的大小保持不变。 2.向心力有来源 首先要明白,向心力是以作用效果来命名的,它不是和重力、弹力、摩擦力并列的某种特殊性质的力。因此,任何实际存在的力都可以作为向心力,也就是说重力、弹力、摩擦力都可以作为向心力。提供向心力的物体可以在圆心,例如链球的圆周运动靠位于圆心的运动员以手的控制来实现;也可以不在圆心,例如圆轨道对小车提供向心力,向心力的来源就不在圆心上。还有一个问题,向心力是合力还是分力,这要看具体情况。向心力可以是合力也可以是某个力的分力,在基础型教材中我们只讨论一个为提供向心力的情况,其实多个力提供向心力的例子也很多,例如物体在竖直平面内做网周运动,就涉及一个以上的力提供向心力。当物体做匀速圆周运动时,向心力就是合力;当物体做一般圆周运动时,如果速度大小也发生变化,向心力仅仅是合力的一个分力,另一个分力沿着圆周切线方向,使速度的大小发生变化。 3.向心力不做功 因为向心力指向圆心,与做圆周运动的物体的速度方向总是垂直,它只改变速度的方向,不改变速度的大小,因此,向心力总是不做功。当然,如果做圆周运动的物体的速度大小发

研究匀速圆周运动的规律

研究匀速圆周运动的规律 ★教案目标 (一) 知识与技能 1。知道什么是向心力,理解它是一种效果力 2。知道向心力大小与哪些因素有关。理解公式的确切含义,并能用来进行计算 3。结合向心力理解向心加速度 4。理解变速圆周运动中合外力与向心力的关系 (二) 过程与方法 1。从受力分析来理解向心加速度,加深对牛顿定律的理解。 2。通过用圆锥摆粗略验证向心力的表达式的实验来了解向心力的大小与哪些因素有关,并理解公式的含义。 3。经历从匀速圆周运动到变速圆周运动再到一般曲线运动的研究过程,让学生领会解决问题从特殊到一般的思维方法。并学会用运动和力的观点分析、解决问题。 (三) 情感态度与价值观 1。通过亲身的探究活动,使学生获得成功的乐趣,培养学生参与物理活动的兴趣。 2。经历从特殊到一般的研究过程,培养学生分析问题、解决问题的能力。 3。实例、实验紧密联系生活,拉近科学与学生的距离,使学生感到科学就在身边,调动学生学习的积极性,培养学生的学习兴趣。 ★教案重点 1。理解向心力的概念和公式的建立。 2。理解向心力只改变速度的方向,不改变速度的大小。 3。运用向心力、向心加速度的知识解释有关现象。 ★教案难点 1。理解向心力的概念和公式的建立。 2。运用向心力、向心加速度的知识解释有关现象。 ★教案过程 一、引入 师:同学们,在上节课的学习中,我们单纯从运动学角度用公式 t v v a t 0-=对匀速圆周运动

的加速度进行了研究,得到的结论是:匀速圆周运动的加速度大小为v a R a R v a ωω===或或22 , 方向总是与速度方向垂直,始终指向圆心。于是我们把匀速圆周运动的加速度又称作向心加 速度。 师:今天我们将结合物体受力从动力学角度用公式m F a =来研究向心加速度。 师:现在我们已知知道了匀速圆周运动的加速度的特点,有哪位同学能告诉我:物体做匀速 圆周运动时所受的合外力有什么特点? 生:根据公式m F a =,我们知道做匀速圆周运动的物体所受的合外力应该 v m R m R v m ma F ωω或或22 ==,方向总是与速度垂直指向圆心。 二、向心力 师:由于做匀速圆周运动的物体受到的合外力始终指向圆心,所以我们把匀速圆周运动物体 所受的合外力又称作向心力。 【定义】做匀速圆周运动的物体所受的合外力由于指向圆心,所以该合外力又叫做向心力。 师:做匀速圆周运动的物体所受的合外力真的指向圆心吗?下面我们结合几个实例体会验证一下这个结论。毕竟理论只有结合实际才能被更透彻地理解。 ①地球绕太阳的运动可以近似看成匀速圆周运动,试分析做匀速圆周运动的物体(地球) 所有受的合外力的特点。 【解读】地球只受到太阳对它的吸引力,合力即为吸引力。该吸引力指向地球做圆周运动的 圆心即日心。 ②光滑桌面上一个小球,由于细绳的牵引,绕桌面上的图钉做匀速圆周运动。 【解读】小球受重力、支持力、绳子的拉力。合力是绳子的拉力,方向沿绳子指向圆心(图 钉) ③使转台匀速转动,转台上的物体也随之做匀速圆周运动,转台与物体间没有相对滑动 【解读】物体受重力、支持力、静摩擦力。合外力为静摩擦力,方向指向圆心。

最新圆周运动知识要点、受力分析和题目精讲(张晓整理)

高中圆周运动知识要点、受力分析和题目精讲(复习大全) 一、基础知识 匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。 匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动。为了描述其运动的特殊性,又引入周期(T)、 频率(f)、角速度(「)等物理量,涉及的物理量及公式较多。因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点。 1.匀速圆周运动的基本概念和公式 s Y? (1)线速度大小:丁,方向沿圆周的切线方向,时刻变化; $ 2开 (2)角速度丄「,恒定不变量; T二丄 (3)周期与频率.■; 2 2 屮二-- =a = — = (4)向心力,,总指向圆心,时刻变化,向心加速度” 方向与向心力相同; (5)线速度与角速度的关系为]二了,1'> :」、」、「的关系为 2 加r,- v =——二朝二Z测/ 丁。所以在也、T、了中若一个量确定,其余两个量也就确定了, 而r还和'有关。 【例1】关于匀速圆周运动,下列说法正确的是() A.线速度不变 B. 角速度不变 C. 加速度为零 D. 周期不变 解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B、D。

圆周运动典型基础练习题大全

1.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2 ,转动半径之比为1∶2 ,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为() A.1∶4 B.2∶3 C.4∶9 D.9∶16 2.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在O点,有两 个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。两小环同 时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为() A.(2m+2M)g B.Mg-2mv2/R C.2m(g+v2/R)+Mg D.2m(v2/R-g)+Mg 3.下列各种运动中,属于匀变速运动的有() A.匀速直线运动B.匀速圆周运动C.平抛运动 D.竖直上抛运动 4.关于匀速圆周运动的向心力,下列说法正确的是( ) A.向心力是指向圆心方向的合力,是根据力的作用效果命名的 B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力 C.对稳定的圆周运动,向心力是一个恒力 D.向心力的效果是改变质点的线速度大小 5.一物体在水平面内沿半径R = 20cm的圆形轨道做匀速圆周运动,线速度v=0.2m/s , 那么,它的向心加速度为______m/s2,它的周期为______s。 6.在一段半径为R=15m的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ =0.70倍,则汽车拐弯时的最大速度是m/ s 7.在如图所示的圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直方向 的夹角为θ ,试求小球做圆周运动的周期。 8如图所示,质量m=1kg的小球用细线拴住,线长l=0.5m,细线所 受拉力达到F=18N时就会被拉断。当小球从图示位置释放后摆到悬 点的正下方时,细线恰好被拉断。若此时小球距水平地面的高度h=5m, 重力加速度g=10m/s2,求小球落地处到地面上P点的距离?求落地速 度?(P点在悬点的正下方) 9如图所示,半径R= 0.4m的光滑半圆轨道与粗糙的水平面相切于A点,质量为m= 1kg的小物体(可视为质点)在水平拉力F的作用下,从C点运动到A点, 物体从A点进入半圆轨道的同时撤去外力F,物体沿半圆轨道通 过最高点B后作平抛运动,正好落在C点,已知AC = 2m,F = 15N,g取10m/s2,试求:物体在B点时的速度以及此时半圆 轨道对物体的弹力? 20.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质 量均为m的小球A、B以不同速率进入管内,A通过最高点C

圆周运动基本概念公式

. 圆周运动基本概念公式 【基本概念辨析】 曲线运动 1、物体做曲线运动时,一定变化的物理量是() A.速率B.速度C.合外力D.加速度 2、关于曲线运动,下列说法中正确的是() A.物体作曲线运动时,它的速度可能保持不变 B.物体只有受到一个方向不断改变的力的作用,才可能作曲线运动 C.作曲线运动的物体,所受合外力方向与速度方向肯定不在一条直线上 D.所受合外力方向与速度方向不在一条直线上的物体,肯定作变加速曲线运动 3、物体在几个共点的恒力作用下处于平衡状态,若突然撤销其中的一个恒力,该物体的运动() A.一定是匀加速直线运动B.一定是匀减速直线运动 C.一定是曲线运动D.以上几种运动形式都有可能 4、如甲图所示,物体在恒力F作用下沿曲线A运动到B,这时突然使它所受 的力方向改变而大小不变(即由F变为-F),在此力作用下,物体以后的运动 情况,下列说法正确的是() A.物体不可能沿Ba运动B.物体不可能沿直线Bb运动 C.物体不可能沿直线Bc运动D.物体不可能沿原曲线由B返回A 圆周运动 5、关于向心力的说法中正确的是() A.物体由于做圆周运动而产生了一个向心力 B.向心力改变了做圆周运动物体的线速度大小和方向 C.做匀速圆周运动物体的向心力,一定等于其所受的合力 D.做匀速圆周运动物体的向心力是恒力 6、关于匀速圆周运动的向心力,下列说法中正确的是() A.向心力是指向圆心方向的合力,是根据力的性质命名的力 B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力 C.对稳定的圆周运动,向心力是一个恒力 D.向心力的效果只是改变质点的线速度大小 7、关于向心加速度,下列说法中正确的是() A.物体做匀速圆周运动的向心加速度始终不变 B.地面上物体由于地球自转而具有的向心加速度在赤道上最大 C.向心加速度较大的物体线速度也较大 D.向心加速度较大的物体角速度也较大 【基础应用】 1、如图所示,一个物体在O点以初速度v开始作曲线运动,已知物体只受到沿x轴方向的恒力F作用,则物体速度大小变化情况是( ) (A)先减小后增大(B)先增大后减小 (C)不断增大(D)不断减小

(完整版)《圆周运动》教学设计

《圆周运动》教学设计 六盘水市第二实验中学卢毅 一、教材分析 本节课的教学内容为新人教版第五章第四节《圆周运动》,它是在学生学习了曲线运动的规律和曲线运动的处理方法以及平抛运动后接触到的又一类曲线运动实例。本节作为该章的重要内容之一,主要向学生介绍了描述圆周运动快慢的几个物理量,匀速圆周运动的特点,在此基础上讨论这几个物理量之间的变化关系,为后续学习圆周运动打下良好的基础。 二、学情分析 通过前面的学习,学生已对曲线运动的条件、运动的合成和分解、曲线运动的处理方法、平抛运动的规律有了一定的了解和认识。在此基础上了,教师通过生活中的实例和实物,利用多媒体,引导学生分析讨论,使学生对圆周运动从感性认识到理性认识,得出相关概念和规律。在生活中学生已经接触到很多圆周运动实例,对其并不陌生,但学生对如何描述圆周运动快慢却是第一次接触,因此学生在对概念的表述不够准确,对问题的猜想不够合理,对规律的认识存在疑惑等。教师在教学中要善于利用教学资源,启发引导学生大胆猜想、合理推导、细心总结、敢于表达,这就能对圆周运动的认识有深度和广度。 三、设计思想 本节课结合我校学生的实际学习情况,对教材进行挖掘和思考,始终把学生放在学习主体的地位,让学生在思考、讨论交流中对描述圆周运动快慢形成初步的系统认识,让学生的思考和教师的引导形成共鸣。 本节课结合了曲线运动的规律及解决方法,利用生活中曲线运动实例(如钟表、转动的飞轮等)使学生建立起圆周运动的概念,在此基础上认识描述圆周运动快慢的相关物理量。总体设计思路如下:

四、教学目标 (一)、知识与技能 1、知道什么是圆周运动、匀速圆周运动。理解线速度、角速度、周期的概念,会用线速度角速度公式进行计算。 2、理解线速度、角速度、周期之间的关系,即r r T v ωπ ==2。 3、理解匀速圆周运动是变速运动。 4、能利用圆周运动的线速度、角速度、周期的概念分析解决生活生产中的实际问题。 (二)、过程与方法 1、知道并理解运用比值定义法得出线速度概念,运用极限思想理解线速度的矢量性和瞬时性。 2、体会在利用线速度描述圆周运动快慢后,为什么还要学习角速度。能利用类比定义线速度概念的方法得出角速度概念。 (三)、情感、态度与价值观 1、通过极限思想的运用,体会物理与其他学科之间的联系,建立普遍联系的世界观。 2、体会物理知识来源于生活服务于生活的价值观,激发学生的学习兴趣。 3、通过教师与学生、学生与学生之间轻松融洽的讨论和交流,让学生感受快乐学习。 五、教学重点、教学难点

匀速圆周运动的实例分析

匀速圆周运动的实例分析 北京市密云县第二中学蔡小娟 教学设计思路: 一、教学理念 本节课的教学设计努力遵循教育部颁发的《普通高中物理课程标准》倡导的“促进学生自主学习,让学生积极参与、乐于探究、勇于实验、勤于思考”的教学理念.在课堂教学中以问题为主线,倡导情景设置、师生交流,在自主、合作、探究的氛围中,引导学生自己提出问题,努力促使学生成为一个研究者. 学习任务分析: 圆周运动在实际生活中有广泛的应用,有关圆周运动的问题是对牛顿运动定律的进一步应用,是教学的难点,同时也是学习机械能和电学知识的基础,通过实例分析求解,教会学生解决问题的一般方法,特别要掌握几个模型及条件. 一、培养学生分析向心力来源的能力,引导学生对做圆周运动的物体进行受力分析,让学生清楚地认识到物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力. 二、培养学生运用物理知识解决实际问题的能力,通过对例题的分析与讨论(结合动画或课件),引导学生从中领悟、掌握运用向心力公式的思路和方法. 学习者分析: 一、学生学完匀速圆周运动的理论知识,尚缺乏实际的应用,对定律的理解还比较粗浅,本节课帮助学生建立一个生动活泼的场景,利于学生的理解、消化. 二、本节课来源于生活中的大量实例,但学生对相关新事物、新情况的了解较为片面,不能很好地由感性认识提升为理性认识,通过对本节的学习让学生掌握探究学习的一般方法,使其成为学生终身学习的基础. 教学目标: 一、知识与技能 1.知道如果一个力或几个力的合力的效果是使物体产生向心加速度,那么这个力或这个合力就是做匀速圆周运动的物体所受的向心力.会在具体问题中分析向心力的来源.2.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例. 3.知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度. 二、过程与方法 1.通过对匀速圆周运动实例的分析,渗透理论联系实际的观点,提高学生分析和解决问题的能力. 2.通过匀速圆周运动的规律在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力. 3.通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力. 三、情感态度与价值观 1.通过对几个实例的分析,使学生明确具体问题必须具体分析,理解物理与生活的联系,学会用合理、科学的方法处理问题. 重点难点

知识讲解生活中的圆周运动基础

生活中的圆周运动 编稿:周军审稿:吴楠楠 【学习目标】 1、能够根据圆周运动的规律,熟练地运用动力学的基本方法解决圆周运动问题。 2、学会分析圆周运动的临界状态的方法,理解临界状态并利用临界状态解决圆周运动问题。 3、理解外力所能提供的向心力和做圆周运动所需要的向心力之间的关系,以此为根据理解向心运动和离心运动。 【要点梳理】 要点一、静摩擦力提供向心力的圆周运动的临界状态 要点诠释: 1、水平面上的匀速圆周运动,静摩擦力的大小和方向 物体在做匀速圆周运动的过程中,物体的线速度大小不变,它受到的切线方向的力必定为零,提供向心力的静摩擦力一定沿着半径指向圆心。这个静摩擦力的大小2fmamr???向,它正比于物体的质量、半径和角速度的平方。 当物体的转速大到一定的程度时,静摩擦力达到最大值,若再增大角速度,静摩擦力不足以提供物体做圆周运动所需要的向心力,物体在滑动摩擦力的作用下做离心运动。 临界状态:物体恰好要相对滑动,静摩擦力达到最大值的状态。此时物体的角速 度rg???(?为最大静摩擦因数),可见临界角速度与物体质量无关,与它到转轴的距离有关。 2、水平面上的变速圆周运动中的静摩擦力的大小和方向 无论是加速圆周运动还是减速圆周运动,静摩擦力都不再沿着半径指向圆心,静摩擦力一定存在着一个切向分量改变速度的大小。如图是在水平圆盘上的物体减速和加速转动时静摩擦力的方向:(为了便于观察,将图像画成俯视图) 要点二、竖直面上的圆周运动的临界状态 要点诠释: 1.汽车过拱形桥

在竖直面内的圆周运动中可以分为:匀速圆周运动和变速圆周运动。对于变速圆周运动,需要特别注意几种具体情况下的临界状态。 例如:汽车通过半圆的拱形桥,讨论桥面受到压力的变化情况 (1)车在最高点的位置Ⅰ时对桥面的压力 对车由牛顿第二定律得:RvmFmg N2?? 为了驾驶安全,桥面对车的支持力必须大于零,即0N F? 所以车的速度应满足关系gRv? 临界状态:汽车在最高点处桥面对汽车的支持力为零,此时汽车的速度gRv?。 如果gRv?,在不计空气阻力的情况下,汽车只受到重力的作用,速度沿着水平方向, 满足平抛运动的条件,所以从此位置开始,汽车将离开桥面做平抛运动,不会再落到桥面上。 (2)汽车沿着拱形桥面向下运动时车对于桥面的压力 当汽车在跨越最高点后的某一位置Ⅱ时 由牛顿第二定律得2N v mgsinF mR????? 解得汽车对于桥面压力的大小2N v F mgsinmR????? 可见在汽车速度大小不变的情况下,随着角?的不断减小,汽车对桥面的压力不断减小。临界状态:当2arc vsinRg??时,汽车对桥面的压力减小到零。从此汽车离开桥面做斜下抛运动。 所以要使得汽车沿着斜面运动,其速度必须满足:0N F??,即车的速度vgR'sin??。 2.细线约束的小球在竖直面上的变速圆周运动 例如,用长为R的细绳拴着质量是m的物体,在竖直平面内做圆周运动。

圆周运动的规律和应用

第3讲:圆周运动的规律及其应用 一、 描述圆周运动的几个物理量 1、 线速度 ⑴定义:质点沿圆周运动通过的弧长l ? 与所用时间 t ?的比值叫线速度。也即是单位时间通过的弧长 ⑵公式:t l v ??= ⑶单位:s m ⑷物理意义:描述圆周运动的物体运动快慢的物理量。 注意:①线速度是矢量 ②线速度有平均线速度和瞬时线速度之分。和速度一样,不作特殊说明,线速度指的都是瞬时线速度,也简称速度 2、 角速度 ⑴定义:做圆周运动的物体与圆心的连线转过的角度θ?与所用时间t ?的比值叫角速度。也即是单位时间转过的角度 ⑵公式: t ??= θ ⑶单位:s rad ⑷物理意义:描述物体绕圆心转动的快慢。 注意:①角速度是矢量,角速度的方向高中阶段不研究。 ②公式: t ??= θ 中的θ?必须用弧度制 ③一定要注意角速度的单位。 3、 周期 ⑴定义:做圆周运动的物体转动一周所用的时间叫周期。 ⑵符号:T ⑶单位:s 4、 频率 ⑴定义:做圆周运动的物体1s 转动的圈数。 ⑵符号:f ⑶单位:Hz 注意: 周期和频率的关系f T 1= 5、 转速 ⑴定义:做圆周运动的物体在单位时间转过的圈数 ⑵符号: n ⑶单位:s r m in r 且1s r =60m in r 注意:当转速以s r 为单位时,转速的大小和频率在数值上相等

6、向心加速度 ⑴定义:做匀速圆周运动的物体的加速度始终指向圆心,这个加速度叫向心加速度。 ⑵公式: r v a 2 == r ⑶单位:2 s m ⑷方向:总是指向圆心且与线速度垂直 ⑸物理意义:描述做圆周的物体速度方向变化快慢的物理量。 二、 匀速圆周运动 1、 定义:线速度大小不变的圆周运动。 2、 性质:匀速圆周运动的性质可以有以下三种说法 变速曲线运动 匀速率曲线运动 变加速曲线运动(加速度的大小不变,方向在时刻变化) 注意:匀速圆周运动的性质不是匀速运动,也不是匀变速曲线运动 三、 描述匀速圆周运动的几个物理量的关系 V= r T π 2= f T 1= =2 n r v a 2 == r 四、 几种常见的传动装置及其特点 1、 同轴传动 2、皮带传动 特点:物体上任意各点的 特点:轮子边缘上各点线速度的大小相等,都和皮带 角速度都相同,即: C B A ωωω== 的速度大小相等,即: D C B A v v v v === 3、 齿轮传动 特点:两齿轮边缘上各点线速度 大小相等即: C B A v v v == ?O ???C A R ? ? ? ? ? ? r D B C B A C ???

研究匀速圆周运动的规律教案

也4点时,其速度方如图所示,物体在圆周上从点经?段时间运动到点.物体在答案 月点的切线方向,如果没有力的作用(因而没有加速度)向沿,物体将因惯性而沿着切线运动网 点的切线方向.这说明物体'点,而实际上物体是运动到圆周上的点,且速度方向是到有加速 度.这个加速度只改变速度的方向,所以这个加速度应该总是跟该点的速度方向垂直,即沿着 半径指向圆心. [耍点捉炼] 4π ==ω = = ω=l.向心加速度的大小::TR —— 2.向心加速度的作用 向心加速度的方向始终与速度方向垂宜,只改变速度的方向,不改变速度的人小. ------------- 3. 向心加速度的物理意义:描述线速度方向变化的快慢. --------------- 4. 匀速圆周运动的性质 向心加速度的方向始终指向圆心,方向时刻改变,是?个变加速度,所以匀速圆周运动不是匀变 速运动,而是非匀变速运动. --------------------------- 说明:向心加速度的公式也适用于非匀速圆周运动,且无论是匀速圆周运动还是非匀速 ----------- 圆周运动,向心加速度的方向都指向圆心. ----------- [延伸思考] RaaRa= 3=知向心加速度成反比:与运动半径甲同学认为由公式而乙同学认为由公式一 KR a R 成正比,他们两人谁的观点正确?说?说你的观点.与运动半径知向心加速度 旧屆届(与成正比.与成反比;当3 ?定时,答案他们两人的观点都不正确.当?定时,斤的关 系图象如图所示) (a) 二、向心力 [问题设计] 1. 如图1所示,用手拉细绳使小球在光滑水平面内做匀速圆周运动,小球受力情况如何?是什 (b)

高三物理一轮复习课时作业及详细解析 第18讲圆周运动的基本概念和规律

基础热身 1.如图K18-1所示是摩托车比赛转弯时的情形.转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是( ) 图K18-1 A.摩托车一直受到沿半径方向向外的离心力作用 B.摩托车所受外力的合力小于所需的向心力 C.摩托车将沿其线速度的方向沿直线滑去 D.摩托车将沿其半径方向沿直线滑去 2.质量为m的石块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果摩擦力的作用使得石块的速度大小不变,如图K18-2所示,那么( ) 图K18-2 A.因为速率不变,所以石块的加速度为零 B.石块下滑过程中受的合外力越来越大 C.石块下滑过程中受的摩擦力大小不变 D.石块下滑过程中的加速度大小不变,方向始终指向球心 3.如图K18-3所示,a、b是地球表面上不同纬度上的两个点,如果把地球看作是一个球体,a、b两点随地球自转做匀速圆周运动,这两个点具有大小相同的( ) A.线速度B.角速度 C.加速度 D.轨道半径 图K18-3 图K18-4 4.如图K18-4所示为A、B两质点做匀速圆周运动的向心加速度随半径变化的图象,其中A为双曲线的一个分支,由图可知( ) A.A质点运动的线速度大小不变 B.A质点运动的角速度大小不变

C .B 质点运动的线速度大小不变 D .B 质点运动的角速度与半径成正比 技能强化 5.2011·淮北联考如图K18-5所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是( ) A .小球通过最高点时的最小速度v min =g (R +r ) B .小球通过最高点时的最小速度v min =0 C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力 D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力 图K18-5 图K18-6 6.如图K18-6所示,放置在水平地面上的支架质量为M ,支架顶端用细线拴着的摆球质量为m ,现将摆球拉至水平位置,而后释放,摆球运动过程中,支架始终不动,以下说法正确的是( ) A .在释放前的瞬间,支架对地面的压力为(m +M )g B .在释放前的瞬间,支架对地面的压力为Mg C .摆球到达最低点时,支架对地面的压力为(m +M )g D .摆球到达最低点时,支架对地面的压力为(3m +M )g 7.2011·湖南联考如图K18-7所示,在倾角为α=30°的光滑斜面上,有一根长为L =0.8 m 的细绳,一端固定在O 点,另一端系一质量为m =0.2 kg 的小球,沿斜面做圆周运动,若要小球能通过最高点A ,则小球在最低点B 的最小速度是( ) A .2 m/s B .210 m/s C .2 5m/s D .2 2 m/s 图K18-7 图K18-8 8.一小球质量为m ,用长为L 的悬绳(不可伸长,质量不计)固定于O 点,在O 点正下方L 2 处钉有一颗钉子,如图K18-8所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,下列说法错误的是( )

2 研究匀速圆周运动的规律

2 研究匀速圆周运动的规律 ★教学目标 (一) 知识与技能 1.知道什么是向心力,理解它是一种效果力 2.知道向心力大小与哪些因素有关。理解公式的确切含义,并能用来进行计算 3.结合向心力理解向心加速度 4.理解变速圆周运动中合外力与向心力的关系 (二) 过程与方法 1.从受力分析来理解向心加速度,加深对牛顿定律的理解。 2.通过用圆锥摆粗略验证向心力的表达式的实验来了解向心力的大小与哪些因素有关,并理解公式的含义。 3.经历从匀速圆周运动到变速圆周运动再到一般曲线运动的研究过程,让学生领会解决问题从特殊到一般的思维方法。并学会用运动和力的观点分析、解决问题。 (三) 情感态度与价值观 1.通过亲身的探究活动,使学生获得成功的乐趣,培养学生参与物理活动的兴趣。 2.经历从特殊到一般的研究过程,培养学生分析问题、解决问题的能力。 3.实例、实验紧密联系生活,拉近科学与学生的距离,使学生感到科学就在身边,调动学生学习的积极性,培养学生的学习兴趣。 ★教学重点 1.理解向心力的概念和公式的建立。 2.理解向心力只改变速度的方向,不改变速度的大小。 3.运用向心力、向心加速度的知识解释有关现象。 ★教学难点 1.理解向心力的概念和公式的建立。 2.运用向心力、向心加速度的知识解释有关现象。 ★教学过程 一、引入 师:同学们,在上节课的学习中,我们单纯从运动学角度用公式t v v a t 0 -= 对匀速圆周运动

的加速度进行了研究,得到的结论是:匀速圆周运动的加速度大小为v a R a R v a ωω===或或22 , 方向总是与速度方向垂直,始终指向圆心。于是我们把匀速圆周运动的加速度又称作向心加 速度。 师:今天我们将结合物体受力从动力学角度用公式 m F a = 来研究向心加速度。 师:现在我们已知知道了匀速圆周运动的加速度的特点,有哪位同学能告诉我:物体做匀速 圆周运动时所受的合外力有什么特点? 生:根据公式 m F a = ,我们知道做匀速圆周运动的物体所受的合外力应该 v m R m R v m ma F ωω或或22 ==,方向总是与速度垂直指向圆心。 二、向心力 师:由于做匀速圆周运动的物体受到的合外力始终指向圆心,所以我们把匀速圆周运动物体 所受的合外力又称作向心力。 【定义】做匀速圆周运动的物体所受的合外力由于指向圆心,所以该合外力又叫做向心力。 师:做匀速圆周运动的物体所受的合外力真的指向圆心吗?下面我们结合几个实例体会验证一下这个结论。毕竟理论只有结合实际才能被更透彻地理解。 ①地球绕太阳的运动可以近似看成匀速圆周运动,试分析做匀速圆周运动的物体(地球) 所有受的合外力的特点。 【解析】地球只受到太阳对它的吸引力,合力即为吸引力。该吸引力指向地球做圆周运动的 圆心即日心。 ②光滑桌面上一个小球,由于细绳的牵引,绕桌面上的图钉做匀速圆周运动。 【解析】小球受重力、支持力、绳子的拉力。合力是绳子的拉力,方向沿绳子指向圆心(图 钉) ③使转台匀速转动,转台上的物体也随之做匀速圆周运动,转台与物体间没有相对滑动 【解析】物体受重力、支持力、静摩擦力。合外力为静摩擦力,方向指向圆心。

高一物理 第四章 A 匀速圆周运动教案 沪科版

第四章 A 匀速圆周运动 一、教学任务分析 匀速圆周运动是继直线运动后学习的第一个曲线运动,是对如何描述和研究比直线运动复杂的运动的拓展,是力与运动关系知识的进一步延伸,也是以后学习其他更复杂曲线运动(平抛运动、单摆的简谐振动等)的基础。 学习匀速圆周运动需要以匀速直线运动、牛顿运动定律等知识为基础。 从观察生活与实验中的现象入手,使学生知道物体做曲线运动的条件,归纳认识到匀速圆周运动是最基本、最简单的圆周运动,体会建立理想模型的科学研究方法。 通过设置情境,使学生感受圆周运动快慢不同的情况,认识到需要引入描述圆周运动快慢的物理量,再通过与匀速直线运动的类比和多媒体动画的辅助,学习线速度与角速度的概念。 通过小组讨论、实验探究、相互交流等方式,创设平台,让学生根据本节课所学的知识,对几个实际问题进行讨论分析,调动学生学习的情感,学会合作与交流,养成严谨务实的科学品质。 通过生活实例,认识圆周运动在生活中是普遍存在的,学习和研究圆周运动是非常必要和十分重要的,激发学习热情和兴趣 二、教学目标 1、知识与技能 (1)知道物体做曲线运动的条件。 (2)知道圆周运动;理解匀速圆周运动。 (3)理解线速度和角速度。 (4)会在实际问题中计算线速度和角速度的大小并判断线速度的方向。 2、过程与方法 (1)通过对匀速圆周运动概念的形成过程,认识建立理想模型的物理方法。 (2)通过学习匀速圆周运动的定义和线速度、角速度的定义,认识类比方法的运用。 3、态度、情感与价值观 (1)从生活实例认识圆周运动的普遍性和研究圆周运动的必要性,激发学习兴趣和求知欲。 (2)通过共同探讨、相互交流的学习过程,懂得合作、交流对于学习的重要作用,在活动中乐于与人合作,尊重同学的见解,善于与人交流。 三、教学重点难点 重点: (1)匀速圆周运动概念。 (2)用线速度、角速度描述圆周运动的快慢。

圆周运动知识点

描述圆周运动的物理量及相互关系 圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。 2、描述匀速圆周运动的物理量 (1)轨道半径(r ) (2)线速度(v ): 定义式:t s v = 矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上。 (3)角速度(ω,又称为圆频率): T t π? ω2= = (φ是t 时间内半径转过的圆心角) 单位:弧度每秒(rad/s ) (4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。 (5)频率(f ,或转速n ):物体在单位时间内完成的圆周运动的次数。 各物理量之间的关系: r t r v f T t rf T r t s v ωθππθωππ==??? ??? ? ?====== 2222 注意:计算时,均采用国际单位制,角度的单位采用弧度制。 (6)向心加速度 r r v a n 22ω==(还有其它的表示形式,如:()r f r T v a n 2 2 22ππω=?? ? ??==) 方向:其方向时刻改变且时刻指向圆心。 对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度分量,r 为曲率半径;物体的另一加速度分量为切向加速度τa ,表征速度大小改变的快慢(对匀速圆周运动而言,τa =0) (7)向心力 匀速圆周运动的物体受到的合外力常常称为向心力,向心力的来源可以是任何性质的 力,常见的提供向心力的典型力有万有引力、洛仑兹力等。对于一般的非匀速圆周运动,物体受到的合力的法向分力n F 提供向心加速度(下式仍然适用),切向分力τF 提供切向加速度。 向心力的大小为:r m r v m ma F n n 22 ω===(还有其它的表示形式,如:

(完整版)圆周运动知识点总结

曲线运动 圆周运动---章节知识点总结 §1 曲线运动 1、曲线运动:轨迹是曲线的运动 分析学习曲线运动,应对比直线运动记忆,抓住受力这个本质。 2、分类:平抛运动 圆周运动 3、曲线运动的运动学特征: (1)轨迹是曲线 (2)速度特点:①方向:轨迹上该点的切线方向 ②可能变化可能不变(与外力有关) 4、曲线运动的受力特征 ①F 合不等于零 ②条件:F 合与0v 不在同一直线上(曲线);F 合与0v 在同一直线上(直线) 例子----分析运动:水平抛出一个小球 对重力进行分解:x g 与A v 在同一直线上:改变A v 的大小 y g 与A v 为垂直关系:改变A v 的方向 ③F 合在曲线运动中的方向问题:F 合的方向指向轨迹的凹面 (请右图在箭头旁标出力和速度的符号) 5、曲线运动的加速减速判断(类比直线运动) F 合与V 的夹角是锐角-------加速 F 合与V 的夹角是钝角-------减速 F 合与V 的夹角是直线-------速度的大小不变 拓展:若F 合恒定--------匀变速曲线运动(典型例子:平抛运动) 若F 合变化--------非匀变速曲线运动(典型例子:圆周运动) §2 运动的合成与分解 1、合运动与分运动的基本概念:略 2、运动的合成与分解的实质:对s 、v 、a 进行分解与合成--------高中阶段仅就这三个物理量进行正交分解。 3、合运动与分运动的关系:等时性---合运动与分动的时间相等(解题的桥梁) 独立性---类比牛顿定律的独立性进行理解 等效性:效果相同所以可以合成与分解 4、几种合运动与分运动的性质 ①两个匀速直线运动合成---------匀速直线运动 ②一个匀速直线运动与一个匀变速直线运动合成-------匀变速曲线运动 ③两个匀变速直线运动合成-----------可能是匀变速直线运动可能是匀变速曲线运动 分析:判断物体做什么运动,一定要抓住本质-----受力!

匀速圆周运动教学设计

匀速圆周运动 一、教学内容分析 “匀速圆周运动”选自人教版高中《物理》第一册第五章第4节。在此之前,学生已经学习了直线运动的相关内容,和曲线运动的基本知识,自然界和日常生活中运动轨迹为圆周的许多事物也为学生的认知奠定了感性基础,本节课主要是帮助学生在原有的感性基础上建立匀速圆周运动的几个概念,为今后进一步学习向心力、向心加速度以及万有引力的知识打下基础。 此外,匀速圆周运动与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有重要的意义。 二、学习情况分析 本节内容是继学生学习平抛运动后,又一种变速曲线运动。在曲线运动的学习中,学生已经知道了曲线运动的速度方向在曲线这一点的切线方向并知道曲线运动是变速运动,此前,学生也已经掌握了直线运动及其快慢描述方法。这些知识都为匀速圆周运动的学习奠定了基础。此外,高一学生已具备一定观察能力和经验抽象思维能力,并对未知新事物有较强的探究欲望。 三、设计思想 “匀速圆周运动”是以概念教学为主的一节课,对物理概念的理解和认识是教学要达到的目标之一,也是教学的出发点。物理是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我在整节课的教学设计中,以建构主义理论为指导,辅以多媒体手段,采用情景教学法和引导式教学法,结合师生共同讨论、归纳,以“情境产生问题”,注重知识的形成过程,针对“什么是匀速圆周运动”以及“匀速圆周运动快慢的描述”展开探究活动,在问题交流讨论中发展学生观点,最终形成对概念的理解。 四、教学目标 知识目标 1、知道匀速圆周运动的概念; 2、理解线速度、角速度和周期; 3、理解线速度、角速度和周期三者之间的关系。 能力目标 能够用匀速圆周运动的有关公式分析和解决实际问题。 情感目标 具有协作意识和探究精神,并在活动中感受学习物理的乐趣。 五、教学重点和难点 重点

高中物理匀速圆周运动基本知识

第4讲匀速圆周运动基本知识 第一部分 知识点一、匀速圆周运动 1. 定义:做圆周运动的质点,若在相等的时间内通过的圆弧长度相等,这种运动就叫做匀速圆周运动。 2. 运动学特征:v大小不变,T不变,不变,大小不变;v和的方向时刻在变,匀速圆周运动是加速度不断改变的变速运动。 3. 动力学特征:合外力大小恒定,方向始终指向圆心。 二、描述圆周运动的物理量 1. 线速度 (1)物理意义:描述质点沿圆周运动的快慢。 (2)方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向。 (3)大小:(s是t时间内通过的弧长)。 2. 角速度 (1)物理意义:描述质点绕圆心转动的快慢。 (2)大小:(),是连接质点和圆心的半径在t时间内转过的角度。 3. 周期T,频率f

做匀速圆周运动的物体运动一周所用的时间叫做周期。 做匀速圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速。 4. v、、T、f的关系 5. 向心加速度 (1)物理意义:描述线速度方向改变的快慢。 (2)大小: (3)方向:总是指向圆心 三、向心力 1. 作用效果:产生向心加速度,不断改变质点的速度方向,维持质点做圆周运动,但不改变速度的大小。 2. 大小: 3. 来源:向心力是按效果命名的力,可以由某个力提供,也可以由几个力的合力提供或由某个力的分力提供,如同步卫星的向心力由万有引力提供,圆锥摆摆球所受向心力由重力和绳上的拉力的合力提供或由绳上拉力的水平分量提供。 4. 匀速圆周运动中向心力就是合外力,而在非匀速圆周运动中,向心力是合外力沿半径方向的一个分力,合外力的另一个分力沿切线方向,用来改变线速度的大小。

圆周运动的基本规律及应用

课时作业(十一) 圆周运动的基本规律及应用1.关于做匀速圆周运动物体的向心加速度的方向,下列说法正确的是( )A .与线速度方向始终相同B .与线速度方向始终相反C .始终指向圆心D .始终保持不变2.如图所示,正在匀速转动的水平转盘上固定有三个可视为质点的小物块A 、B 、C ,它们的质量关系为m A =2m B =2m C ,到轴O 的距离关系为 r C =2r A =2r B .下列说法中正确的是( )A .B 的角速度比C 小B .A 的线速度比C 大C .B 受到的向心力比C 小D .A 的向心加速度比B 大3.如图所示,洗衣机的甩干筒在转动时有一衣服附在筒壁上,则此时( ) A .衣服受重力、筒壁的弹力和摩擦力 B .衣服随筒壁做圆周运动的向心力是摩擦力 C .筒壁的弹力随筒的转速的增大而增大 D .筒壁对衣服的摩擦力随转速的增大而增大4.(2013·汕头模拟)如图所示,在验证向心力公式的实验中,质量相同的钢球①放在A 盘的边缘,钢球②放在B 盘的边缘,A 、B 两盘的半径之比为2∶1.a 、b 分别是与A 盘、B 盘同轴的轮.a 轮、b 轮半径之比为1∶2,当a 、b 两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力之比为( ) A .2∶1 B .4∶1 C .1∶4 D .8∶15.(2013·江西名校联考)自行车的小齿轮A 、大齿轮B 、后轮C 是相互关联的三个转动部分,且半径R B =4R A 、R C =8R A ,如图所示.正常骑行时三轮边缘的向心加速度之比a A ∶a B ∶a C 等于( )A .1∶1∶8 B .4∶1∶4C .4∶1∶32 D .1∶2∶4

圆周运动知识点与习题

教师:______ 学生:______ 时间:_____年___月____日 段 一、授课目的与考点分析: 掌握:1、平抛运动的解题技巧 2、圆周运动的基本知识点和认识圆周运动 考点:1、圆周运动在生活中的运用2、曲线运动的计算 二、授课内容: 圆周运动 一、匀速圆周运动 1. 匀速圆周运动:相等的时间内通过的圆弧长度都相等的圆周运动。 2. 描述圆周运动的物理量: (1)线速度的定义:线速度的大小(即线速率)为做圆周运动的物体通过的弧长跟所用时间的比 值,物体在圆弧上各个点处线速度的方向为圆弧上该点的切线方向。 (2)讨论: a :分析:物体在做匀速圆周运动时,运动的时间t 增大几倍,通过的弧长也增大几倍,所以对于某一匀速圆周运动而言,s 与t 的比值越大,物体运动得越快。 b :线速度 1)线速度是物体做匀速圆周运动的瞬时速度。 2)线速度是矢量,它既有大小,也有方向。 3)线速度的大小 。 4)线速度的方向 在圆周各点的切线方向上。 结论:匀速圆周运动是一种非匀速运动,因为线速度的方向在时刻改变。 龙文学校个性化辅导教案提纲ggggggggggggangganggang

(3)角速度ω的定义: 做圆周运动的物体与圆心的连线(即半径)转过的圆心角角度跟所用时间的比值。 (4)讨论: 1)角速度是表示角度改变快慢的物理量 2)角速度计算公式为:ω=φ/t 3)角速度的单位是 rad/s 4)对某一确定的匀速圆周运动而言,角速度是恒定的 (5)周期、频率和转速 1)周期T:沿圆周运动一周所用的时间。 2)频率f:单位时间内运动重复的次数。 3)转速:单位时间内转动的圈数。 (6)几个物理量间的关系 1)当v一定时,与r成反比 2)当一定时,v与r成正比 3)当r一定时,v与成正比 二、向心力向心加速度 1. 向心力概念的建立 引例:在光滑水平桌面上,做演示实验 一个小球,拴住绳的一端,绳的另一端固定于桌上,原来细绳处于松驰状态,现在用手轻击小球,使小球做匀速圆周运动。试讨论:绳绷紧后,小球为何做匀速圆周运动?小球此时受到哪些力的作用?合外力是哪个力?这个力的方向有什么特点?这个力起什么作用? 结论:

相关主题
文本预览
相关文档 最新文档